> restart: > # DIRECT FACTORIZATION ALGORITHM 6.4 > # > # To factor the n by n matrix A = (A(I,J)) into the product of the > # lower triangular matrix L = (L(I,J)) and the upper triangular > # matrix U = (U(I,J)), that is A = LU, where the main diagonal > # of either L or U consists of all ones: > # > # INPUT: dimension n: the entries A(I,J), 1<=I, J<=n, of A: > # the diagonal L(1,1), ..., L(N,N) of L or the diagonal > # U(1,1), ..., U(N,N) of U. > # > # OUTPUT: the entries L(I,J), 1<=J<=I, 1<=I<=n of L and the entries > # U(I,J), I<=J<=n, 1<=I<=n of U. > print(`This is the general LU factorization method.\n`): > print(`Choice of input method`): > print(`1. input from keyboard - not recommended for large matrices`): > print(`2. input from a text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`The array will be input from a text file in the order`): > print(`A(1,1), A(1,2), ..., A(1,N), A(2,1), A(2,2), ..., > A(2,N)`): > print(`..., A(N,1), A(N,2), ..., A(N,N)\n`): > print(`Place as many entries as desired on each line, but separate `): > print(`entries with`): > print(`at least one blank.`): > print(`Has the input file been created? - enter 1 for yes or 2 for no.`): > AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): > if AA = 1 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example: A:\\DATA.DTA`): > NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): > INP := fopen(NAME,READ,TEXT): > OK := FALSE: > while OK = FALSE do > print(`Input the dimension n - an integer.`): > N := scanf(`%d`)[1]: print(`N is`): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N do > A[I1-1,J-1] := fscanf(INP, `%f`)[1]: > od: > od: > OK := TRUE: > fclose(INP): > else print(`The number must be a positive integer.\n`): > fi: > od: > else > print(`The program will end so the input file can be created.\n`): > fi: > else > OK := FALSE: > while OK = FALSE do > print(`Input the dimension n - an integer.`): > N := scanf(`%d`)[1]: print(`N= `): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N do > print(`input entry in position `,I1,J): > A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): > od: > od: > OK := TRUE: > else print(`The number must be a positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > OUP := default: > fprintf(OUP, `The original matrix - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to N do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > print(`Choice of diagonals:\n`): > print(`1. Diagonal of L consists of ones\n`): > print(`2. Diagonal of U consists of ones\n`): > print(`Please enter 1 or 2.\n`): > FLAG := scanf(`%d`)[1]:print(`Your choice is `):print(FLAG): > if FLAG = 1 then > ISW := 0: > else > ISW := 1: > fi: > for I1 from 1 to N do > XL[I1-1] := 1: > od: > # Step 1 > if abs(A[0,0]) <= 1.0e-20 then > OK := FALSE: > else > # The entries below the main diagonal will be placed in the corresponding > # entries in the matrix A > A[0,0] := A[0,0]/XL[0]: > # Step 2 > for J from 2 to N do > if ISW = 0 then > # First row of U > A[0,J-1] := A[0,J-1]/XL[0]: > # First column of L > A[J-1,0] := A[J-1,0]/A[0,0]: > else > # First row of U > A[0,J-1] := A[0,J-1]/A[0,0]: > # First column of L > A[J-1,0] := A[J-1,0]/XL[0]: > fi: > od: > # Step 3 > M := N-1: > I1 := 2: > while I1 <= M and OK = TRUE do > # Step 4 > KK := I1-1: > S := 0: > for K from 1 to KK do > S := S-A[I1-1,K-1]*A[K-1,I1-1]: > od: > A[I1-1,I1-1] := (A[I1-1,I1-1]+S)/XL[I1-1]: > if abs(A[I1-1,I1-1]) <= 1.0e-20 then > OK := FALSE: > else > # Step 5 > JJ := I1+1: > for J from JJ to N do > SS := 0: > S := 0: > for K from 1 to KK do > SS := SS-A[I1-1,K-1]*A[K-1,J-1]: > S := S-A[J-1,K-1]*A[K-1,I1-1]: > od: > if ISW = 0 then > # Ith row of U > A[I1-1,J-1] := (A[I1-1,J-1]+SS)/XL[I1-1]: > # Ith column of L > A[J-1,I1-1] := (A[J-1,I1-1]+S)/A[I1-1,I1-1]: > else > # Ith row of U > A[I1-1,J-1] := (A[I1-1,J-1]+SS)/A[I1-1,I1-1]: > # Ith column of L > A[J-1,I1-1] := (A[J-1,I1-1]+S)/XL[I1-1]: > fi: > od: > fi: > I1 := I1+1: > od: > if OK = TRUE then > # Step 6 > S := 0: > for K from 1 to M do > S := S-A[N-1,K-1]*A[K-1,N-1]: > od: > A[N-1,N-1] := (A[N-1,N-1]+S)/XL[N-1]: > # If A[N-1,N-1] = 0 then A = LU but the matrix is singular. > # Process is complete, all entries of A have been determined. > # Step 7 > print(`Choice of output method:\n`): > print(`1. Output to screen\n`): > print(`2. Output to text file\n`): > print(`Please enter 1 or 2\n`): > FLAG := scanf(`%d`)[1]:print(`Your input is `):print(FLAG): > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext\n`): > print(`For example A:\\OUTPUT.DTA\n`): > NAME := scanf(`%s`)[1]:print(`The output file is `):print(NAME): > OUP := fopen(NAME,WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `GENERAL LU FACTORIZATION\n\n`): > if ISW = 0 then > fprintf(OUP, `The diagonal of L consists of all entries = 1.0\n`): > else > fprintf(OUP, `The diagonal of U consists of all entries = 1.0\n`): > fi: > fprintf(OUP, `\nEntries of L below/on diagonal and entries of U above`): > fprintf(OUP, `/on diagonal\n`): > fprintf(OUP, `- output by rows in overwrite format:\n`): > for I1 from 1 to N do > for J from 1 to N do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: > fi: > fi: > if OK = FALSE then > print(`Factorization cannot be done\n`): > fi: > fi: