> restart: > # GAUSSIAN ELIMINATION WITH SCALED PARTIAL PIVOTING ALGORITHM 6.3 > # > # To solve the n by n linear system > # > # E1: A[1,1] X[1] + A[1,2] X[2] +...+ A[1,n] X[n] = A[1,n+1] > # E2: A[2,1] X[1] + A[2,2] X[2] +...+ A[2,n] X[n] = A[2,n+1] > # : > # . > # EN: A[n,1] X[1] + A[n,2] X[2] +...+ A[n,n] X[n] = A[n,n+1] > # > # INPUT: number of unknowns and equations n: augmented > # matrix A = (A(I,J)) where 1<=I<=n and 1<=J<=n+1. > # > # OUTPUT: solution x(1), x(2),...,x(n) or a message that the > # linear system has no unique solution. > print(`This is Gaussian Elimination with Scaled Partial Pivoting.\n`): > print(`Choice of input method`): > print(`1. input from keyboard - not recommended for large systems`): > print(`2. input from a text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`The array will be input from a text file in the order`): > print(`A(1,1), A(1,2), ..., A(1,N+1), A(2,1), A(2,2), ..., > A(2,N+1)`): > print(`..., A(N,1), A(N,2), ..., A(N,N+1)\n`): > print(`Place as many entries as desired on each line, but separate `): > print(`entries with`): > print(`at least one blank.`): > print(`Has the input file been created? - enter 1 for yes or 2 for no.`): > AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): > if AA = 1 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example: A:\\DATA.DTA`): > NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): > INP := fopen(NAME,READ,TEXT): > OK := FALSE: > while OK = FALSE do > print(`Input the number of equations - an integer.`): > N := scanf(`%d`)[1]: print(`N is`): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N+1 do > A[I1-1,J-1] := fscanf(INP, `%f`)[1]: > od: > od: > OK := TRUE: > fclose(INP): > else print(`The number must be a positive integer.\n`): > fi: > od: > else > print(`The program will end so the input file can be created.\n`): > fi: > else > OK := FALSE: > while OK = FALSE do > print(`Input the number of equations - an integer.`): > N := scanf(`%d`)[1]: print(`N= `): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N+1 do > print(`input entry in position `,I1,J): > A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): > od: > od: > OK := TRUE: > else print(`The number must be a positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > OUP := default: > fprintf(OUP, `The original system - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to N+1 do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > M := N+1: > # Step 1 > for I1 from 1 to N do > S[I1-1] := abs(A[I1-1,0]): > # Initialize row pointer > NROW[I1-1] := I1: > for J from 1 to N do > if abs(A[I1-1,J-1]) > S[I1-1] then > S[I1-1] := abs(A[I1-1,J-1]): > fi: > od: > if S[I1-1] <= 1.0e-20 then > OK := FALSE: > fi: > od: > NN := N-1: > ICHG := 0: > I1 := 1: > # Step 2 > # Elimination process > while OK = TRUE and I1 <= NN do > # Step 3 > IMAX := NROW[I1-1]: > AMAX := abs(A[IMAX-1,I1-1])/S[IMAX-1]: > IMAX := I1: > JJ := I1+1: > for IP from JJ to N do > JP := NROW[IP-1]: > TEMP := abs(A[JP-1,I1-1]/S[JP-1]): > if TEMP > AMAX then > AMAX := TEMP: > IMAX := IP: > fi: > od: > # Step 4 > # System has no unique solution > if AMAX <= 1.0e-20 then > OK := FALSE: > else > # Step 5 > # Simulate row interchange > if NROW[I1-1] <> NROW[IMAX-1] then > ICHG := ICHG+1: > NCOPY := NROW[I1-1]: > NROW[I1-1] := NROW[IMAX-1]: > NROW[IMAX-1] := NCOPY: > fi: > # Step 6 > I2 := NROW[I1-1]: > for J from JJ to N do > J1 := NROW[J-1]: > # Step 7 > XM := A[J1-1,I1-1]/A[I2-1,I1-1]: > # Step 8 > for K from JJ to M do > A[J1-1,K-1] := A[J1-1,K-1]-XM*A[I2-1,K-1]: > od: > # Multiplier XM could be saved in A[J1-1,I1-1] > A[J1-1,I1-1] := 0: > od: > fi: > I1 := I1+1: > od: > if OK = TRUE then > # Step 9 > N1 := NROW[N-1]: > if abs(A[N1-1,N-1]) <= 1.0e-20 then > OK := FALSE: > # System has no unique solution > else > # Step 10 > # Start backward substitution > X[N-1] := A[N1-1,M-1]/A[N1-1,N-1]: > # Step 11 > for K from 1 to NN do > I1 := NN-K+1: > JJ := I1+1: > N2 := NROW[I1-1]: > SUM := 0: > for KK from JJ to N do > SUM := SUM-A[N2-1,KK-1]*X[KK-1]: > od: > X[I1-1] := (A[N2-1,N]+SUM)/A[N2-1,I1-1]: > od: > # Step 12 > # Process is complete > print(`Choice of output method:\n`): > print(`1. Output to screen\n`): > print(`2. Output to text file\n`): > print(`Please enter 1 or 2\n`): > FLAG := scanf(`%d`)[1]:print(`Your input is `):print(FLAG): > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext\n`): > print(`For example A:\\OUTPUT.DTA\n`): > NAME := scanf(`%s`)[1]:print(`The output file is `):print(NAME): > OUP := fopen(NAME,WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `GAUSSIAN ELIMINATION WITH SCALED PARTIAL PIVOTING\n\n`): > fprintf(OUP, `The reduced system - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to M do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP,`\n`): > od: > fprintf(OUP, `\n\nHas solution vector:\n`): > for I1 from 1 to N do > fprintf(OUP, ` %11.8f`, X[I1-1]): > od: > fprintf(OUP, `\nwith %3d row interchange(s)\n`, ICHG) : > fprintf(OUP, `\nThe rows have been logically re-ordered to:\n`): > for I1 from 1 to N do > fprintf(OUP, ` %2d`, NROW[I1-1]): > od: > fprintf(OUP, `\n`): > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: > fi: > fi: > if OK = FALSE then > print(`System has no unique solution\n`): > fi: > fi: