> restart: > # GAUSSIAN ELIMINATION WITH BACKWARD SUBSTITUTION ALGOTITHM 6.1 > # > # To solve the n by n linear system > # > # E1: A[1,1] X[1] + A[1,2] X[2] +...+ A[1,n] X[n] = A[1,n+1] > # E2: A[2,1] X[1] + A[2,2] X[2] +...+ A[2,n] X[n] = A[2,n+1] > # : > # . > # EN: A[n,1] X[1] + A[n,2] X[2] +...+ A[n,n] X[n] = A[n,n+1] > # > # INPUT: number of unknowns and equations n: augmented > # matrix A = (A(I,J)) where 1<=I<=n and 1<=J<=n+1. > # > # OUTPUT: solution x(1), x(2),...,x(n) or a message that the > # linear system has no unique solution. > print(`This is Gaussian Elimination to solve a linear system.`): > print(`Choice of input method`): > print(`1. input from keyboard - not recommended for large systems`): > print(`2. input from a text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`The array will be input from a text file in the order`): > print(`A(1,1), A(1,2), ..., A(1,N+1), A(2,1), A(2,2), ..., > A(2,N+1)`): > print(`..., A(N,1), A(N,2), ..., A(N,N+1)\n`): > print(`Place as many entries as desired on each line, but separate `): > print(`entries with`): > print(`at least one blank.`): > print(`Has the input file been created? - enter 1 for yes or 2 for no.`): > AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): > if AA = 1 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example: A:\\DATA.DTA`): > NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): > INP := fopen(NAME,READ,TEXT): > OK := FALSE: > while OK = FALSE do > print(`Input the number of equations - an integer.`): > N := scanf(`%d`)[1]: print(`N is`): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N+1 do > A[I1-1,J-1] := fscanf(INP, `%f`)[1]: > od: > od: > OK := TRUE: > fclose(INP): > else print(`The number must be a positive integer.\n`): > fi: > od: > else > print(`The program will end so the input file can be created.\n`): > fi: > else > OK := FALSE: > while OK = FALSE do > print(`Input the number of equations - an integer.`): > N := scanf(`%d`)[1]: print(`N= `): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N+1 do > print(`input entry in position `,I1,J): > A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): > od: > od: > OK := TRUE: > else print(`The number must be a positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > OUP := default: > fprintf(OUP, `The original system - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to N+1 do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > # Step 1 > NN := N-1: > M := N+1: > ICHG := 0: > I1 := 1: > while OK = TRUE and I1 <= NN do > # Step 2 > # Use IP in place of P > IP := I1: > while abs(A[IP-1,I1-1]) <= 1.0e-20 and IP <= N do > IP := IP+1: > od: > if IP = M then > OK := FALSE: > else > # Step 3 > if IP <> I1 then > for JJ from 1 to M do > C := A[I1-1,JJ-1]: > A[I1-1,JJ-1] := A[IP-1,JJ-1]: > A[IP-1,JJ-1] := C: > od: > ICHG := ICHG+1: > fi: > # Step 4 > JJ := I1+1: > for J from JJ to N do > # Step 5 > # XM is used in place of m(J,I) > XM := A[J-1,I1-1]/A[I1-1,I1-1]: > # Step 6 > for K from JJ to M do > A[J-1,K-1] := A[J-1,K-1] - XM * A[I1-1,K-1]: > od: > # Multiplier XM could be saved in A[J,I] > A[J-1,I1-1] := 0: > od: > fi: > I1 := I1+1: > od: > if OK = TRUE > then > # Step 7 > if abs(A[N-1,N-1]) <= 1.0e-20 then > OK := FALSE: > else > # Step 8 > # Start backward substitution > X[N-1] := A[N-1,M-1] / A[N-1,N-1]: > # Step 9 > for K from 1 to NN do > I1 := NN-K+1: > JJ := I1+1: > SUM := 0: > for KK from JJ to N do > SUM := SUM - A[I1-1,KK-1] * X[KK-1]: > od: > X[I1-1] := (A[I1-1,M-1]+SUM) / A[I1-1,I1-1]: > od: > # Step 10 > # Process is complete > print(`Choice of output method`): > print(`1. Output to screen`): > print(`2. Output to text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example: A:\\OUTPUT.DTA`): > NAME := scanf(`%s`)[1]: print(`The output file is`): print(NAME): > OUP := fopen(NAME, WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `GAUSSIAN ELIMINATION\n\n`): > fprintf(OUP, `The reduced system - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to M do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > fprintf(OUP, `\n\nHas solution vector:\n`): > for I1 from 1 to N do > fprintf(OUP, ` %12.8f`, X[I1-1]): > od: > fprintf (OUP, `\n\nwith %d row interchange(s)\n`, ICHG): > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: > fi: > fi: > if OK = FALSE then > print(`System has no unique solution\n`): > fi: > fi: