restart:# CRANK-NICOLSON ALGORITHM 12.3## To approximate the solution of the parabolic partial-differential# equation subject to the boundary conditions# u(0,t) = u(l,t) = 0, 0 < t < T = max t# and the initial conditions# u(x,0) = F(x), 0 <= x <= l:## INPUT: endpoint l: maximum time T: constant ALPHA: integers m, N:## OUTPUT: approximations W(I,J) to u(x(I),t(J)) for each# I = 1,..., m-1 and J = 1,..., N.print(`This is the Crank-Nicolson Method.`):print(`Input the function F(X) in terms of x.`):print(`For example: sin(3.141592654*x)`):F := scanf(`%a`)[1]: print(`F(x) = `):print(F):F := unapply(F,x):print(`The lefthand endpoint on the X-axis is 0.`):OK :=FALSE:while OK = FALSE doprint(`Input the righthand endpoint on the X-axis.`):FX := scanf(`%f`)[1]:print(`Righthand endpoint = `):print(FX):if FX <= 0 thenprint(`Must be positive number.`):elseOK := TRUE:fi:od:OK := FALSE:while OK = FALSE doprint(`Input the maximum value of the time variable T.`):FT := scanf(`%f`)[1]:print(`Maximum time value = `):print(FT):if FT <= 0 thenprint(`Must be positive number.`):elseOK := TRUE:fi:od:print(`Input the constant alpha.`):ALPHA := scanf(`%f`)[1]: print(`alpha = `):print(ALPHA):OK := FALSE:while OK = FALSE doprint(`Input integer m = number of intervals on X-axis`):print(`and N = number of time intervals - separated by a blank.`):print(`Note that m must be 3 or larger.`):M := scanf(`%d`)[1]:N := scanf(`%d`)[1]:print(`Number of intervals on x-axis = `):print(M):print(`Number of time intervals = `):print(N):if M <= 2 or N <= 0 thenprint(`Numbers are not within correct range.`):elseOK := TRUE:fi:od:if OK = TRUE thenM1 := M-1:M2 := M-2:# Step 1H := FX/M:K := FT/N:# VV is used in place of lambdaVV := ALPHA^2*K/(H^2):# Set V(M) to zeroV[M-1] := 0:# Step 3for I2 from 1 to M1 doV[I2-1] := evalf(F(I2*H)):od:# Step 3# Steps 3 - 11 solve a tridiagonal linear system using Algorithm 6.7L[0] := 1+VV:U[0] := -VV/(2*L[0]):# Step 4for I2 from 2 to M2 doL[I2-1] := 1+VV+VV*U[I2-2]/2:U[I2-1] := -VV/(2*L[I2-1]):od:# Step 5L[M1-1] := 1+VV+0.5*VV*U[M2-1]:# Step 6for J from 1 to N do# Step 7# Current tT := J*K:Z[0] := ((1-VV)*V[0]+VV*V[1]/2)/L[0]:# Step 8for I2 from 2 to M1 doZ[I2-1] := ((1-VV)*V[I2-1]+0.5*VV*(V[I2]+V[I2-2]+Z[I2-2]))/L[I2-1]:od:# Step 9V[M1-1] := Z[M1-1]:# Step 10for I1 from 1 to M2 doI2 := M2-I1+1:V[I2-1] := Z[I2-1]-U[I2-1]*V[I2]:od:od:# Step 11print(`Choice of output method:`):print(`1. Output to screen`):print(`2. Output to text file`):print(`Please enter 1 or 2.`):FLAG := scanf(`%d`)[1]: print(`INput is `):print(FLAG):if FLAG = 2 thenprint(`Input the file name in the form - drive:\134\134name.ext`):print(`for example: A:\134\134OUTPUT.DTA`):NAME := scanf(`%s`)[1]: print(`Output file is `):print(NAME):OUP := fopen(NAME,WRITE,TEXT):elseOUP := default:fi:fprintf(OUP, `CRANK-NICOLSON METHOD\134n\134n`):fprintf(OUP, ` I X(I) W(X(I),%12.6e)\134n`, FT):for I2 from 1 to M1 doX := I2*H:fprintf(OUP, `%3d %11.8f %13.8f\134n`, I2, X, V[I2-1]):od:if OUP <> default thenfclose(OUP):print(`Output file `,NAME,` created successfully`):fi:fi:JSFH