restart:# INVERSE POWER METHOD ALGORITHM 9.3## To approximate an eigenvalue and an associated eigenvector of the# n by n matrix A given a nonzero vector x:## INPUT: Dimension n: matrix A: vector x: tolerance TOL:# maximum number of iterations N.## OUTPUT: Approximate eigenvalue MU: approximate eigenvector x# or a message that the maximum number of iterations was# exceeded.MULTIP := proc(N,OK,NROW,Q,A) local I2, M, IMAX, J, IP, L1, L2, JJ, I1, J1, K:# Procedure MULTIP determines the row ordering and multipliers for the# matrix (A-Q*I)for I1 from 1 to N doNROW[I1-1] := I1:od: OK := TRUE:I1 := 1:M := N - 1:while I1 <= M and OK = TRUE doIMAX := I1:J := I1+1:for IP from J to N doL1 := NROW[IMAX-1]:L2 := NROW[IP-1]:if abs(A[L2-1,I1-1]) > abs(A[L1-1,I1-1]) thenIMAX := IP:fi:od:if abs(A[NROW[IMAX-1]-1,I1-1]) <= 1.0e-20 thenOK := FALSE:print(`A - Q * I is singular, Q is an eigenvalue, Q = `):print(Q):elseJJ := NROW[I1-1]:NROW[I1-1] := NROW[IMAX-1]:NROW[IMAX-1] := JJ:I2 := NROW[I1-1]:for JJ from J to N doJ1 := NROW[JJ-1]:A[J1-1,I1-1] := A[J1-1,I1-1] / A[I2-1,I1-1]:for K from J to N doA[J1-1,K-1] := A[J1-1,K-1] - A[J1-1,I1-1] * A[I2-1,K-1]:od:od:fi:I1 := I1+1:od:if abs(A[NROW[N-1]-1,N-1]) <= 1.0e-20 thenOK := FALSE:print(`A - Q * I is singular, Q is an eigenvalue, Q = `):print(Q):fi:end:SOLVE := proc(N,B,A,Y,NROW) local M, I2, J, I1, JJ, J1, N1, L, K, N2, KK:# Procedure SOLVE solves the linear system (A-Q*I)*Y=X given a new# vector X and returns the solution in YM := N - 1:for I2 from 1 to M doJ := I2+1:I1 := NROW[I2-1]:for JJ from J to N do:J1 := NROW[JJ-1]:B[J1-1] := B[J1-1] - A[J1-1,I2-1] * B[I1-1]:od:od:N1 := NROW[N-1]:Y[N-1] := B[N1-1] / A[N1-1,N-1]:L := N - 1:for K from 1 to L do J := L - K + 1:JJ := J + 1:N2 := NROW[J-1]:Y[J-1] := B[N2-1]:for KK from JJ to N doY[J-1] := Y[J-1] - A[N2-1,KK-1] * Y[KK-1]:od:Y[J-1] := Y[J-1] / A[N2-1,J-1]:od:end:print(`This is the Inverse Power Method.\134n`):OK := FALSE:print(`Choice of input method`):print(`1. input from keyboard - not recommended for large matrices`):print(`2. input from a text file`):print(`Please enter 1 or 2.`):FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG):if FLAG = 2 then print(`The array will be input from a text file in the order`): print(`A(1,1), A(1,2), ..., A(1,N), A(2,1), A(2,2), ..., A(2,N)`): print(`..., A(N,1), A(N,2), ..., A(N,N)\134n`): print(`Place as many entries as desired on each line, but separate `): print(`entries with`): print(`at least one blank.`): print(`The initial approximation should follow in same format.\134n`): print(`Has the input file been created? - enter 1 for yes or 2 for no.`): AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): if AA = 1 then print(`Input the file name in the form - drive:\134\134name.ext`): print(`for example: A:\134\134DATA.DTA`): NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): INP := fopen(NAME,READ,TEXT): OK := FALSE: while OK = FALSE do print(`Input the dimension n - an integer.`): N := scanf(`%d`)[1]: print(`N is`): print(N): if N > 0 then for I1 from 1 to N do for J from 1 to N do A[I1-1,J-1] := fscanf(INP, `%f`)[1]: od: od: for I1 from 1 to N do X[I1-1] := fscanf(INP, `%f`)[1]: od: OK := TRUE: fclose(INP): else print(`The number must be a positive integer.\134n`): fi: od: else print(`The program will end so the input file can be created.\134n`): fi:else OK := FALSE: while OK = FALSE do print(`Input the dimension n - an integer.`): N := scanf(`%d`)[1]: print(`N= `): print(N): if N > 0 then for I1 from 1 to N do for J from 1 to N do print(`input entry in position `,I1,J): A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): od: od: print(`Input initial approximation vector `): for I1 from 1 to N do print(`input entry in position `,I1): X[I1-1] := scanf(`%f`)[1]:print(`Data is `):print(X[I1-1]): od: OK := TRUE: else print(`The number must be a positive integer.\134n`): fi: od:fi:if OK = TRUE then OUP := default: fprintf(OUP, `The original matrix - output by rows:\134n`): for I1 from 1 to N do for J from 1 to N do fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): od: fprintf(OUP, `\134n`): od: fprintf(OUP, `The initial approximation vector is :\134n`): for I1 from 1 to N do fprintf(OUP, ` %11.8f`, X[I1-1]): od: fprintf(OUP, `\134n`): OK := FALSE: while OK = FALSE do print(`Input the tolerance.\134n`): TOL := scanf(`%f`)[1]:print(`Tolerance = `):print(TOL): if TOL > 0 then OK := TRUE: else print(`Tolerance must be positive number.\134n`): fi: od: OK := FALSE: while OK = FALSE do print(`Input maximum number of iterations `): print(`- integer.\134n`): NN := scanf(`%d`)[1]:print(`Maximum number of iterations = `):print(NN):# Use NN in place of N if NN > 0 then OK := TRUE: else print(`Number must be positive integer.\134n`): fi: od:fi:if OK = TRUE then# Step 1# Q could be input instead of computed.Q := 0:S := 0:for I1 from 1 to N doS := S + X[I1-1] * X[I1-1]:for J from 1 to N doQ := Q + A[I1-1,J-1] * X[I1-1] * X[J-1]:od:od:Q := Q / S:print(`Q = `, Q):print(`Input new Q? Enter 1 for yes or 2 for no.`):AA := scanf(`%d`)[1]:print(`Input is `):print(AA):if AA = 1 thenprint(`input new Q`):Q := scanf(`%f`)[1]:print(`Q = `):print(Q):fi:print(`Choice of output method:`):print(`1. Output to screen`):print(`2. Output to text file`):print(`Please enter 1 or 2.`):FLAG := scanf(`%d`)[1]:print(`Input is `):print(FLAG):if FLAG = 2 thenprint(`Input the file name in the form - drive:\134\134name.ext\134n`):print(`for example A:\134\134OUTPUT.DTA\134n`):NAME := scanf(`%s`)[1]:print(`Output file is `):print(NAME):OUP := fopen(NAME,WRITE,TEXT):elseOUP := default:fi:fprintf(OUP, `INVERSE POWER METHOD\134n\134n`):fprintf(OUP, `Iteration Eigenvalue Eigenvector\134n`):# Step 2K := 1:for I1 from 1 to N doA[I1-1,I1-1] := A[I1-1,I1-1] - Q:od:# Call subroutine to compute multipliers M(I,J) and upper triangular# matrix for the matrix (A-Q*I)MULTIP(N, OK, NROW, Q, A):if OK = TRUE then# Step 3LP := 1:for I1 from 2 to N doif abs(X[I1-1]) > abs(X[LP-1]) thenLP := I1:fi:od:# Step 4AMAX := X[LP-1]:for I1 from 1 to N doX[I1-1] := X[I1-1] / (AMAX):od:# Step 5while K <= NN and OK = TRUE do # Steps 6 and 7for I1 from 1 to N doB[I1-1] := X[I1-1]:od:# Subroutine SOLVE returns the solution of (A-Q*I)*Y=b in YSOLVE(N, B, A, Y, NROW):# Step 8YMU := Y[LP-1]:# Steps 9 and 10LP := 1:for I1 from 2 to N doif abs(Y[I1-1]) > abs(Y[LP-1]) thenLP := I1:fi:od:AMAX := Y[LP-1]:ERR := 0:for I1 from 1 to N do:T := Y[I1-1] / AMAX:if abs(X[I1-1] - T) > ERR thenERR := abs(X[I1-1] - T):fi:X[I1-1] := T:od:YMU := 1 / YMU + Q:# Step 11 fprintf(OUP, `%3d %12.8f\134n`, K, YMU):for I1 from 1 to N dofprintf(OUP, ` %11.8f`, X[I1-1]):od:fprintf(OUP, `\134n`):if ERR < TOL then OK := FALSE:fprintf(OUP, `Eigenvalue = %12.8f`, YMU):fprintf(OUP, ` to tolerance = %.10e\134n`, TOL):fprintf(OUP, `obtained on iteration number = %d\134n\134n`, K):fprintf(OUP, `Unit eigenvector is :\134n`):for I1 from 1 to N dofprintf(OUP, ` %11.8f`, X[I1-1]):od:fprintf(OUP, `\134n`):else# Step 12K := K+1:fi:od:if K > NN thenfprintf(OUP, `No convergence in %d iterations\134n`,NN):fi:fi:if OUP <> default thenfclose(OUP):print(`Output file `,NAME,` created successfully`):fi:fi:JSFH