restart: # SYMMETRIC POWER METHOD ALGORITHM 9.2 # # To approximate the dominant eigenvalue and an associated # eigenvector of the n by n symmetric matrix A given a nonzero vector x: # # INPUT: Dimension n: matrix A: vector x: tolerance TOL: # maximum number of iterations N. # # OUTPUT: Approximate eigenvalue MU: approximate eigenvector x or # a message that the maximum number of iterations was # exceeded. print(`This is the Symmetric Power Method.\134n`): OK := FALSE: print(`Choice of input method`): print(`1. input from keyboard - not recommended for large matrices`): print(`2. input from a text file`): print(`Please enter 1 or 2.`): FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): if FLAG = 2 then print(`The array will be input from a text file in the order`): print(`A(1,1), A(1,2), ..., A(1,N), A(2,1), A(2,2), ..., A(2,N)`): print(`..., A(N,1), A(N,2), ..., A(N,N)\134n`): print(`Place as many entries as desired on each line, but separate `): print(`entries with`): print(`at least one blank.\134n`): print(`The initial approximation should follow in same format.\134n`): print(`Has the input file been created? - enter 1 for yes or 2 for no.`): AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): if AA = 1 then print(`Input the file name in the form - drive:\134\134name.ext`): print(`for example: A:\134\134DATA.DTA`): NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): INP := fopen(NAME,READ,TEXT): OK := FALSE: while OK = FALSE do print(`Input the dimension n - an integer.`): N := scanf(`%d`)[1]: print(`N is`): print(N): if N > 0 then for I1 from 1 to N do for J from 1 to N do A[I1-1,J-1] := fscanf(INP, `%f`)[1]: od: od: for I1 from 1 to N do Y[I1-1] := fscanf(INP, `%f`)[1]: od: OK := TRUE: fclose(INP): else print(`The number must be a positive integer.\134n`): fi: od: else print(`The program will end so the input file can be created.\134n`): fi: else OK := FALSE: while OK = FALSE do print(`Input the dimension n - an integer.`): N := scanf(`%d`)[1]: print(`N= `): print(N): if N > 0 then print(`Input Matrix `): for I1 from 1 to N do for J from 1 to N do print(`input entry in position `,I1,J): A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): od: od: print(`Input initial approximation vector `): for I1 from 1 to N do print(`input entry in position `,I1): Y[I1-1] := scanf(`%f`)[1]:print(`Data is `):print(Y[I1-1]): od: OK := TRUE: else print(`The number must be a positive integer.\134n`): fi: od: fi: if OK = TRUE then OK := FALSE: while OK = FALSE do print(`Input the tolerance.\134n`): TOL := scanf(`%f`)[1]:print(`Tolerance = `):print(TOL): if TOL > 0 then OK := TRUE: else print(`Tolerance must be positive number.\134n`): fi: od: OK := FALSE: while OK = FALSE do print(`Input maximum number of iterations `): print(`- integer.\134n`): NN := scanf(`%d`)[1]:print(`Maximum number of iterations = `):print(NN): # Use NN in place of N if NN > 0 then OK := TRUE: else print(`Number must be positive integer.\134n`): fi: od: fi: if OK = TRUE then OUP := default: fprintf(OUP, `The original matrix - output by rows:\134n`): for I1 from 1 to N do for J from 1 to N do fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): od: fprintf(OUP, `\134n`): od: fprintf(OUP, `The initial approximation vector is :\134n`): for I1 from 1 to N do fprintf(OUP, ` %11.8f`, Y[I1-1]): od: fprintf(OUP, `\134n`): fi: if OK = TRUE then for I1 from 1 to N do X[I1-1] := 0: od: print(`Choice of output method:`): print(`1. Output to screen`): print(`2. Output to text file`): print(`Please enter 1 or 2.`): FLAG := scanf(`%d`)[1]:print(`Input is `):print(FLAG): if FLAG = 2 then print(`Input the file name in the form - drive:\134\134name.ext`): print(`for example A:\134\134OUTPUT.DTA`): NAME := scanf(`%s`)[1]:print(`Output file is `):print(NAME): OUP := fopen(NAME,WRITE,TEXT): else OUP := default: fi: fprintf(OUP, `SYMMETRIC POWER METHOD\134n\134n`): fprintf(OUP, `iter approx approx eigenvector\134n`): fprintf(OUP, ` eigenvalue\134n`): # Step 1 K := 1: XL := 0: for I1 from 1 to N do XL := XL+Y[I1-1]*Y[I1-1]: od: # 2-Norm of Y XL := sqrt(XL): ERR := 0: if XL > 0 then for I1 from 1 to N do T := Y[I1-1]/XL: ERR := ERR+(X[I1-1]-T)*(X[I1-1]-T): X[I1-1] := T: od: # X has a 2-Norm of 1.0 ERR := sqrt(ERR): else print(`A has a zero eigenvalue - select new vector and begin again\134n`): OK := FALSE: fi: if OK = TRUE then # Step 2 while K <= NN and OK = TRUE do # Steps 3 and 4 YMU := 0: for I1 from 1 to N do Y[I1-1] := 0: for J from 1 to N do Y[I1-1] := Y[I1-1]+A[I1-1,J-1]*X[J-1]: od: YMU := YMU+X[I1-1]*Y[I1-1]: od: # Steps 5 and 6 XL := 0: for I1 from 1 to N do XL := XL+Y[I1-1]*Y[I1-1]: od: # 2-Norm of Y XL := sqrt(XL): ERR := 0: if XL > 0 then for I1 from 1 to N do T := Y[I1-1]/XL: ERR := ERR+(X[I1-1]-T)*(X[I1-1]-T): X[I1-1] := T: od: # X has a 2-Norm of 1.0 ERR := sqrt(ERR): else printf(`A has a zero eigenvalue - select new vector and begin again\134n`): OK := FALSE: fi: fprintf(OUP, `%d %12.8f`, K, YMU): for I1 from 1 to N do fprintf(OUP, ` %11.8f`, X[I1-1]): od: fprintf(OUP, `\134n`): if OK = TRUE then # Step 7 if ERR < TOL then # Procedure completed successfully. fprintf(OUP, `\134n\134nThe eigenvalue = %12.8f`,YMU): fprintf(OUP, ` to tolerance = %.10e\134n`, TOL): fprintf(OUP, `obtained on iteration number = %d\134n\134n`, K): fprintf(OUP, `Unit eigenvector is :\134n\134n`): for I1 from 1 to N do fprintf(OUP, ` %11.8f`, X[I1-1]): od: fprintf(OUP, `\134n`): OK := FALSE: else # Step 8 K := K+1: fi: fi: od: # Step 9 if K > NN then print(`No convergence within `,NN,` iterations\134n`): fi: fi: if OUP <> default then fclose(OUP): print(`Output file `,NAME,` created successfully`): fi: fi: SUVUaGlzfmlzfnRoZX5TeW1tZXRyaWN+UG93ZXJ+TWV0aG9kLnwrRzYi STdDaG9pY2V+b2Z+aW5wdXR+bWV0aG9kRzYi SWZuMS5+aW5wdXR+ZnJvbX5rZXlib2FyZH4tfm5vdH5yZWNvbW1lbmRlZH5mb3J+bGFyZ2V+bWF0cmljZXNHNiI= SToyLn5pbnB1dH5mcm9tfmF+dGV4dH5maWxlRzYi STVQbGVhc2V+ZW50ZXJ+MX5vcn4yLkc2Ig== SS5Zb3VyfmlucHV0fmlzRzYi IiIj SVZUaGV+YXJyYXl+d2lsbH5iZX5pbnB1dH5mcm9tfmF+dGV4dH5maWxlfmlufnRoZX5vcmRlckc2Ig== SWduQSgxLDEpLH5BKDEsMiksfi4uLix+QSgxLE4pLH5BKDIsMSksfkEoMiwyKSx+Li4uLH58K35+fkEoMixOKUc2Ig== SUIuLi4sfkEoTiwxKSx+QShOLDIpLH4uLi4sfkEoTixOKXwrRzYi SWduUGxhY2V+YXN+bWFueX5lbnRyaWVzfmFzfmRlc2lyZWR+b25+ZWFjaH5saW5lLH5idXR+c2VwYXJhdGV+RzYi SS1lbnRyaWVzfndpdGhHNiI= STVhdH5sZWFzdH5vbmV+YmxhbmsufCtHNiI= SVlUaGV+aW5pdGlhbH5hcHByb3hpbWF0aW9ufnNob3VsZH5mb2xsb3d+aW5+c2FtZX5mb3JtYXQufCtHNiI= SWpuSGFzfnRoZX5pbnB1dH5maWxlfmJlZW5+Y3JlYXRlZD9+LX5lbnRlcn4xfmZvcn55ZXN+b3J+Mn5mb3J+bm8uRzYi STFZb3VyfnJlc3BvbnNlfmlzRzYi IiIi SVJJbnB1dH50aGV+ZmlsZX5uYW1lfmlufnRoZX5mb3Jtfi1+ZHJpdmU6XG5hbWUuZXh0RzYi STtmb3J+ZXhhbXBsZTp+fn5BOlxEQVRBLkRUQUc2Ig== STFUaGV+ZmlsZX5uYW1lfmlzRzYi US5FOlxBTEcwOTIuRFRBNiI= SURJbnB1dH50aGV+ZGltZW5zaW9ufm5+LX5hbn5pbnRlZ2VyLkc2Ig== SSVOfmlzRzYi IiIk STZJbnB1dH50aGV+dG9sZXJhbmNlLnwrRzYi SS1Ub2xlcmFuY2V+PX5HNiI= JCIiIiEiJg== SURJbnB1dH5tYXhpbXVtfm51bWJlcn5vZn5pdGVyYXRpb25zfkc2Ig== SSwtfmludGVnZXIufCtHNiI= SUBNYXhpbXVtfm51bWJlcn5vZn5pdGVyYXRpb25zfj1+RzYi IiNE The original matrix - output by rows: 4.00000000 -1.00000000 1.00000000 -1.00000000 3.00000000 -2.00000000 1.00000000 -2.00000000 3.00000000 The initial approximation vector is : 1.00000000 0.00000000 0.00000000 STlDaG9pY2V+b2Z+b3V0cHV0fm1ldGhvZDpHNiI= STQxLn5PdXRwdXR+dG9+c2NyZWVuRzYi STcyLn5PdXRwdXR+dG9+dGV4dH5maWxlRzYi STVQbGVhc2V+ZW50ZXJ+MX5vcn4yLkc2Ig== SSpJbnB1dH5pc35HNiI= IiIi SYMMETRIC POWER METHOD iter approx approx eigenvector eigenvalue 1 4.00000000 0.94280904 -0.23570226 0.23570226 2 5.00000000 0.81649658 -0.40824829 0.40824829 3 5.66666666 0.71066905 -0.49746834 0.49746834 4 5.90909091 0.64699664 -0.53916387 0.53916387 5 5.97674418 0.61283648 -0.55876267 0.55876267 6 5.99415204 0.59524716 -0.56819047 0.56819047 7 5.99853587 0.58633558 -0.57280476 0.57280476 8 5.99963383 0.58185194 -0.57508622 0.57508622 9 5.99990845 0.57960333 -0.57622043 0.57622043 10 5.99997711 0.57847736 -0.57678590 0.57678590 11 5.99999428 0.57791395 -0.57706822 0.57706822 12 5.99999857 0.57763214 -0.57720928 0.57720928 13 5.99999964 0.57749122 -0.57727978 0.57727978 14 5.99999991 0.57742074 -0.57731503 0.57731503 15 5.99999998 0.57738551 -0.57733265 0.57733265 16 5.99999999 0.57736789 -0.57734146 0.57734146 17 6.00000000 0.57735908 -0.57734586 0.57734586 18 6.00000000 0.57735467 -0.57734807 0.57734807 The eigenvalue = 6.00000000 to tolerance = 1.0000000000e-05 obtained on iteration number = 18 Unit eigenvector is : 0.57735467 -0.57734807 0.57734807 JSFH