restart:# SYMMETRIC POWER METHOD ALGORITHM 9.2## To approximate the dominant eigenvalue and an associated# eigenvector of the n by n symmetric matrix A given a nonzero vector x:## INPUT: Dimension n: matrix A: vector x: tolerance TOL:# maximum number of iterations N.## OUTPUT: Approximate eigenvalue MU: approximate eigenvector x or# a message that the maximum number of iterations was# exceeded.print(`This is the Symmetric Power Method.\134n`):OK := FALSE:print(`Choice of input method`):print(`1. input from keyboard - not recommended for large matrices`):print(`2. input from a text file`):print(`Please enter 1 or 2.`):FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG):if FLAG = 2 then print(`The array will be input from a text file in the order`): print(`A(1,1), A(1,2), ..., A(1,N), A(2,1), A(2,2), ..., A(2,N)`): print(`..., A(N,1), A(N,2), ..., A(N,N)\134n`): print(`Place as many entries as desired on each line, but separate `): print(`entries with`): print(`at least one blank.\134n`): print(`The initial approximation should follow in same format.\134n`): print(`Has the input file been created? - enter 1 for yes or 2 for no.`): AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): if AA = 1 then print(`Input the file name in the form - drive:\134\134name.ext`): print(`for example: A:\134\134DATA.DTA`): NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): INP := fopen(NAME,READ,TEXT): OK := FALSE: while OK = FALSE do print(`Input the dimension n - an integer.`): N := scanf(`%d`)[1]: print(`N is`): print(N): if N > 0 then for I1 from 1 to N do for J from 1 to N do A[I1-1,J-1] := fscanf(INP, `%f`)[1]: od: od: for I1 from 1 to N do Y[I1-1] := fscanf(INP, `%f`)[1]: od: OK := TRUE: fclose(INP): else print(`The number must be a positive integer.\134n`): fi: od: else print(`The program will end so the input file can be created.\134n`): fi:else OK := FALSE: while OK = FALSE do print(`Input the dimension n - an integer.`): N := scanf(`%d`)[1]: print(`N= `): print(N): if N > 0 then print(`Input Matrix `): for I1 from 1 to N do for J from 1 to N do print(`input entry in position `,I1,J): A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): od: od: print(`Input initial approximation vector `): for I1 from 1 to N do print(`input entry in position `,I1): Y[I1-1] := scanf(`%f`)[1]:print(`Data is `):print(Y[I1-1]): od: OK := TRUE: else print(`The number must be a positive integer.\134n`): fi: od:fi:if OK = TRUE then OK := FALSE: while OK = FALSE do print(`Input the tolerance.\134n`): TOL := scanf(`%f`)[1]:print(`Tolerance = `):print(TOL): if TOL > 0 then OK := TRUE: else print(`Tolerance must be positive number.\134n`): fi: od: OK := FALSE: while OK = FALSE do print(`Input maximum number of iterations `): print(`- integer.\134n`): NN := scanf(`%d`)[1]:print(`Maximum number of iterations = `):print(NN):# Use NN in place of N if NN > 0 then OK := TRUE: else print(`Number must be positive integer.\134n`): fi: od:fi:if OK = TRUE then OUP := default: fprintf(OUP, `The original matrix - output by rows:\134n`): for I1 from 1 to N do for J from 1 to N do fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): od: fprintf(OUP, `\134n`): od: fprintf(OUP, `The initial approximation vector is :\134n`): for I1 from 1 to N do fprintf(OUP, ` %11.8f`, Y[I1-1]): od: fprintf(OUP, `\134n`):fi:if OK = TRUE then for I1 from 1 to N doX[I1-1] := 0:od:print(`Choice of output method:`):print(`1. Output to screen`):print(`2. Output to text file`):print(`Please enter 1 or 2.`):FLAG := scanf(`%d`)[1]:print(`Input is `):print(FLAG):if FLAG = 2 thenprint(`Input the file name in the form - drive:\134\134name.ext`):print(`for example A:\134\134OUTPUT.DTA`):NAME := scanf(`%s`)[1]:print(`Output file is `):print(NAME):OUP := fopen(NAME,WRITE,TEXT):elseOUP := default:fi:fprintf(OUP, `SYMMETRIC POWER METHOD\134n\134n`):fprintf(OUP, `iter approx approx eigenvector\134n`):fprintf(OUP, ` eigenvalue\134n`): # Step 1K := 1:XL := 0:for I1 from 1 to N doXL := XL+Y[I1-1]*Y[I1-1]:od:# 2-Norm of YXL := sqrt(XL):ERR := 0:if XL > 0 thenfor I1 from 1 to N doT := Y[I1-1]/XL:ERR := ERR+(X[I1-1]-T)*(X[I1-1]-T):X[I1-1] := T:od:# X has a 2-Norm of 1.0ERR := sqrt(ERR):elseprint(`A has a zero eigenvalue - select new vector and begin again\134n`):OK := FALSE:fi:if OK = TRUE then# Step 2while K <= NN and OK = TRUE do# Steps 3 and 4YMU := 0:for I1 from 1 to N doY[I1-1] := 0:for J from 1 to N doY[I1-1] := Y[I1-1]+A[I1-1,J-1]*X[J-1]:od:YMU := YMU+X[I1-1]*Y[I1-1]:od:# Steps 5 and 6XL := 0:for I1 from 1 to N doXL := XL+Y[I1-1]*Y[I1-1]:od:# 2-Norm of YXL := sqrt(XL):ERR := 0:if XL > 0 thenfor I1 from 1 to N doT := Y[I1-1]/XL:ERR := ERR+(X[I1-1]-T)*(X[I1-1]-T):X[I1-1] := T:od:# X has a 2-Norm of 1.0ERR := sqrt(ERR):elseprintf(`A has a zero eigenvalue - select new vector and begin again\134n`):OK := FALSE:fi:fprintf(OUP, `%d %12.8f`, K, YMU):for I1 from 1 to N dofprintf(OUP, ` %11.8f`, X[I1-1]):od:fprintf(OUP, `\134n`):if OK = TRUE then# Step 7if ERR < TOL then# Procedure completed successfully.fprintf(OUP, `\134n\134nThe eigenvalue = %12.8f`,YMU):fprintf(OUP, ` to tolerance = %.10e\134n`, TOL):fprintf(OUP, `obtained on iteration number = %d\134n\134n`, K):fprintf(OUP, `Unit eigenvector is :\134n\134n`):for I1 from 1 to N dofprintf(OUP, ` %11.8f`, X[I1-1]):od:fprintf(OUP, `\134n`):OK := FALSE:else# Step 8K := K+1:fi:fi:od:# Step 9if K > NN thenprint(`No convergence within `,NN,` iterations\134n`):fi:fi:if OUP <> default thenfclose(OUP):print(`Output file `,NAME,` created successfully`):fi:fi:JSFH