restart:# LDL^t ALGORITHM 6.5## To factor the positive definite n by n matrix A into LDL**T,# where L is a lower triangular matrix with ones along the diagonal# and D is a diagonal matrix with positive entries on the# diagonal.## INPUT: the dimension n: entries A(I,J), 1<=I, J<=n of A.## OUTPUT: the entries L(I,J), 1<=J<I, 1<=I<=N of L and D(I),# 1<=I<=n of D.print(`This is the LDL^t Method for Positive Definite Matrices.\134n`):print(`Choice of input method`):print(`1. input from keyboard - not recommended for large matrices`):print(`2. input from a text file`):print(`Please enter 1 or 2.`):FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG):if FLAG = 2 thenprint(`The array will be input from a text file in the order`):print(`A(1,1), A(1,2), ..., A(1,N), A(2,1), A(2,2), ..., A(2,N)`):print(`..., A(N,1), A(N,2), ..., A(N,N)\134n`):print(`Place as many entries as desired on each line, but separate `):print(`entries with`):print(`at least one blank.`):print(`Has the input file been created? - enter 1 for yes or 2 for no.`):AA := scanf(`%d`)[1]: print(`Your response is`): print(AA):if AA = 1 thenprint(`Input the file name in the form - drive:\134\134name.ext`):print(`for example: A:\134\134DATA.DTA`):NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME):INP := fopen(NAME,READ,TEXT):OK := FALSE:while OK = FALSE doprint(`Input the dimension n - an integer.`):N := scanf(`%d`)[1]: print(`N is`): print(N):if N > 0 thenfor I1 from 1 to N dofor J from 1 to N doA[I1-1,J-1] := fscanf(INP, `%f`)[1]:od:od:OK := TRUE:fclose(INP):else print(`The number must be a positive integer.\134n`):fi:od:else print(`The program will end so the input file can be created.\134n`):fi:elseOK := FALSE:while OK = FALSE doprint(`Input the dimension n - an integer.`):N := scanf(`%d`)[1]: print(`N= `): print(N):if N > 0 thenfor I1 from 1 to N dofor J from 1 to N doprint(`input entry in position `,I1,J): A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]):od:od:OK := TRUE:else print(`The number must be a positive integer.\134n`):fi:od:fi:if OK = TRUE thenOUP := default:fprintf(OUP, `The original matrix - output by rows:\134n`):for I1 from 1 to N dofor J from 1 to N dofprintf(OUP, ` %11.8f`, A[I1-1,J-1]):od:fprintf(OUP, `\134n`):od:# Step 1for I1 from 1 to N do# Step 2for J from 1 to I1-1 doV[J-1] := A[I1-1,J-1]*D1[J-1]:od:# Step 3D1[I1-1] := A[I1-1,I1-1]:for J from 1 to I1-1 doD1[I1-1] := D1[I1-1]-A[I1-1,J-1]*V[J-1]:od:# Step 4for J from I1+1 to N dofor K from 1 to I1-1 doA[J-1,I1-1] := A[J-1,I1-1]-A[J-1,K-1]*V[K-1]:od:A[J-1,I1-1] := A[J-1,I1-1]/D1[I1-1]:od:od:# Step 5print(`Choice of output method:\134n`):print(`1. Output to screen\134n`):print(`2. Output to text file\134n`):print(`Please enter 1 or 2.\134n`):FLAG := scanf(`%d`)[1]:print(`Your input is `):print(FLAG):if FLAG = 2 thenprint(`Input the file name in the form - drive:\134\134name.ext\134n`):print(`for example: A:\134\134OUTPUT.DTA\134n`):NAME := scanf(`%s`)[1]:print(`The output file is `):print(NAME):OUP := fopen(NAME,WRITE,TEXT):elseOUP := default:fi:fprintf(OUP, `LDL^t FACTORIZATION\134n\134n`):fprintf(OUP, `The matrix L output by rows:\134n`):for I1 from 1 to N dofor J from 1 to I1-1 dofprintf(OUP, ` %12.8f`, A[I1-1,J-1]):od:fprintf(OUP, `\134n`):od:fprintf(OUP, `The diagonal of D:\134n`):for I1 from 1 to N dofprintf(OUP, ` %12.8f`, D1[I1-1]):od:fprintf(OUP, `\134n`):if OUP <> default thenfclose(OUP):print(`Output file `,NAME,` created successfully`):fi:fi:JSFH