- 1. $p_2 = 2.60714$
- 2. $p_2 = -0.865684$; If $p_0 = 0$, $f'(p_0) = 0$ and p_1 cannot be computed.
- 3. (a) -1.25208
 - (b) -0.841355
- (a) 2.45454
 - (b) 2.44444
 - (c) Part (a) is better.
- 5. (a) For $p_0 = 2$, we have $p_5 = 2.69065$.
 - (b) For $p_0 = -3$, we have $p_3 = -2.87939$.
 - (c) For $p_0 = 0$, we have $p_4 = 0.73909$.
 - (d) For $p_0 = 0$, we have $p_3 = 0.96434$.
- 6. (a) For $p_0 = 1$, we have $p_8 = 1.829384$.
 - (b) For $p_0 = 1.5$, we have $p_4 = 1.397748$.
 - (c) For $p_0 = 2$, we have $p_4 = 2.370687$; and for $p_0 = 4$, we have $p_4 = 3.722113$.
 - (d) For $p_0 = 1$, we have $p_4 = 1.412391$; and for $p_0 = 4$, we have $p_5 = 3.057104$.
 - (e) For $p_0 = 1$, we have $p_4 = 0.910008$; and for $p_0 = 3$, we have $p_9 = 3.733079$.
 - (f) For $p_0 = 0$, we have $p_4 = 0.588533$; for $p_0 = 3$, we have $p_3 = 3.096364$; and for $p_0 = 6$, we have $p_3 = 6.285049$.
- 7. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{11} = 2.69065$
 - (b) $p_7 = -2.87939$
 - (c) $p_6 = 0.73909$
 - (d) $p_5 = 0.96433$
- 8. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_7 = 1.829384$
 - (b) $p_9 = 1.397749$
 - (c) $p_6 = 2.370687$; $p_7 = 3.722113$
 - (d) $p_8 = 1.412391; p_7 = 3.057104$
 - (e) $p_6 = 0.910008; p_{10} = 3.733079$
 - (f) $p_6 = 0.588533$; $p_5 = 3.096364$; $p_5 = 6.285049$

- 9. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{16} = 2.69060$
 - (b) $p_6 = -2.87938$
 - (c) $p_7 = 0.73908$
 - (d) $p_6 = 0.96433$
- 10. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_8 = 1.829383$
 - (b) $p_9 = 1.397749$
 - (c) $p_6 = 2.370687$; $p_8 = 3.722112$
 - (d) $p_{10} = 1.412392; p_{12} = 3.057099$
 - (e) $p_7 = 0.910008; p_{29} = 3.733065$
 - (f) $p_9 = 0.588533$; $p_5 = 3.096364$; $p_5 = 6.285049$
- 11. (a) Newton's method with $p_0 = 1.5$ gives $p_3 = 1.51213455$. The Secant method with $p_0 = 1$ and $p_1 = 2$ gives $p_{10} = 1.51213455$.

The Method of False Position with $p_0 = 1$ and $p_1 = 2$ gives $p_{17} = 1.51212954$.

- (b) Newton's method with $p_0 = 0.5$ gives $p_5 = 0.976773017$. The Secant method with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 10.976773017$. The Method of False Position with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 0.976772976$.
- 12. (a) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 1.5$	$p_4 = 1.41239117$	$p_0 = 3.0$	$p_4 = 3.05710355$
Secant	$p_0=1, p_1=2$	$p_8 = 1.41239117$	$p_0 = 2, p_1 = 4$	$p_{10} = 3.05710355$
False Position	$p_0=1, p_1=2$	$p_{13} = 1.41239119$	$p_0 = 2, p_1 = 4$	$p_{19} = 3.05710353$

(b) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0=0.25$	$p_4 = 0.206035120$	$p_0 = 0.75$	$p_4 = 0.681974809$
Secant	$p_0 = 0, p_1 = 0.5$	$p_9 = 0.206035120$	$p_0 = 0.5, p_1 = 1$	$p_8 = 0.681974809$
False Position	$p_0 = 0, p_1 = 0.5$	$p_{12} = 0.206035125$	$p_0 = 0.5, p_1 = 1$	$p_{15} = 0.681974791$

13. For $p_0 = 1$, we have $p_5 = 0.589755$. The point has the coordinates (0.589755, 0.347811).

- 14. For $p_0 = 2$, we have $p_2 = 1.866760$. The point is (1.866760, 0.535687).
- 15. The equation of the tangent line is

$$y - f(p_{n-1}) = f'(p_{n-1})(x - p_{n-1}).$$

To complete this problem, set y = 0 and solve for $x = p_n$.

- 16. Newton's method gives $p_{15} = 1.895488$, for $p_0 = \frac{\pi}{2}$; and $p_{19} = 1.895489$, for $p_0 = 5\pi$. The sequence does not converge in 200 iterations for $p_0 = 10\pi$. The results do not indicate the fast convergence usually associated with Newton's method.
- 17. (a) For $p_0 = -1$ and $p_1 = 0$, we have $p_{17} = -0.04065850$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_9 = 0.9623984$.
 - (b) For $p_0 = -1$ and $p_1 = 0$, we have $p_5 = -0.04065929$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_{12} = -0.04065929$.
 - (c) For $p_0 = -0.5$, we have $p_5 = -0.04065929$, and for $p_0 = 0.5$, we have $p_{21} = 0.9623989$.
- 18. (a) The Bisection method yields $p_{10} = 0.4476563$.
 - (b) The method of False Position yields $p_{10} = 0.442067$.
 - (c) The Secant method yields $p_{10} = -195.8950$.
- 19. This formula involves the subtraction of nearly equal numbers in both the numerator and denominator if p_{n-1} and p_{n-2} are nearly equal.
- 20. Newton's method for the various values of p_0 gives the following results.
 - (a) $p_8 = -1.379365$
 - (b) $p_7 = -1.379365$
 - (c) $p_7 = 1.379365$
 - (d) $p_7 = -1.379365$
 - (e) $p_7 = 1.379365$
 - (f) $p_8 = 1.379365$

- 21. Newton's method for the various values of p_0 gives the following results.
 - (a) $p_0 = -10, p_{11} = -4.30624527$
 - (b) $p_0 = -5, p_5 = -4.30624527$
 - (c) $p_0 = -3, p_5 = 0.824498585$
 - (d) $p_0 = -1, p_4 = -0.824498585$
 - (e) $p_0 = 0$, p_1 cannot be computed because f'(0) = 0
 - (f) $p_0 = 1, p_4 = 0.824498585$
 - (g) $p_0 = 3, p_5 = -0.824498585$
 - (h) $p_0 = 5, p_5 = 4.30624527$
 - (i) $p_0 = 10, p_{11} = 4.30624527$
- 22. The required accuracy is met in 7 iterations of Newton's method.
- 23. For $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$, we have the following roots.
 - (a) For $p_0 = -0.5$, we have $p_3 = -0.4341431$.
 - (b) For $p_0 = 0.5$, we have $p_3 = 0.4506567$.
 - For $p_0 = 1.5$, we have $p_3 = 1.7447381$.
 - For $p_0 = 2.5$, we have $p_5 = 2.2383198$.
 - For $p_0 = 3.5$, we have $p_4 = 3.7090412$.
 - (c) The initial approximation n 0.5 is quite reasonable.
 - (d) For $p_0 = 24.5$, we have $p_2 = 24.4998870$.
- 24. We have $\lambda \approx 0.100998$ and $N(2) \approx 2,187,950$.
- The two numbers are approximately 6.512849 and 13.487151.
- 26. The minimal annual interest rate is 6.67%.
- 27. The borrower can afford to pay at most 8.10%.
- 28. (a) $\frac{1}{3}e, t = 3$ hours
 - (b) 11 hours and 5 minutes
 - (c) 21 hours and 14 minutes

$$f:=x->3^{3x+1}-7\cdot 5^{2x}$$

$$f:=x\to 3^{(3x+1)}-7\ 5^{2x}$$

$$solve(f(x)=0,x)$$

$$-\frac{\ln{(3/7)}}{\ln{(27/25)}}$$

$$fsolve(f(x)=0,x)$$

$$fsolve(3^{(3x+1)}-7\ 5^{(2x)}=0,x)$$

The procedure solve gives the exact solution, and fsolve fails because the negative x-axis is an asymptote for the graph of f(x).

(b) Using the Maple command $plot(\{f(x)\}, x = 10.5..11.5)$ produces the following graph.

(c) Define
$$f'(x)$$
 using $fp := x - > (D)(f)(x)$

$$fp := x \to 3 \ 3^{(3x+1)} \ln(3) - 14 \ 5^{(2x)} \ln(5)$$

$$Digits := 18; p0 := 11$$

Digits
$$:= 18$$

$$p0 := 11$$

for i from 1 to 5 do

$$p1 := evalf(p0 - f(p0)/fp(p0))$$

$$err := abs(p1 - p0)$$

$$p0 := p1$$

od

The results are given in the following table.

i	p_i	$ p_i - p_{i-1} $	
1	11.0097380401552503	.0097380401552503	
3	11.0094389359662827 11.0094386442684488	.0002991041889676 $.2916978339 \ 10^{-6}$	
4 5	11.0094386442681716 11.0094386442681716	$.2772 \ 10^{-2}$	

(d) We have $3^{3x+1} = 7 \cdot 5^{2x}$. Taking the natural logarithm of both sides gives

$$(3x+1) \ln 3 = \ln 7 + 2x \ln 5.$$

Thus

$$3x \ln 3 - 2x \ln 5 = \ln 7 - \ln 3$$
, $x(3 \ln 3 - 2 \ln 5) = \ln \frac{7}{3}$

and

$$x = \frac{\ln 7/3}{\ln 27 - \ln 25} = \frac{\ln 7/3}{\ln 27/25} = -\frac{\ln 3/7}{\ln 27/25}.$$

This agrees with part (a).

- 30. (a) $solve(2^{x^2} 3 \cdot 7^{(x+1)}, x)$ fails and $fsolve(2^{x^2} 3 \cdot 7^{(x+1)}, x)$ returns -1.118747530.
 - (b) $plot(2^{x^2} 3 \cdot 7^{(x+1)}, x = -2..4)$ shows there is also a root near x = 4.
 - (c) With $p_0 = 1$, $p_4 = -1.1187475303988963$ is accurate to 10^{-16} ; with $p_0 = 4$, $p_6 = 3.9261024524565005$ is accurate to 10^{-16}
 - (d) The roots are

$$\frac{\ln(7) \pm \sqrt{[\ln(7)]^2 + 4\ln(2)\ln(4)}}{2\ln(2)}$$

- 31. We have $P_L = 265816$, c = -0.75658125, and k = 0.045017502. The 1980 population is P(30) = 222,248,320, and the 2010 population is P(60) = 252,967,030.
- 32. $P_L = 290228$, c = 0.6512299, and k = 0.03020028; The 1980 population is P(30) = 223,069,210, and the 2010 population is P(60) = 260,943,806.
- 33. Using $p_0 = 0.5$ and $p_1 = 0.9$, the Secant method gives $p_5 = 0.842$.
- (a) We have, approximately,

$$A = 17.74$$
, $B = 87.21$, $C = 9.66$, and $E = 47.47$

With these values we have

$$A \sin \alpha \cos \alpha + B \sin^2 \alpha - C \cos \alpha - E \sin \alpha = 0.02.$$

(b) Newton's method gives $\alpha \approx 33.2^{\circ}$.