2.2

1.

9.

For the value of z under consideration we have

(a) z=3+z-2) s r*=3+2-22 & f(z) =0

_ Ay 1/2
(b]x:(#) S2=z+3-2te flz)=0
1/2
(c)x:(%) o+ =z4+3< flz)=0
3z* + 222 4+ 3 4 2 4 2
(d) x—m¢>4z +4z —z=32"+2z"+3< f(z)=0

(a) py =1.10782; (b) py = 0.987506; (c) ps = 1.12364; (d) py = 1.12412;
(b) Part (d) gives the best answer since |ps — ps| is the smallest for (d).

The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.

The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does
not converge.

With g(z) = /1 + % and pp = 1, we have py = 1.324.

With g(z) = (3z? + 3)1/* and po = 1, ps = 1.94332 is accurate to within 0.01.

Since ¢'(x) = %cos =, g is continuous and g’ exists on [0, 27]. Further, g’(z) = 0 only when
x = m, so that g(0) = g(27) =7 < g(z) =< g(7) == —I—% and |¢'(z)| < i, for 0 < z < 2.
Theorem 2.3 implies that a unique fixed point p exists in [0, 2x]. With k = % and py = w, we
have py = m+ % Corollary 2.5 implies that

pn—pl < = pe—pol = 2 (L)

For the bound to be less than 0.1, we need n > 4. However, ps = 3.626996 1s accurate to
within 0.01.

Using pg = 1 gives pyo = 0.6412053. Since |¢'(z)| =2 *In2 < 0.551 on [%,1} with k& = 0.551,
Corollary 2.5 gives a bound of 16 iterations.

For pg = 1.0 and g(z) = 0.5(z + £), we have v/3 ~ py = 1.73205.

10. For g(z) = 5/+/z and pp = 2.5, we have p14 = 2.92399.
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2.2

11.

—

a) With [0, 1] and py = 0, we have pg = 0.257531.
b) With [2.5,3.0] and py = 2.5, we have p1; = 2.690650.
c) With [0.25, 1] and pg = 0.25, we have p14 = 0.909999.
)
)

L B S e |

d) With [0.3,0.7] and py = 0.3, we have p3g = 0.469625.
e) With [0.3,0.6] and py = 0.3, we have psg = 0.448059.
f) With [0, 1] and pg = 0, we have pg = 0.704812.

L

12. The inequalities in Corollary 2.4 give |p, — p| < k™ max(py — a,b — pp). We want

(107°) — In(max(po — a,b — po))
Ink '
(a) Using g(z) = 2 + sinz we have & = 0.9899924966 so that with pp = 2 we have n >
In(0.00001)/Ink = 1144.663221. However, our tolerance is met with pgz = 2.5541998.

(b) Using g(x) = V27 +5 we have k = 0.1540802832 so that with pg = 2 we have n >
In(0.00001)/Ink = 6.155718005. However, our tolerance is met with pg = 2.0945503.

(c) Using g(z) = y/e*/3 and the interval [0,1] we have k = 0.4759448347 so that with

po = 1 we have n > In(0.00001)/ Ink = 15.50659829. However, our tolerance is met with
p1z = (.91001496.

(d) Using g(z) = cosz and the interval [0, 1] we have k = 0.8414709848 so that with py = 0
we have n > In(0.00001)/Ink > 66.70148074. However, our tolerance is met with pgg =
0.73908230.

k™ max(pg — a,b—pg) < 107° so we need n > In

13. For g(z) = (222 — 10cosz)/(3x), we have the following:
po=3=ps=3.16193; py= -3 = ps=—3.16193.
For g(z) = arccos(—0.1z2), we have the following:

po=1= pip = 1.96882; pp= —1= p; — —1.96882.

14.  For g(z) =

— l + z and py = 4, we have py = 4.493409.
T

tan

15. With g(z) = 1 arcsin (—%) + 2, we have ps; = 1.683855.
T

Page 2




2.2

16. (a) If fixed-point iteration converges to the limit p, then

p= lim p, = lim 2p,_y — Ap},_, = 2p— Ap".

M—r o0

1
Solving for p gives p = 1
1

(b) Any subinterval [c, d] of (ﬂ' 73

.1
) contalning 1 suffices.

Since

g(z) =2z — Az?, ¢'(z) =2 — 2Ax,

so g(x) 1s continuous, and ¢’(z) exists. Further, ¢’(z) = 0 only if z = %

Since
1 1 1 3 3 3 1
i\z)=7 9\57)=9\52) =1 and we have Egg(I}EE.
For £ in (%,%), we have
1 1 1 1
— =< — ! =2Alz——=|<2A| — | =1
z—— <2A so |g'(z)] T A‘{: (2;—1)

17. One of many examples is g(x) = /2 — 1 on [%, 1].
18. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in

[a, b] with p # q. By the Mean Value Theorem, a number £ in (a, b) exists with

p—q=g(p)—g9lqg) =g'€)p—q)<klp—q) <p—q,

giving the same contradiction as in Theorem 2.3.

(b) Consider g(z) =1 — z? on [0,1]. The function g has the unique fixed point
1

With py = 0.7, the sequence eventually alternates between () and 1.
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19. (a)

Suppose that g > /2. Then
21~ V2 = g(ao) — g (V2) = 4'(€) (20 - V2).

where 1./2_’ < £ < zg. Thus, 1 — \/§ >0 and 1 > \/§ Further,

_z 1 oz 1 m+y2
2 T 2 5 2
and V2 < 1 < zo. By an inductive argument,

V2 < Tmit < Tm < ... < 0.

Thus, {z,,} is a decreasing sequence which has a lower bound and must converge.

Suppose p = lim,_, o T,y. Then

f— l f—
P mgrnm ( 2 T Im—l)
which implies that p = +4/2. Since z,, > V2 for all m, we have lim,;_s o0 Trn = V2.
We have

(S o

+ Thus p=

b |

+

= -

1
-

2
0< (:I:o—\@) = 2 — 2m0V2 + 2,
son.}\f’i_’{Ig-l—Qandﬁ{I—f-l-z—lu:Il.

Case 1: 0 < zp < v/2, which implies that v/2Z < z; by part (b). Thus,

0<zg< V2 < Tmi1 <Tm <...<zy and Lm z, = V2.

M—r oo

Case 2: g = v’ﬁ, which implies that =, = V2 for all m and Iimm—spe Tm = V2.
Case 3: xp > v/2, which by part (a) implies that lim,,_, o T = V2.
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20. (a) Let

Note that g (\."’E) = \/E Also,
g'(x)=1/2— A/ (2z%) if £ #£0 and g¢'(z)>0ifz> VA

If zp = v”E, then =, = VA for all m and limym—sne T = VA.
If g > A, then

z1 — VA=g(xo) — g (v'ﬁ) =4'(¢) (In - v’E) > 0.

Further,

I—IO—I—A{ED—I—A _1
179 "o, T2 Ta/a 2

Thus, VA < 1 < xo. Inductively,

(mu+v’ﬁ).

VA < Ty < Ty < ... < T

and limy,_, oo Trn = VA by an argument similar to that in Exercise 19(a).
If 0 < zg < VA, then

2
0<(z0—vﬁ) — 22 _2gVA+ A and 2mgVA <z + A,

which leads to

Thus
D<E0<ﬂ<$m+1<$m<---<$ln

and by the preceding argument, limm—s oo Tm = VA
(b) If zp < 0, then limy,_, o0 T = —VA.

21. Replace the second sentence in the proof with: “Since g satisfies a Lipschitz condition on [a, b]
with a Lipschitz constant I < 1, we have, for each n,

lpn — Pl = |g(pn—1) — 9(p)| < L|pn—1 —p|.”

The rest of the proof is the same, with k replaced by L.
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22.

23.

24,

Let € = (1 — |¢g'(p)|)/2. Since g’ is continuous at p, there exists a number § > 0 such that for
z € [p—0,p+9], we have |g'(z) — ¢'(p)| < e. Thus, |¢'(z)| < |g'(p)|+£ < 1 for z € [p—4,p+4].

By the Mean Value Theorem

l9(z) — g(p)| = |g'(c)l|lz — p| < |z —pl,

for z € [p— 8, p+ 8]. Applying the Fixed-Point Theorem completes the problem.

With g(t) = 501.0625 — 201.0625¢ 94 and py = 5.0, ps = 6.0028 is within 0.01 s of the actual

time.

Since g’ is continuous at p and |¢'(p)| > 1, by letting € = |g'(p)| — 1 there exists a number § > 0
such that |g'(z) — ¢'(p)| < |¢'(p)| — 1 whenever 0 < |z — p| < . Hence, for any = satisfying
0 < |z — p| < 4, we have

lg'(z)| = |g'(p)| — 1¢'(z) — g'(R)| > |g'(P)| — (l¢'(P)| — 1) = 1.
If pg is chosen so that 0 < |p — pg| < d, we have by the Mean Value Theorem that

lp1 — 2l = |g(po) — 9(p)| = 19" (€)lIpo — pl,

for some ¢ between pg and p. Thus, 0 < [p — &| < & so |p1 — p| = |g'(€)llpo — P| > |po — pl-
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