1. For the value of x under consideration we have

(a)
$$x = (3 + x - 2x^2)^{1/4} \Leftrightarrow x^4 = 3 + x - 2x^2 \Leftrightarrow f(x) = 0$$

(b)
$$x = \left(\frac{x+3-x^4}{2}\right)^{1/2} \Leftrightarrow 2x^2 = x+3-x^4 \Leftrightarrow f(x) = 0$$

(c)
$$x = \left(\frac{x+3}{x^2+2}\right)^{1/2} \Leftrightarrow x^2(x^2+2) = x+3 \Leftrightarrow f(x) = 0$$

(d)
$$x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1} \Leftrightarrow 4x^4 + 4x^2 - x = 3x^4 + 2x^2 + 3 \Leftrightarrow f(x) = 0$$

- 2. (a) $p_4 = 1.10782$; (b) $p_4 = 0.987506$; (c) $p_4 = 1.12364$; (d) $p_4 = 1.12412$;
 - (b) Part (d) gives the best answer since $|p_4 p_3|$ is the smallest for (d).
- 3. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.
- The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does not converge.
- 5. With $g(x) = \sqrt{1 + \frac{1}{x}}$ and $p_0 = 1$, we have $p_4 = 1.324$.
- 6. With $g(x) = (3x^2 + 3)^{1/4}$ and $p_0 = 1$, $p_6 = 1.94332$ is accurate to within 0.01.
- 7. Since $g'(x) = \frac{1}{4}\cos\frac{x}{2}$, g is continuous and g' exists on $[0, 2\pi]$. Further, g'(x) = 0 only when $x = \pi$, so that $g(0) = g(2\pi) = \pi \le g(x) = \le g(\pi) = \pi + \frac{1}{2}$ and $|g'(x)| \le \frac{1}{4}$, for $0 \le x \le 2\pi$. Theorem 2.3 implies that a unique fixed point p exists in $[0, 2\pi]$. With $k = \frac{1}{4}$ and $p_0 = \pi$, we have $p_1 = \pi + \frac{1}{2}$. Corollary 2.5 implies that

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| = \frac{2}{3} \left(\frac{1}{4}\right)^n.$$

For the bound to be less than 0.1, we need $n \ge 4$. However, $p_3 = 3.626996$ is accurate to within 0.01.

- 8. Using $p_0 = 1$ gives $p_{12} = 0.6412053$. Since $|g'(x)| = 2^{-x} \ln 2 \le 0.551$ on $\left[\frac{1}{3}, 1\right]$ with k = 0.551, Corollary 2.5 gives a bound of 16 iterations.
- 9. For $p_0 = 1.0$ and $g(x) = 0.5(x + \frac{3}{x})$, we have $\sqrt{3} \approx p_4 = 1.73205$.
- 10. For $g(x) = 5/\sqrt{x}$ and $p_0 = 2.5$, we have $p_{14} = 2.92399$.

- 11. (a) With [0,1] and $p_0=0$, we have $p_9=0.257531$.
 - (b) With [2.5, 3.0] and $p_0 = 2.5$, we have $p_{17} = 2.690650$.
 - (c) With [0.25, 1] and $p_0 = 0.25$, we have $p_{14} = 0.909999$.
 - (d) With [0.3, 0.7] and $p_0 = 0.3$, we have $p_{39} = 0.469625$.
 - (e) With [0.3, 0.6] and $p_0 = 0.3$, we have $p_{48} = 0.448059$.
 - (f) With [0, 1] and $p_0 = 0$, we have $p_6 = 0.704812$.
- 12. The inequalities in Corollary 2.4 give $|p_n p| < k^n \max(p_0 a, b p_0)$. We want

$$k^n \max(p_0 - a, b - p_0) < 10^{-5}$$
 so we need $n > \frac{\ln(10^{-5}) - \ln(\max(p_0 - a, b - p_0))}{\ln k}$.

- (a) Using $g(x) = 2 + \sin x$ we have k = 0.9899924966 so that with $p_0 = 2$ we have $n > \ln(0.00001)/\ln k = 1144.663221$. However, our tolerance is met with $p_{63} = 2.5541998$.
- (b) Using $g(x) = \sqrt[3]{2x+5}$ we have k = 0.1540802832 so that with $p_0 = 2$ we have $n > \ln(0.00001)/\ln k = 6.155718005$. However, our tolerance is met with $p_6 = 2.0945503$.
- (c) Using $g(x) = \sqrt{e^x/3}$ and the interval [0, 1] we have k = 0.4759448347 so that with $p_0 = 1$ we have $n > \ln(0.00001)/\ln k = 15.50659829$. However, our tolerance is met with $p_{12} = 0.91001496$.
- (d) Using $g(x) = \cos x$ and the interval [0, 1] we have k = 0.8414709848 so that with $p_0 = 0$ we have $n > \ln(0.00001)/\ln k > 66.70148074$. However, our tolerance is met with $p_{30} = 0.73908230$.
- 13. For $g(x) = (2x^2 10\cos x)/(3x)$, we have the following:

$$p_0 = 3 \Rightarrow p_8 = 3.16193;$$
 $p_0 = -3 \Rightarrow p_8 = -3.16193.$

For $g(x) = \arccos(-0.1x^2)$, we have the following:

$$p_0 = 1 \Rightarrow p_{11} = 1.96882; \quad p_0 = -1 \Rightarrow p_{11} = -1.96882.$$

- 14. For $g(x) = \frac{1}{\tan x} \frac{1}{x} + x$ and $p_0 = 4$, we have $p_4 = 4.493409$.
- 15. With $g(x) = \frac{1}{\pi} \arcsin\left(-\frac{x}{2}\right) + 2$, we have $p_5 = 1.683855$.

16. (a) If fixed-point iteration converges to the limit p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} 2p_{n-1} - Ap_{n-1}^2 = 2p - Ap^2.$$

Solving for p gives $p = \frac{1}{A}$.

(b) Any subinterval [c,d] of $\left(\frac{1}{2A},\frac{3}{2A}\right)$ containing $\frac{1}{A}$ suffices. Since

$$g(x) = 2x - Ax^2$$
, $g'(x) = 2 - 2Ax$,

so g(x) is continuous, and g'(x) exists. Further, g'(x) = 0 only if $x = \frac{1}{A}$. Since

$$g\left(\frac{1}{A}\right) = \frac{1}{A}, \quad g\left(\frac{1}{2A}\right) = g\left(\frac{3}{2A}\right) = \frac{3}{4A}, \quad \text{and we have} \quad \frac{3}{4A} \leq g(x) \leq \frac{1}{A}.$$

For x in $\left(\frac{1}{2A}, \frac{3}{2A}\right)$, we have

$$\left| x - \frac{1}{A} \right| < \frac{1}{2A}$$
 so $|g'(x)| = 2A \left| x - \frac{1}{A} \right| < 2A \left(\frac{1}{2A} \right) = 1.$

- 17. One of many examples is $g(x) = \sqrt{2x-1}$ on $\left[\frac{1}{2},1\right]$.
- 18. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in [a, b] with $p \neq q$. By the Mean Value Theorem, a number ξ in (a, b) exists with

$$p - q = g(p) - g(q) = g'(\xi)(p - q) \le k(p - q)$$

giving the same contradiction as in Theorem 2.3.

(b) Consider $g(x) = 1 - x^2$ on [0, 1]. The function g has the unique fixed point

$$p = \frac{1}{2} \left(-1 + \sqrt{5} \right).$$

With $p_0 = 0.7$, the sequence eventually alternates between 0 and 1.

19. (a) Suppose that $x_0 > \sqrt{2}$. Then

$$x_1 - \sqrt{2} = g(x_0) - g(\sqrt{2}) = g'(\xi)(x_0 - \sqrt{2}),$$

where $\sqrt{2} < \xi < x_0$. Thus, $x_1 - \sqrt{2} > 0$ and $x_1 > \sqrt{2}$. Further,

$$x_1 = \frac{x_0}{2} + \frac{1}{x_0} < \frac{x_0}{2} + \frac{1}{\sqrt{2}} = \frac{x_0 + \sqrt{2}}{2}$$

and $\sqrt{2} < x_1 < x_0$. By an inductive argument,

$$\sqrt{2} < x_{m+1} < x_m < \ldots < x_0.$$

Thus, $\{x_m\}$ is a decreasing sequence which has a lower bound and must converge. Suppose $p = \lim_{m \to \infty} x_m$. Then

$$p = \lim_{m \to \infty} \left(\frac{x_{m-1}}{2} + \frac{1}{x_{m-1}} \right) = \frac{p}{2} + \frac{1}{p}.$$
 Thus $p = \frac{p}{2} + \frac{1}{p}$,

which implies that $p = \pm \sqrt{2}$. Since $x_m > \sqrt{2}$ for all m, we have $\lim_{m \to \infty} x_m = \sqrt{2}$.

(b) We have

$$0 < \left(x_0 - \sqrt{2}\right)^2 = x_0^2 - 2x_0\sqrt{2} + 2,$$

so $2x_0\sqrt{2} < x_0^2 + 2$ and $\sqrt{2} < \frac{x_0}{2} + \frac{1}{x_0} = x_1$.

(c) Case 1: $0 < x_0 < \sqrt{2}$, which implies that $\sqrt{2} < x_1$ by part (b). Thus,

$$0 < x_0 < \sqrt{2} < x_{m+1} < x_m < \dots < x_1$$
 and $\lim_{m \to \infty} x_m = \sqrt{2}$.

Case 2: $x_0 = \sqrt{2}$, which implies that $x_m = \sqrt{2}$ for all m and $\lim_{m \to \infty} x_m = \sqrt{2}$. Case 3: $x_0 > \sqrt{2}$, which by part (a) implies that $\lim_{m \to \infty} x_m = \sqrt{2}$. 20. (a) Let

$$g(x) = \frac{x}{2} + \frac{A}{2x}.$$

Note that $g\left(\sqrt{A}\right) = \sqrt{A}$. Also,

$$g'(x) = 1/2 - A/(2x^2)$$
 if $x \neq 0$ and $g'(x) > 0$ if $x > \sqrt{A}$.

If $x_0 = \sqrt{A}$, then $x_m = \sqrt{A}$ for all m and $\lim_{m \to \infty} x_m = \sqrt{A}$. If $x_0 > A$, then

$$x_1 - \sqrt{A} = g(x_0) - g(\sqrt{A}) = g'(\xi)(x_0 - \sqrt{A}) > 0.$$

Further,

$$x_1 = \frac{x_0}{2} + \frac{A}{2x_0} < \frac{x_0}{2} + \frac{A}{2\sqrt{A}} = \frac{1}{2}\left(x_0 + \sqrt{A}\right).$$

Thus, $\sqrt{A} < x_1 < x_0$. Inductively,

$$\sqrt{A} < x_{m+1} < x_m < \ldots < x_0$$

and $\lim_{m\to\infty} x_m = \sqrt{A}$ by an argument similar to that in Exercise 19(a). If $0 < x_0 < \sqrt{A}$, then

$$0 < (x_0 - \sqrt{A})^2 = x_0^2 - 2x_0\sqrt{A} + A$$
 and $2x_0\sqrt{A} < x_0^2 + A$,

which leads to

$$\sqrt{A} < \frac{x_0}{2} + \frac{A}{2x_0} = x_1.$$

Thus

$$0 < x_0 < \sqrt{A} < x_{m+1} < x_m < \ldots < x_1,$$

and by the preceding argument, $\lim_{m\to\infty} x_m = \sqrt{A}$.

- (b) If $x_0 < 0$, then $\lim_{m \to \infty} x_m = -\sqrt{A}$.
- 21. Replace the second sentence in the proof with: "Since g satisfies a Lipschitz condition on [a, b] with a Lipschitz constant L < 1, we have, for each n,

$$|p_n - p| = |g(p_{n-1}) - g(p)| \le L|p_{n-1} - p|$$
."

The rest of the proof is the same, with k replaced by L.

22. Let $\varepsilon = (1 - |g'(p)|)/2$. Since g' is continuous at p, there exists a number $\delta > 0$ such that for $x \in [p - \delta, p + \delta]$, we have $|g'(x) - g'(p)| < \varepsilon$. Thus, $|g'(x)| < |g'(p)| + \varepsilon < 1$ for $x \in [p - \delta, p + \delta]$. By the Mean Value Theorem

$$|g(x) - g(p)| = |g'(c)||x - p| < |x - p|,$$

for $x \in [p - \delta, p + \delta]$. Applying the Fixed-Point Theorem completes the problem.

- 23. With $g(t) = 501.0625 201.0625e^{-0.4t}$ and $p_0 = 5.0$, $p_3 = 6.0028$ is within 0.01 s of the actual time.
- 24. Since g' is continuous at p and |g'(p)| > 1, by letting $\epsilon = |g'(p)| 1$ there exists a number $\delta > 0$ such that |g'(x) g'(p)| < |g'(p)| 1 whenever $0 < |x p| < \delta$. Hence, for any x satisfying $0 < |x p| < \delta$, we have

$$|g'(x)| \ge |g'(p)| - |g'(x) - g'(p)| > |g'(p)| - (|g'(p)| - 1) = 1.$$

If p_0 is chosen so that $0 < |p - p_0| < \delta$, we have by the Mean Value Theorem that

$$|p_1 - p| = |g(p_0) - g(p)| = |g'(\xi)||p_0 - p|,$$

for some ξ between p_0 and p. Thus, $0 < |p - \xi| < \delta$ so $|p_1 - p| = |g'(\xi)||p_0 - p| > |p_0 - p|$.