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Fixed points for functions of several variables

Theorem

Let f : D ⊂ Rn → R be a function and x0 ∈ D. If all the partial
derivatives of f exist and ∃ δ > 0 and α > 0 such that ∀ ‖x− x0‖ < δ
and x ∈ D, we have∣∣∣∣∂f(x)

∂xj

∣∣∣∣ ≤ α, ∀ j = 1, 2, . . . , n,

then f is continuous at x0.

Definition (Fixed Point)

A function G from D ⊂ Rn into Rn has a fixed point at p ∈ D if
G(p) = p.
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, · · · , xn)T ; ai ≤ xi ≤ bi,∀ i = 1, . . . , n} ⊂ Rn. Suppose
G : D → Rn is a continuous function with G(x) ∈ D whenever x ∈ D.
Then G has a fixed point in D.
Suppose, in addition, G has continuous partial derivatives and a constant
α < 1 exists with ∣∣∣∣∂gi(x)

∂xj

∣∣∣∣ ≤ α

n
, whenever x ∈ D,

for j = 1, . . . , n and i = 1, . . . , n. Then, for any x(0) ∈ D,

x(k) = G(x(k−1)), for each k ≥ 1

converges to the unique fixed point p ∈ D and

‖ x(k) − p ‖∞≤
αk

1− α
‖ x(1) − x(0) ‖∞ .
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Example

Consider the nonlinear system

3x1 − cos(x2x3)−
1

2
= 0,

x2
1 − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0.

Fixed-point problem:
Change the system into the fixed-point problem:

x1 =
1

3
cos(x2x3) +

1

6
≡ g1(x1, x2, x3),

x2 =
1

9

√
x2

1 + sin x3 + 1.06− 0.1 ≡ g2(x1, x2, x3),

x3 = − 1

20
e−x1x2 − 10π − 3

60
≡ g3(x1, x2, x3).

Let G : R3 → R3 be defined by G(x) = [g1(x), g2(x), g3(x)]T .
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G has a unique point in D ≡ [−1, 1]× [−1, 1]× [−1, 1]:
I Existence: ∀ x ∈ D,

|g1(x)|≤ 1

3
| cos(x2x3)|+

1

6
≤ 0.5,

|g2(x)|=
∣∣∣∣19

√
x2

1 + sin x3 + 1.06− 0.1

∣∣∣∣ ≤ 1

9

√
1 + sin 1 + 1.06− 0.1 < 0.09,

|g3(x)|= 1

20
e−x1x2 +

10π − 3

60
≤ 1

20
e +

10π − 3

60
< 0.61,

it implies that G(x) ∈ D whenever x ∈ D.
I Uniqueness: ∣∣∣∣ ∂g1

∂x1

∣∣∣∣ = 0,

∣∣∣∣ ∂g2

∂x2

∣∣∣∣ = 0 and

∣∣∣∣ ∂g3

∂x3

∣∣∣∣ = 0,

as well as ∣∣∣∣ ∂g1

∂x2

∣∣∣∣ ≤ 1

3
|x3| · | sin(x2x3)| ≤

1

3
sin 1 < 0.281,
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∣∣∣∣∂g1

∂x3

∣∣∣∣ ≤ 1

3
|x2| · | sin(x2x3)| ≤

1

3
sin 1 < 0.281,∣∣∣∣∂g2

∂x1

∣∣∣∣ =
|x1|

9
√

x2
1 + sin x3 + 1.06

<
1

9
√

0.218
< 0.238,

∣∣∣∣∂g2

∂x3

∣∣∣∣ =
| cos x3|

18
√

x2
1 + sin x3 + 1.06

<
1

18
√

0.218
< 0.119,

∣∣∣∣∂g3

∂x1

∣∣∣∣ =
|x2|
20

e−x1x2 ≤ 1

20
e < 0.14,∣∣∣∣∂g3

∂x2

∣∣∣∣ =
|x1|
20

e−x1x2 ≤ 1

20
e < 0.14.

These imply that g1, g2 and g3 are continuous on D and ∀ x ∈ D,∣∣∣∣ ∂gi

∂xj

∣∣∣∣ ≤ 0.281, ∀ i, j.

Similarly, ∂gi/∂xj are continuous on D for all i and j. Consequently, G
has a unique fixed point in D.
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Approximated solution:
I Fixed-point iteration (I):

Choosing x(0) = [0.1, 0.1,−0.1]T , the sequence {x(k)} is generated by

x
(k)
1 =

1

3
cos x

(k−1)
2 x

(k−1)
3 +

1

6
,

x
(k)
2 =

1

9

√(
x

(k−1)
1

)2

+ sin x
(k−1)
3 + 1.06− 0.1,

x
(k)
3 = − 1

20
e−x

(k−1)
1 x

(k−1)
2 − 10π − 3

60
.

I Result:

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖∞

0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.00944115 -0.52310127 0.423
2 0.49999593 0.00002557 -0.52336331 9.4× 10−3

3 0.50000000 0.00001234 -0.52359814 2.3× 10−4

4 0.50000000 0.00000003 -0.52359847 1.2× 10−5

5 0.50000000 0.00000002 -0.52359877 3.1× 10−7
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Approximated solution (cont.):
I Accelerate convergence of the fixed-point iteration:

x
(k)
1 =

1

3
cos x

(k−1)
2 x

(k−1)
3 +

1

6
,

x
(k)
2 =

1

9

√(
x

(k)
1

)2

+ sin x
(k−1)
3 + 1.06− 0.1,

x
(k)
3 = − 1

20
e−x

(k)
1 x

(k)
2 − 10π − 3

60
,

as in the Gauss-Seidel method for linear systems.
I Result:

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖∞

0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.02222979 -0.52304613 0.423
2 0.49997747 0.00002815 -0.52359807 2.2× 10−2

3 0.50000000 0.00000004 -0.52359877 2.8× 10−5

4 0.50000000 0.00000000 -0.52359877 3.8× 10−8
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Newton’s method
First consider solving the following system of nonlinear equations:{

f1(x1, x2) = 0,

f2(x1, x2) = 0.

Suppose (x
(k)
1 , x

(k)
2 ) is an approximation to the solution of the system

above, and we try to compute h
(k)
1 and h

(k)
2 such that

(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 ) satisfies the system. By the Taylor’s theorem for

two variables,

0 = f1(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 )

≈ f1(x
(k)
1 , x

(k)
2 ) + h

(k)
1

∂f1

∂x1
(x

(k)
1 , x

(k)
2 ) + h

(k)
2

∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

0 = f2(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 )

≈ f2(x
(k)
1 , x

(k)
2 ) + h

(k)
1

∂f2

∂x1
(x

(k)
1 , x

(k)
2 ) + h

(k)
2

∂f2

∂x2
(x

(k)
1 , x

(k)
2 )
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Put this in matrix form[
∂f1
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

∂f2
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f2

∂x2
(x

(k)
1 , x

(k)
2 )

] [
h

(k)
1

h
(k)
2

]
+

[
f1(x

(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )

]
≈

[
0
0

]
.

The matrix

J(x
(k)
1 , x

(k)
2 ) ≡

[
∂f1
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

∂f2
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f2

∂x2
(x

(k)
1 , x

(k)
2 )

]

is called the Jacobian matrix. Set h
(k)
1 and h

(k)
2 be the solution of the

linear system

J(x
(k)
1 , x

(k)
2 )

[
h

(k)
1

h
(k)
2

]
= −

[
f1(x

(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )

]
,

then [
x

(k+1)
1

x
(k+1)
2

]
=

[
x

(k)
1

x
(k)
2

]
+

[
h

(k)
1

h
(k)
2

]
is expected to be a better approximation.
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In general, we solve the system of n nonlinear equations
fi(x1, · · · , xn) = 0, i = 1, . . . , n. Let

x =
[

x1 x2 · · · xn

]T

and
F (x) =

[
f1(x) f2(x) · · · fn(x)

]T
.

The problem can be formulated as solving

F (x) = 0, F : Rn → Rn.

Let J(x), where the (i, j) entry is ∂fi

∂xj
(x), be the n× n Jacobian matrix.

Then the Newton’s iteration is defined as

x(k+1) = x(k) + h(k),

where h(k) ∈ Rn is the solution of the linear system

J(x(k))h(k) = −F (x(k)).
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Algorithm (Newton’s Method for Systems)

Given a function F : Rn → Rn, an initial guess x(0) to the zero of F , and
stop criteria M , δ, and ε, this algorithm performs the Newton’s iteration
to approximate one root of F .

Set k = 0 and h(−1) = e1.

While (k < M) and (‖ h(k−1) ‖≥ δ) and (‖ F (x(k)) ‖≥ ε)

Calculate J(x(k)) = [∂Fi(x
(k))/∂xj ].

Solve the n× n linear system J(x(k))h(k) = −F (x(k)).

Set x(k+1) = x(k) + h(k) and k = k + 1.
End while

Output (“Convergent x(k)”) or
(“Maximum number of iterations exceeded”)
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Theorem

Let x∗ be a solution of G(x) = x. Suppose ∃ δ > 0 with

(i) ∂gi/∂xj is continuous on Nδ = {x; ‖x− x∗‖ < δ} for all i and j.

(ii) ∂2gi(x)/(∂xj∂xk) is continuous and∣∣∣∣∂2gi(x)

∂xj∂xk

∣∣∣∣ ≤ M

for some M whenever x ∈ Nδ for each i, j and k.

(iii) ∂gi(x
∗)/∂xk = 0 for each i and k.

Then ∃ δ̂ < δ such that the sequence {x(k)} generated by

x(k) = G(x(k−1))

converges quadratically to x∗ for any x(0) satisfying ‖x(0) − x∗‖∞ < δ̂.
Moreover,

‖x(k) − x∗‖∞ ≤ n2M

2
‖x(k−1) − x∗‖2

∞,∀ k ≥ 1.
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Example

Consider the nonlinear system

3x1 − cos(x2x3)−
1

2
= 0,

x2
1 − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0.

Nonlinear functions: Let

F (x1, x2, x3) = [f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3)]
T ,

where

f1(x1, x2, x3) = 3x1 − cos(x2x3)−
1

2
,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sin x3 + 1.06,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
10π − 3

3
.
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Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

J(x1, x2, x3) =

 3 x3 sin x2x3 x2 sin x2x3

2x1 −162(x2 + 0.1) cos x3

−x2e
−x1x2 −x1e

−x1x2 20

 .

Newton’s iteration with initial x(0) = [0.1, 0.1,−0.1]T : x
(k)
1

x
(k)
2

x
(k)
3

 =

 x
(k−1)
1

x
(k−1)
2

x
(k−1)
3

−
 h

(k−1)
1

h
(k−1)
2

h
(k−1)
3

 ,

where h
(k−1)
1

h
(k−1)
2

h
(k−1)
3

 =
(
J(x

(k−1)
1 , x

(k−1)
2 , x

(k−1)
3 )

)−1
F (x

(k−1)
1 , x

(k−1)
2 , x

(k−1)
3 ).
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Result:

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖∞

0 0.10000000 0.10000000 -0.10000000
1 0.50003702 0.01946686 -0.52152047 0.422
2 0.50004593 0.00158859 -0.52355711 1.79× 10−2

3 0.50000034 0.00001244 -0.52359845 1.58× 10−3

4 0.50000000 0.00000000 -0.52359877 1.24× 10−5

5 0.50000000 0.00000000 -0.52359877 0

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 17 / 33



Quasi-Newton methods

Newton’s Methods
I Advantage: quadratic convergence
I Disadvantage: For each iteration, it requires O(n3) + O(n2) + O(n)

arithmetic operations:
F n2 partial derivatives for Jacobian matrix – in most situations, the

exact evaluation of the partial derivatives is inconvenient.
F n scalar functional evaluations of F
F O(n3) arithmetic operations to solve linear system.

quasi-Newton methods
I Advantage: it requires only n scalar functional evaluations per iteration

and O(n2) arithmetic operations
I Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

`k(x) = f(xk) + ak(x− xk)

to approximate the function f(x) at xk. That is, `k(xk) = f(xk) for any
ak ∈ R. If we further require that `′(xk) = f ′(xk), then ak = f ′(xk).
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The zero of `k(x) is used to give a new approximate for the zero of f(x),
that is,

xk+1 = xk −
1

f ′(xk)
f(xk)

which yields Newton’s method.
If f ′(xk) is not available, one instead asks the linear model to satisfy

`k(xk) = f(xk) and `k(xk−1) = f(xk−1).

In doing this, the identity

f(xk−1) = `k(xk−1) = f(xk) + ak(xk−1 − xk)

gives

ak =
f(xk)− f(xk−1)

xk − xk−1
.

Solving `k(x) = 0 yields the secant iteration

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk).

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 19 / 33



In multiple dimension, the analogue affine model becomes

Mk(x) = F (xk) + Ak(x− xk),

where x, xk ∈ Rn and Ak ∈ Rn×n, and satisfies

Mk(xk) = F (xk),

for any Ak. The zero of Mk(x) is then used to give a new approximate for
the zero of F (x), that is,

xk+1 = xk −A−1
k F (xk).

The Newton’s method chooses

Ak = F ′(xk) ≡ J(xk) = the Jacobian matrix

and yields the iteration

xk+1 = xk −
(
F ′(xk)

)−1
F (xk).
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When the Jacobian matrix J(xk) ≡ F ′(xk) is not available, one can
require

Mk(xk−1) = F (xk−1).

Then
F (xk−1) = Mk(xk−1) = F (xk) + Ak(xk−1 − xk),

which gives

Ak(xk − xk−1) = F (xk)− F (xk−1)

and this is the so-called secant equation. Let

hk = xk − xk−1 and yk = F (xk)− F (xk−1).

The secant equation becomes

Akhk = yk.
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However, this secant equation can not uniquely determine Ak. One way of
choosing Ak is to minimize Mk −Mk−1 subject to the secant equation.
Note

Mk(x)−Mk−1(x) = F (xk) + Ak(x− xk)− F (xk−1)−Ak−1(x− xk−1)

= (F (xk)− F (xk−1)) + Ak(x− xk)−Ak−1(x− xk−1)

= Ak(xk − xk−1) + Ak(x− xk)−Ak−1(x− xk−1)

= Ak(x− xk−1)−Ak−1(x− xk−1)

= (Ak −Ak−1)(x− xk−1).

For any x ∈ Rn, we express

x− xk−1 = αhk + tk,

for some α ∈ R, tk ∈ Rn, and hT
k tk = 0. Then

Mk−Mk−1 = (Ak−Ak−1)(αhk + tk) = α(Ak−Ak−1)hk +(Ak−Ak−1)tk.
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Since
(Ak −Ak−1)hk = Akhk −Ak−1hk = yk −Ak−1hk,

both yk and Ak−1hk are old values, we have no control over the first part
(Ak −Ak−1)hk. In order to minimize Mk(x)−Mk−1(x), we try to choose
Ak so that

(Ak −Ak−1)tk = 0

for all tk ∈ Rn, hT
k tk = 0. This requires that Ak −Ak−1 to be a rank-one

matrix of the form

Ak −Ak−1 = ukh
T
k

for some uk ∈ Rn. Then

ukh
T
k hk = (Ak −Ak−1)hk = yk −Ak−1hk
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which gives

uk =
yk −Ak−1hk

hT
k hk

.

Therefore,

Ak = Ak−1 +
(yk −Ak−1hk)h

T
k

hT
k hk

. (1)

After Ak is determined, the new iterate xk+1 is derived from solving
Mk(x) = 0. It can be done by first noting that

hk+1 = xk+1 − xk =⇒ xk+1 = xk + hk+1

and

Mk(xk+1) = 0 ⇒ F (xk) + Ak(xk+1 − xk) = 0 ⇒ Akhk+1 = −F (xk)

These formulations give the Broyden’s method.
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Algorithm (Broyden’s Method)

Given a n-variable nonlinear function F : Rn → Rn, an initial iterate x0

and initial Jacobian matrix A0 ∈ Rn×n (e.g., A0 = I), this algorithm finds
the solution for F (x) = 0.

Given x0, tolerance TOL, maximum number of iteration M .
Set k = 1.
While k ≤ M and ‖xk − xk−1‖2 ≥ TOL

Solve Akhk+1 = −F (xk) for hk+1

Update xk+1 = xk + hk+1

Compute yk+1 = F (xk+1)− F (xk)
Update

Ak+1 = Ak +
(yk+1 −Akhk+1)h

T
k+1

hT
k+1hk+1

= Ak +
(yk+1 + F (xk))h

T
k+1

hT
k+1hk+1

k = k + 1
End While
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Solve the linear system Akhk+1 = −F (xk) for hk+1:

LU -factorization: cost 2
3n3 + O(n2) floating-point operations.

Applying the Shermann-Morrison-Woodbury formula(
B + UV T

)−1
= B−1 −B−1U

(
I + V T B−1U

)−1
V T B−1

to (1), we have

A−1
k

=

[
Ak−1 +

(yk −Ak−1hk)h
T
k

hT
k hk

]−1

= A−1
k−1 −A−1

k−1

yk −Ak−1hk

hT
k hk

(
1 + hT

k A−1
k−1

yk −Ak−1hk

hT
k hk

)−1

hT
k A−1

k−1

= A−1
k−1 +

(hk −A−1
k−1yk)h

T
k A−1

k−1

hT
k A−1

k−1yk

.
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Steepest Descent Techniques

Newton-based methods
I Advantage: high speed of convergence once a sufficiently accurate

approximation
I Weakness: an accurate initial approximation to the solution is needed

to ensure convergence.

The Steepest Descent method converges only linearly to the solution,
but it will usually converge even for poor initial approximations.
“Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + ”Compute convergent solution by using
Newton-based methods”
The method of Steepest Descent determines a local minimum for a
multivariable function of g : Rn → R.
A system of the form fi(x1, . . . , xn) = 0, i = 1, 2, . . . , n has a
solution at x iff the function g defined by

g(x1, . . . , xn) =
n∑

i=1

[fi(x1, . . . , xn)]2

has the minimal value zero.
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Basic idea of steepest descent method:

(i) Evaluate g at an initial approximation x(0);
(ii) Determine a direction from x(0) that results in a decrease in the value

of g;
(iii) Move an appropriate distance in this direction and call the new vector

x(1);
(iv) Repeat steps (i) through (iii) with x(0) replaced by x(1).

Definition (Gradient)

If g : Rn → R, the gradient, ∇g(x), at x is defined by

∇g(x) =

(
∂g

∂x1
(x), · · · ,

∂g

∂xn
(x)

)
.

Definition (Directional Derivative)

The directional derivative of g at x in the direction of v with ‖ v ‖2= 1 is
defined by

Dvg(x) = lim
h→0

g(x + hv)− g(x)

h
= vT∇g(x).
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Theorem

The direction of the greatest decrease in the value of g at x is the
direction given by −∇g(x).

Object: reduce g(x) to its minimal value zero.
⇒ for an initial approximation x(0), an appropriate choice for new
vector x(1) is

x(1) = x(0) − α∇g(x(0)), for some constant α > 0.

Choose α > 0 such that g(x(1)) < g(x(0)): define

h(α) = g(x(0) − α∇g(x(0))),

then find α∗ such that

h(α∗) = min
α

h(α).
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How to find α∗?
I Solve a root-finding problem h′(α) = 0 ⇒ Too costly, in general.
I Choose three number α1 < α2 < α3, construct quadratic polynomial

P (x) that interpolates h at α1, α2 and α3, i.e.,

P (α1) = h(α1), P (α2) = h(α2), P (α3) = h(α3),

to approximate h. Use the minimum value P (α̂) in [α1, α3] to
approximate h(α∗). The new iteration is

x(1) = x(0) − α̂∇g(x(0)).

F Set α1 = 0 to minimize the computation
F α3 is found with h(α3) < h(α1).
F Choose α2 = α3/2.
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Example

Use the Steepest Descent method with x(0) = (0, 0, 0)T to find a
reasonable starting approximation to the solution of the nonlinear system

f1(x1, x2, x3) = 3x1 − cos(x2x3)−
1

2
= 0,

f2(x1, x2, x3) = x2
1 − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
10π − 3

3
= 0.

Let g(x1, x2, x3) = [f1(x1, x2, x3)]
2 + [f2(x1, x2, x3)]

2 + [f3(x1, x2, x3)]
2.

Then
∇g(x1, x2, x3) ≡ ∇g(x)

=

(
2f1(x)

∂f1

∂x1
(x) + 2f2(x)

∂f2

∂x1
(x) + 2f3(x)

∂f3

∂x1
(x),

2f1(x)
∂f1

∂x2
(x) + 2f2(x)

∂f2

∂x2
(x) + 2f3(x)

∂f3

∂x2
(x),

2f1(x)
∂f1

∂x3
(x) + 2f2(x)

∂f2

∂x3
(x) + 2f3(x)

∂f3

∂x3
(x)

)
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For x(0) = [0, 0, 0]T , we have

g(x(0)) = 111.975 and z0 = ‖∇g(x(0))‖2 = 419.554.

Let

z =
1

z0
∇g(x(0)) = [−0.0214514,−0.0193062, 0.999583]T .

With α1 = 0, we have

g1 = g(x(0) − α1z) = g(x(0)) = 111.975.

Let α3 = 1 so that

g3 = g(x(0) − α3z) = 93.5649 < g1.

Set α2 = α3/2 = 0.5. Thus

g2 = g(x(0) − α2z) = 2.53557.
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Form quadratic polynomial P (α) defined as

P (α) = g1 + h1α + h3α(α− α2)

that interpolates g(x(0) − αz) at α1 = 0, α2 = 0.5 and α3 = 1 as follows

g2 = P (α2) = g1 + h1α2 ⇒ h1 =
g2 − g1

α2
= −218.878,

g3 = P (α3) = g1 + h1α3 + h3α3(α3 − α2) ⇒ h3 = 400.937.

Thus

P (α) = 111.975− 218.878α + 400.937α(α− 0.5)

so that

0 = P ′(α0) = −419.346 + 801.872α0 ⇒ α0 = 0.522959

Since

g0 = g(x(0) − α0z) = 2.32762 < min{g1, g3},
we set

x(1) = x(0) − α0z = [0.0112182, 0.0100964,−0.522741]T .
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