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QR Algorithm

Theorem (Schur Theorem)
There exists a unitary matrix U such that

AU = UR,

where R is upper triangular.

Iteration method (from Vojerodin)

Set U0 = I,
For i = 0, 1, 2, · · ·

AUi = Ui+1Ri+1, (an QR factorization of AUi.)
End

(1)
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If Ui converges to U , then for i→∞

Ri+1 = U∗i+1AUi → U∗AU.

We now define

Qi = U∗i−1Ui, Ai+1 = U∗i AUi. (2)

Then from (1) we have

Ai = U∗i−1AUi−1 = U∗i−1UiRi = QiRi.

On the other hand from (1) substituting i by i− 1 we get

RiU
∗
i−1 = U∗i A

and thus
RiQi = RiU

∗
i−1Ui = U∗i AUi = Ai+1.
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So (1) for U0 = I and A1 = A is equivalent to:

QR Algorithm

For i = 1, 2, 3, · · ·
Ai = QiRi (QR factorization of Ai), (3)
Ai+1 = RiQi. (4)

End

Equations (3)-(4) describe the basic form of QR algorithm.

Lemma
Let

Pi = Q1Q2 · · ·Qi, Si = RiRi−1 · · ·R1. (5)

Then hold

Ai+1 = P ∗i APi = SiAS
−1
i , i = 1, 2, · · · (6)

Ai = PiSi i = 1, 2, · · · . (7)
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Proof: (6) is evident. (7) can be proved by induction. For
i = 1, A1 = Q1R1, Suppose (7) holds for i. Then

Ai+1 = APiSi = PiAi+1Si (from (6) )
= PiQi+1Ri+1Si = Pi+1Si+1.
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Theorem

Let A ∈ Cn×n with eigenvalues λi under the following
assumptions:
(a)

|λ1| > |λ2| > · · · |λn| > 0; (8)

(b) The factorization
A = XΛX−1 (9)

with X−1 = Y and Λ = diag(λ1, · · · , λn) holds. Here Y has
an LR factorization.

Then QR algorithm converges. Furthermore

(a) limi→∞ a
(i)
jk = 0, for j > k, where Ai = (a(i)

jk );

(b) limi→∞ a
(i)
kk = λk, for k = 1, · · · , n.
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Proof: Let X = QR be the QR factorization of X with rii > 0 and
Y = LU be the LR factorization of Y with `ii = 1. Since
A = XΛX−1 = QRΛR−1Q∗, we have

Q∗AQ = RΛR−1 (10)

is an upper-triangular matrix with diagonal elements λi ordered in
absolute value as in (8). Now

As = XΛsX−1 = QRΛsLU = QRΛsLΛ−sΛsU

and since

(ΛsLΛ−s)ik = `ik(
λi
λk

)s =


0, i < k,
1, i = k,
→ 0, i > k as s→∞,

where ΛsLΛ−s = I + Es with lims→∞Es = 0. Therefore
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As = QR(I + Es)ΛsU = Q(I +REsR
−1)RΛsU = Q(I + Fs)RΛsU

with lims→∞ Fs = 0. From the conclusion of QR factorization
the matrices Q and R (rii > 0) depend continuously on A
(A = QR). But I = I · I is the QR factorization of I, therefore it
holds for the QR factorization:

I + Fs = Q̃sR̃s.

Thus for Fs → 0, we have lims→∞ Q̃s = I and lims→∞ R̃s = I.
From (7) we have

As = (QQ̃s)(R̃sRΛsU) = PsRs.

So from the ”uniqueness” of QR factorization there exists a
unitary diagonal matrix Ds with

PsDs = QQ̃s → Q.
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Thus from (6) we have

D∗iAi+1Di = D∗i P
∗
i APiDi → Q∗AQ = RΛR−1. (11)

The assertions (a) and (b) are proved.

Remark
Assumption (9) is not essential for convergence of the QR
algorithm. If the assumption is not satisfied, the QR algorithm
still converges, only the eigenvalues on the diagonal no longer
necessary appear ordered in absolute values, i.e. (b) is
replaced by (b’) limi→∞ a

(i)
kk = λπ(k), k = 1, 2 · · · , n, where π is a

permutation of {1, 2, · · · , n}. ( See Wilkinson pp.519 )
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Let A be diagonalizable and the eigenvalues λi satisfy

|λ1| = · · · = |λν1 | > |λν1+1| = · · · = |λν2 | > · · · = |λνs| (12)

with νs = n. We define a block partition of n× n matrix B in s2

blocks Bk` for k, ` = 1, 2, · · · , s

B = [Bk`]sk,`=1.

Theorem (Wilkinson)

Let A be diagonalizable and satisfy (12) and (9). Then it holds
for the blocks A(i)

jk of Ai that

(a) limi→∞A
(i)
jk = 0, j > k;

(b) The eigenvalues of A(i)
kk converges to the eigenvalues

λνk−1+1, · · · , λνk
.
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Special case: If A is real and all the eigenvalues have different
absolute value except conjugate eigenvalues. Then

Ai →



× × + + + + +
× × + + + + +

× × + + +
× × + + +

× + +
× ×

0 × ×


.

Theorem

Let A be an upper Hessenberg matrix. Then the matrices Qi
and Ai in (3) and (4) are also upper Hessenberg matrices.

Proof: It is obvious from Ai+1 = RiAiR
−1
i and Qi = AiR

−1
i .
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The Practical QR Algorithm

In the following paragraph we will develop an useful QR
algorithm for real matrix A. We will concentrate on developing
the iteration

Compute orthogonal Q0 such that
H0 = QT0AQ0

is upper Hessenberg.
For k = 1, 2, 3, · · ·

Compute QR factorization Hk = QkRk;
Set Hk+1 = RkQk; (13)

End

Here A ∈ Rn×n, Qi ∈ Rn×n is orthogonal and Ri ∈ Rn×n is
upper triangular.
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Theorem (Real Schur Decomposition)

If A ∈ Rn×n, then there exists an orthogonal Q ∈ Rn×n such
that

QTAQ =


R11 R12 · · · R1m

0 R21 · · · R2m
...

...
. . .

...
0 0 · · · Rmm

 (14)

where each Rii is either 1× 1 or 2× 2 matrix having complex
conjugate eigenvalues.

Proof: Let k be the number of complex conjugate pair in σ(A). We
prove the theorem by induction on k. The theorem holds if k = 0.
Now suppose that k ≥ 1. If λ = γ + iµ ∈ σ(A) and µ 6= 0, then there
exists vectors y and z ∈ Rn(z 6= 0) such that

A(y + iz) = (γ + iµ)(y + iz)⇒ A[y, z] = [y, z]
[

γ µ
−µ γ

]
.
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The assumption that µ 6= 0 implies that y and z span a two
dimensional, real invariant subspace for A. It then follows that

UTAU =
[
T11 T12

0 T22

]
with σ(T11) = {λ, λ̄}.

By induction, there exists an orthogonal Ũ so that ŨTT22Ũ has
the require structure. The theorem follows by setting
Q = Udiag(I2, Ũ).
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• Reduction to Hessenberg form
Take

A =
(
α11 a∗12

a21 A22

)
.

Let Ĥ1 be a Householder transformation such that

Ĥ1a21 = v1e1.

Set H1 = diag(1, Ĥ1). Then

H1AH1 =
(

α11 a∗12Ĥ1

Ĥ1a21 Ĥ1A22Ĥ1

)
=
(

α11 a∗12Ĥ1

v1e1 Ĥ1A22Ĥ1

)
For the general step, suppose H1, · · · , Hk−1 are Householder
transformation such that

Hk−1 · · ·H1AH1 · · ·Hk−1 =

 A11 a1,k A1,k+1

0 αkk a∗k,k+1

0 ak+1,k Ak+1,k+1

 ,
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where A11 is a Hessenberg matrix of order k − 1. Let Ĥk be a
Householder transformation such that

Ĥkak+1,k = vke1.

Set Hk = diag(Ik, Ĥk), then

HkHk−1 · · ·H1AH1 · · ·Hk−1Hk =

 A11 a1,k A1,k+1Ĥk

0 αkk a∗k,k+1Ĥk

0 vke1 ĤkAk+1,k+1Ĥk

 .
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Reduce a matrix to Hessenberg form by QR factorization.
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 Q1AQ
∗
1−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×



Q2AQ
∗
2−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×



Q3AQ
∗
3−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

 : upper Hessenberg
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Algorithm (Householder Reduction to Hessenberg Form)

Given A ∈ Rn×n. The following algorithm overwrites A with
H = QT0AQ0, where H is upper Hessenberg and
Q0 = P1 · · ·Pn−2 is a product of Householder matrices.

For k = 1, · · · , n− 2,
Determine a Householder matrix P̄k of order n− k such that

P̄k


ak+1,k

...

...
an,k

 =


∗
0
...
0

 .
Compute A ≡ P Tk APk where Pk = diag(Ik, P̄k).

End;

This algorithm requires 5
3n

3 flops. Q0 can be stored in factored
form below the subdiagonal A. If Q0 is explicitly formed, an
additional 2

3n
3 flops are required.
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Theorem (Implicit Q Theorem)

Suppose Q = [q1, · · · , qn] and V = [v1, · · · , vn] are orthogonal
matrices with QTAQ = H and V TAV = G are upper
Hessenberg. Let k denote the smallest positive integer for
which hk+1,k = 0 with the convention that k = n, if H is
unreduced. If v1 = q1, then vi = ±qi and |hi,i−1| = |gi,i−1|, for
i = 2, · · · , k. Moreover if k < n then gk+1,k = 0.

Proof: Define W = V TQ = [w1, · · · , wn] orthogonal, and observe
GW = WH . For i = 2, · · · k, we have

hi,i−1wi = Gwi−1 −
i−1∑
j=1

hj,i−1wj .

Since w1 = e1, it follows that [w1, · · · , wk] is upper triangular and
thus wi = ±ei for i = 2, · · · , k.
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Since wi = V T qi and hi,i−1 = wTi Gwi−1, it follows that vi = ±qi
and |hi,i−1| = |gi,i−1| for i = 2, · · · , k. If hk+1,k = 0, then
ignoring signs we have

gk+1,k = eTk+1Gek = eTk+1GWek = (eTk+1W )(Hek)

= eTk+1

k∑
i=1

hikWei =
k∑
i=1

hike
T
k+1ei = 0.

Remark

The gist of the implicit Q theorem is that if QTAQ = H and
ZTAZ = G are each unreduced upper Hessenberg matrices
and Q and Z have the same first column, then G and H are
“essentially equal” in the sense that G = D−1HD, where
D = diag(±1, · · · ,±1).
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Single-shift QR-iteration

Now we will investigate how the convergence (13) can be
accelerated by incorporating “shifts”. Let µ ∈ R and consider
the iteration

Algorithm (Single-shift QR-iteration)

1: Give orthogonal Q0 such that H = QT0AQ0 is upper
Hessenberg.

2: for k = 1, 2, · · · do
3: H − µI = QR, (QR factorization)
4: H = RQ+ µI,
5: end for

The scale µ is refereed to a shift.
Each matrix H in Step 4 of Algorithm 2 is similar to A,
since RQ+ µI = QT (QR+ µI)Q = QTHQ.
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If we order the eigenvalues λi of A so that
|λ1 − µ| ≥ · · · ≥ |λn − µ|, then Theorem 6 says that the p-th
subdiagonal entry in H converges to zero with rate
|λp+1−µ
λp−µ |

k.

Of course if λp = λp+1 then there is no convergence at all.
But if µ is much closer to λn than to the other eigenvalues,
the convergence is required.

Theorem

Let µ be an eigenvalues of an n× n unreduced Hessenberg
matrix H. If H̄ = RQ+ µI, where (H − µI) = QR is the
QR decomposition of H − µI, then h̄n,n−1 = 0 and h̄nn = µ.
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Proof: If H is unreduced, then so is the upper Hessenberg matrix
H − µI . Since QT (H − µI) = R is singular and since it can be
shown that

|rii| ≥ |hi+1,i|, i = 1, 2, · · · , n− 1, (15)

it follows that rm = 0. Consequently, the bottom row of H̄ is equal to
(0, · · · , 0, µ).

Algorithm

1: Give orthogonal Q0 such that H = QT0AQ0 is upper
Hessenberg.

2: for k = 1, 2, · · · do
3: Hi − hnnI = QiRi, (QR factorization)
4: Hi+1 := RiQi + hnnI,
5: end for
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Quadratic convergence

If the (n, n− 1) entry converges to zero and let

H =


× × × × ×
× × × ×
× × × ×
× × ×

ε hnn

 ,

then one step of the single shift QR algorithm leads:

QR = H − hnnI, H̄ = RQ+ hnnI.
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After n− 2 steps in the reduction of H − hnnI to upper
triangular we have

× × × × ×
× × × ×
× × ×

a b
ε 0

 .

And we have (n, n− 1) entry in H̄ is given by

h̄n,n−1 =
ε2b

ε2 + a2
.

If ε� a, then it is clear that (n, n− 1) entry has order ε2.
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Double Shift QR iteration

If at some stage the eigenvalues α1 and α2 of[
hn−1,n−1 hn−1,n

hn,n−1 hnn

]
are complex, for then hnn would tend to be a poor
approximate eigenvalue.
A way around this difficulty is to perform two single shift
QR steps in succession, using α1 and α2 as shifts:

H − α1I = Q1R1,

H1 = R1Q1 + α1I,

H1 − α2I = Q2R2, (16)
H2 = R2Q2 + α2I.
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We then have

(Q1Q2)(R2R1)
= Q1(H1 − α2I)R1 = Q1(R1Q1 + α1I − α2I)R1

= (Q1R1)(Q1R1) + α1(Q1R1)− α2(Q1R1)
= (H − α1I)(H − α1I) + α1(H − α1I)− α2(H − α1I)
= (H − α1I)(H − α2I) = M, (17)

where
M = (H − α1I)(H − α2I). (18)

Note that M is a real matrix, since

M = H2 − sH + tI,

where

s = α1 + α2 = hn−1,n−1 + hnn ∈ R,
t = α1α2 = hn−1,n−1hnn − hn−1,nhn,n−1 ∈ R.
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Thus, (17) is the QR factorization of a real matrix, and we
may choose Q1 and Q2 so that Z = Q1Q2 is real
orthogonal.
It follows that

H2 = Q∗2H1Q2 = Q∗2(Q∗1HQ1)Q2 = (Q1Q2)∗H(Q1Q2)= ZTHZ

is real.
A real H2 could be guaranteed if we
(a) explicitly form the real matrix M = H2 − sH + tI;
(b) compute the real QR decomposition M = ZR and
(c) set H2 = ZTHZ.

But since (a) requires O(n3) flops, this is not a practical
course.
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In light of the Implicit Q theorem, however, it is possible to effect
the transition from H to H2 in O(n2) flops if we
(a
′
) compute Me1, the first column of M ;

(b
′
) determine Householder matrix P0 such that

P0(Me1) = αe1, (α 6= 0);

(c
′
) compute Householder matrices P1, · · · , Pn−2 such that if
Z1 = P0P1 · · ·Pn−2 the ZT1 HZ1 is upper Hessenberg and
the first column of Z and Z1 are the same. If ZTHZ and
ZT1 HZ1 are both unreduced upper Hessenberg, then they
are essentially equal.
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Since

Me1 = (x, y, z, 0, · · · , 0)T ,

where

x = h2
11 + h12h21 − sh11 + t,

y = h21(h11 + h22 − s),
z = h21h32.

So, a similarity transformation with P0 only changes rows and
columns 1, 2 and 3. Since P T0 HP0 has the form

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

 ,
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it follows that
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×


P1→


× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 0 0 0 × ×



P2→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×


P3→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×



P4→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

 .
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Pk = diag(Ik, P̄k, In−k−3), P̄k is 3× 3-Householder matrix.
The applicability of Implicit Q-Theorem follows from that
Pke1 = e1, for k = 1, · · · , n− 2, and that P0 and Z have the
same first column. Hence Z1e1 = Ze1.
Deflation:

1 If the eigenvalues of
(
hn−1,n−1 hn−1,n

hn,n−1 hn,n

)
are complex

and nondefective, then hn−1,n−2 converges quadratically to
zero.

2 If the eigenvalues are real and nondefective, both the
hn−1,n−2 converge quadratically to zero. The subdiagonal
elements other than hn−1,n−2 and hn,n−1 may show a slow
convergent to zero.

3 Deflate matrix to a middle size of matrix.
4 Converge to a block upper triangular with order one or two

diagonal blocks. i, e. converge to real Schur form.



QR Alg. Practical QR Alg. Single-shift QR Double Shift QR

Algorithm (Francis QR step)

Set m := n− 1;
s := hmm + hnn, t := hmmhnn − hmnhnm;
x := h2

n + h12h21 − sh11 + t, y := h21(h11 + h22 − s), z := h21h32;
For k = 0, · · · , n− 2,

If k < n− 2, then
Determine a Householder matrix P̄k ∈ R3×3 such that

P̄k

[
x y z

]T =
[
∗ 0 0

]T ;
Set

H := PkHP
T
k , Pk = diag

(
Ik, P̄k, In−k−3

)
;

else determine a Householder matrix P̄n−2 ∈ R2×2 such that
P̄n−2

[
x y

]T =
[
∗ 0

]T ;
Set

H := Pn−2HP
T
n−2, Pn−2 = diag

(
In−2, P̄n−2

)
;

End if
x := hk+2,k+1, y := hk+3,k+1;
If k < n− 3, then z := hk+4,k+1;

End for;
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Algorithm (QR Algorithm)

Using Algorithm 1 to compute the Hessenberg decomposition
QTAQ = H, where Q = P1 · · ·Pn−2 and H is Hessenberg;

Repeat: Set to zero all subdiagonal elements that satisfy
|hi,i−1| ≤ ε (|hii|+ |hi−1,i−1|);

Find the largest non-negative q and the smallest non-negative p s.t.

H =

 H11 H12 H13

0 H22 H23

0 0 H33

 p
n− p− q
q

p n− p− q q

,

where H33 is upper quasi-triangular and H22 is unreduced.
If q = n, then upper triangularize all 2× 2 diagonal blocks in H that

have real eigenvalues, accumulate the orthogonal transformations
if necessary, and quit.

Apply a Francis QR-step to H22: H22 := ZTH22Z;
If Q and T are desired, then Q := Q diag(Ip, Z, Iq);
Set H12 := H12Z and H23 := ZTH23;
Go To Repeat.
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