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QR Algorithm

Theorem (Schur Theorem)
There exists a unitary matrix U such that

AU =UR,

where R is upper triangular.

lteration method (from Vojerodin)

Set Uy =1,
For i =0,1,2,---

AU; = U1 Ri+1, (an QR factorization of AU;.)
End

(1)

A
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If U; converges to U, then for i — oo

Ri1 = UfL AU; — U*AU.

We now define
Q; =U"U;, Air1 =U]AU,. (2)
Then from (1) we have
Ay = Uf JAU;_y = U} |U;R; = Q;R;.
On the other hand from (1) substituting < by i — 1 we get
RU:  =UA

and thus
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So (1) for Uy = I and A; = A is equivalent to:

QR Algorithm
Fori=1,2,3, -
A; = Q;R; (QR factorization of A;), (3)
Aip1 = RiQ;. (4)
End

Equations (3)-(4) describe the basic form of QR algorithm.

Let
Pi=1Q2---Qi, Si=RR; 1 - Ri. (5)
Then hold
Aiy1 = PfAP = S,AS]Y, i=1,2,-- (6)
A = PBS, i=1,2,---. (7)
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Proof. (6) is evident. (7) can be proved by induction. For
i=1,A1 = Q1R1, Suppose (7) holds for i. Then

AT = APS; = PA 1S (from (6) )
PQit1Ri115; = Piy1Siy1-



Let A € C™*™ with eigenvalues \; under the following
assumptions:

(a)
Al > [Ag] > -+ [ An] > 0; (8)
(b) The factorization
A=XAX"! 9)
with X~' =Y and A = diag(\1,--- , \,) holds. Here Y has
an LR factorization.
Then QR algorithm converges. Furthermore
(@) lim;— o ag.ik) =0, forj > k, where A; = (ayk));

(b) lim; .o a](jlz =\, fork=1,--- ,n.
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Proof: Let X = QR be the QR factorization of X with r; > 0 and
Y = LU be the LR factorization of Y with ¢;; = 1. Since
A= XAX"1=QRAR'Q*, we have

Q*AQ = RAR™! (10)

is an upper-triangular matrix with diagonal elements A; ordered in
absolute value as in (8). Now

A5 = XAX ' = QRA’LU = QRA* LA SA°U
and since

ST A—S Ai s % Z»< £,
k — 0, 1>k as s — o0,

where ASLA™5 = I + E, with lims_,, F/s = 0. Therefore
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A® = QR(I + E5)A°U = Q(I + RE,R™ M RA’U = Q(I + Fy)RA°U

with lim,_, F; = 0. From the conclusion of QR factorization
the matrices @ and R (r;; > 0) depend continuously on A
(A= QR). Butl =1-1isthe QR factorization of I, therefore it
holds for the QR factorization:

I+Fs:QsR~s-

Thus for F; — 0, we have lim, .o Qs = I and lim,_,o Ry = 1.
From (7) we have

A* = (QQ,)(RsRA°U) = PyR,.

So from the "uniqueness” of QR factorization there exists a
unitary diagonal matrix D, with

PsDy :QQS — Q.



Thus from (6) we have

DfA;1D; = DfPFAP,D; — Q*AQ = RAR™'.  (11)

The assertions (a) and (b) are proved. O]

Remark

Assumption (9) is not essential for convergence of the QR
algorithm. If the assumption is not satisfied, the QR algorithm
still converges, only the eigenvalues on the diagonal no longer
necessary appear ordered in absolute values, i.e. (b) is
replaced by (b’) lim;_, a,(j,g =Ar(k), k=1,2--- ,n, wherer is a
permutation of {1,2,--- ,n}. ( See Wilkinson pp.519 )




Let A be diagonalizable and the eigenvalues )\; satisfy

|)‘1| == |)‘V1| > |)‘V1+1| == |>‘V2| > = ’)‘V8| (12)

with v, = n. We define a block partition of n x n matrix B in s
blocks By, fork,/ =1,2,---,s

B = Bl p=1-

Theorem (Wilkinson)

Let A be diagonalizable and satisfy (12) and (9). Then it holds
for the blocks Agzk) of A; that

(a) limi—oo A =0, j>Fk;

(b) The eigenvalues of Ag,g converges to the eigenvalues
)\l/k,1+17 o 7)\l/k'
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Special case: If A is real and all the eigenvalues have different
absolute value except conjugate eigenvalues. Then

X X +
X X

X X + +
X X 4+ +

+
+
+
X

X X 4+ 4+ + +
X X 4+ 4+ + +

Let A be an upper Hessenberg matrix. Then the matrices Q;
and A; in (3) and (4) are also upper Hessenberg matrices.

Proof: 1t is obvious from A; 1 = R;A; R, Land Q; = AR L O
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The Practical QR Algorithm

In the following paragraph we will develop an useful QR
algorithm for real matrix A. We will concentrate on developing
the iteration

Compute orthogonal @, such that
Hy = QjAQo
is upper Hessenberg.
For k=1,2,3,---
Compute QR factorization Hyp = QRy;
Set Hyy1 = RpQy; (13)
End

Here A € R™*", Q; € R™*" is orthogonal and R; € R™"*" is
upper triangular.
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Theorem (Real Schur Decomposition)

If A € R™™ then there exists an orthogonal () € R™*" such

that
Ri1 Rip -+ Rim
0 Ry - Rop
QTag=| . T 7 (14)
0 0 -+ Ry

where each R;; is either 1 x 1 or 2 x 2 matrix having complex
conjugate eigenvalues.

Proof: Let k be the number of complex conjugate pair in o (A). We
prove the theorem by induction on k. The theorem holds if £ = 0.
Now suppose that k > 1. If A = v +iu € 0(A) and p # 0, then there
exists vectors y and z € R™(z # 0) such that

v ] _

Aw i) = (b +is) > Al =l [ 7"
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The assumption that i, # 0 implies that y and z span a two
dimensional, real invariant subspace for A. It then follows that

T11 Tho

T Al —
UAU_[ 0 Th

:| with O'(Tll) = {)\75\}

By induction, there exists an orthogonal U so that U7 T5,U has
the require structure. The theorem follows by setting

Q = Udiag(I2,U). O
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e Reduction to Hessenberg form

Take
il ajy
A= .
( az Az >
Let i, be a Householder transformation such that
ﬁ1a21 = vi€y.
Set H, = diag(1, Hy). Then
_ a1l aﬁfh ) . < Qaqq Cf{gﬁﬁ >
H{AH, = A . " = N n
L ( Hiasy HiAx»H; vier HyAH;

For the general step, suppose Hi,--- , Hp_1 are Householder
transformation such that

A arg At k1
Hy 1---H{AHy - - Hypq = 0 gk Q. ki1

0 apr1re Aryirn

9
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where A1, is a Hessenberg matrix of order k — 1. Let Hj, be a
Householder transformation such that

ﬁkak+1’k = Vge€q.
Set H, = diag([k,ﬁk), then

A ayy Ay
Hka_l'--HlAHl---Hk_lHk: 0 ALl . a}';,kHHk
0  wger HpAppr g1 Hy
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Reduce a matrix to Hessenberg form by QR factorization.

: upper He

X X X
X X

X

X

X X X X
X X X X

X X X
X X X
X X X

X
X

0

X X X

X

X

X

X

0 0 O

X X X X

X

X X X X
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X
X

Q2AQ;3

Q3AQ3
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Algorithm (Householder Reduction to Hessenberg Form)

Given A € R™*™. The following algorithm overwrites A with
H = Q¥ AQ,, where H is upper Hessenberg and
Qo = P, --- P,_- is a product of Householder matrices.
Fork=1,---,n—2,
Determine a Householder matrix P, of order n — k such that

Af+1,k *
_ : 0
By _ = .
an,k 0 B
Compute A = P AP, where P, = diag(Ix, P).

End;

o

This algorithm requires %n?’ flops. Qo can be stored in factored
form below the subdiagonal A. If Q is explicitly formed, an
additional §n3 flops are required.
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Theorem (Implicit Q Theorem)

Suppose Q = [q1,- -+ ,qn] @nd'V = [vy,--- ,v,] are orthogonal
matrices with QT AQ = H and VT AV = G are upper
Hessenberg. Let k denote the smallest positive integer for
which hj.41 1, = 0 with the convention that k = n, if H is
unreduced. If vy = q1, then v; = +q; and ’hi,i—l‘ = ]gm-_1|, for
i=2,---,k. Moreover if k < n then giy, = 0.

Proof: Define W = VT'Q = [wy, - - - ,w,] orthogonal, and observe
GW =WH.Fori=2,---k, we have
i1
hii—1w; = Gw;—1 — Z hji—1w;.
j=1

Since w; = ey, it follows that [wq, - - - , wy] is upper triangular and
thus w; = +e; fori =2,--- k.
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Since w; = VTg; and h; ;1 = w] Gw;_1, it follows that v; = +¢;
and |hz‘,i—1’ = |gm‘_1‘ fori = 2,-- k. If hk+1,k =0, then
ignoring signs we have

kil = e{HGek = e;;FHGWek = (e;;FHW)(Hek)

k k
T T
= €k g hixWe; = E hirep1e; = 0.
i=1

=1

||:

Remark

The gist of the implicit Q theorem is that if QT AQ = H and
ZT AZ = G are each unreduced upper Hessenberg matrices
and @ and Z have the same first column, then G and H are
“essentially equal’ in the sense that G = D~'H D, where

D = diag(£1,--- ,£1).
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Single-shift QR-iteration

Now we will investigate how the convergence (13) can be
accelerated by incorporating “shifts”. Let € R and consider
the iteration

Algorithm (Single-shift QR-iteration)

: Give orthogonal Qo such that H = Q} AQo is upper
Hessenberg.

2:fork=1,2,--- do

3: H-—upl=QR, (QR factorization)

4

5

—

H = RQ + pl,
- end for

@ The scale  is refereed to a shift.

@ Each matrix H in Step 4 of Algorithm 2 is similar to A,
since RQ + pul = QT(QR + ul)Q = QTHQ.




Single-shift QR

@ If we order the eigenvalues \; of A so that
A1 — p| > -+ > |\, — p|, then Theorem 6 says that the p-th

subdiagonal entry in H converges to zero with rate
‘Awl*u ’k
Ap—p "
@ Of course if A, = \,41 then there is no convergence at all.
@ But if u is much closer to A, than to the other eigenvalues,

the convergence is required.

Let u be an eigenvalues of an n x n unreduced Hessenberg
matrix H. If H = RQ + I, where (H — ul) = QR is the
QR decomposition of H — pu1, then hy, ,—1 = 0 and hy,, = p.
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Proof: If H is unreduced, then so is the upper Hessenberg matrix
H — pl. Since QT (H — pI) = R is singular and since it can be

shown that
’rii| 2 ‘hi+1,i|7 Z:1a27 7n_17 (15)
it follows that r,,, = 0. Consequently, the bottom row of H is equal to
(0,---,0, p). O
Algorithm
1: Give orthogonal Qo such that H = Q} AQ, is upper
Hessenberg.

2: fork=1,2,--- do

3 H;— hpl=Q;R;, (QR factorization)
4:  Hip1:= RiQ;i + hnnl,

5: end for
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Quadratic convergence

If the (n,n — 1) entry converges to zero and let

X X X X X
X X X X

H = X X X X ,
X X X
€ hpn

then one step of the single shift QR algorithm leads:

QR=H — hp,I, H=RQ + hy,l.



Single-shift QR

After n — 2 steps in the reduction of H — h,,,,I to upper
triangular we have

X
X X X
M 2 X X X
o o X X X

And we have (n,n — 1) entry in H is given by

£2h

Bn n—1— .
’ g2 +a?

If ¢ < a, then it is clear that (n,n — 1) entry has order £2.
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Double Shift QR iteration

@ If at some stage the eigenvalues «; and ay of

hn—l,n—l hn—l,n
hn,n—l hnn

are complex, for then h,,,, would tend to be a poor
approximate eigenvalue.

@ A way around this difficulty is to perform two single shift
QR steps in succession, using a; and a, as shifts:

H-ol = QiR
H = RiQ1+aal,

H1 - O@I = QQRQ, (16)
Hy = RQ2+ aol.
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We then have
(Q1Q2)(RaRy)
Q1(Hy — ol )Ry = Q1(R1Q1 + a1l — axl) Ry

= (Q1R1)(Qi1R1) + a1(Q1R1) — a2(Q1Ry)
(H — OqI)(H — 0411) + Oél(H — all) — Ozg(H — (XlI)
= (H—OQI)(H—OJQI):M, (17)

where
M = (H - all)(H - CVQI). (18)

Note that A is a real matrix, since
M = H? — sH +tI,
where

s = a1+oa2=hyp 101+ hpp €R,
t = apag = hn—l,n—lhnn - hn—l,nhn,n—l € R.
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@ Thus, (17) is the QR factorization of a real matrix, and we
may choose @1 and @ so that 7 = Q,Q is real
orthogonal.

@ It follows that

Hy = Q5H1Q2 = Q5(Q1HQ1)Q2 = (Q1Q2) H(Q1Q2)= Z"HZ

is real.

@ Areal H, could be guaranteed if we
(a) explicitly form the real matrix M = H? — sH + tI;
(b) compute the real QR decomposition M = ZR and
(c) set Hy=ZTHZ.
@ But since (a) requires O(n?) flops, this is not a practical
course.
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In light of the Implicit @) theorem, however, it is possible to effect
the transition from H to H, in O(n?) flops if we

(a') compute Me, the first column of M;

(b") determine Householder matrix P, such that

Py(Mey) = aer, (a#0);

(c') compute Householder matrices Py, - - - , P,_5 such that if
71 = PyPy--- P,_5the Z] HZ, is upper Hessenberg and
the first column of Z and Z; are the same. If Z HZ and
Z{ HZ, are both unreduced upper Hessenberg, then they
are essentially equal.
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Since
Mey = (z,y,2,0, - ,0)7T,
where
= h%, + higha1 — shyy +t,
= ha1(h11 + ha2 — s),
z = hohs.

So, a similarity transformation with P, only changes rows and
columns 1, 2 and 3. Since P} H P, has the form

X X X X X X
X X X X X X

S O X X X X
o O X X X X
o O X X X X
S X X X X X



it follows that

X

0 0 0 x
0 0 0 O

0 0 O
0 0 O

X

0
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@ P, =diag(ly, Py, I,_x_3), Py is 3 x 3-Householder matrix.
The applicability of Implicit @-Theorem follows from that
Peey =eq,fork=1,--- ,n—2, and that P, and Z have the
same first column. Hence Z1e; = Ze;.

@ Deflation:
@ If the eigenvalues of ( hZ”’”*l hgfl’” > are complex
n,n—1 n,n
and nondefective, then h,_; ,,_2 converges quadratically to
zero.

@ If the eigenvalues are real and nondefective, both the
hn—1n—2 converge quadratically to zero. The subdiagonal
elements other than h,_; ,,—» and h,, ,,—1 may show a slow
convergent to zero.

© Deflate matrix to a middle size of matrix.

© Converge to a block upper triangular with order one or two
diagonal blocks. 7, e. converge to real Schur form.
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Algorithm (Francis QR step)

Setm :=n—1;
S = h?nm + hnna t:= hm?nhnn - hmnhn’m 5
z:= h2 + hisho1 — shir + ¢, y := hoi(h11 + hao — 8), 2 := hathss;
For k=0,---,n—2,
Ifk <n—2, then
Determine a Householder matrix P, € R3*3 such that
Pz y Z]T:[* 0 O]T,'
Set
H = PkHP];T, P = d/ag (Ik,pk,ln_k_3),'
else determine a Householder matrix P,,_, € R?*?2 such that
= T T
Poolaz y] =[x 0],
Set
H = P"_QHP;{‘_Q, P, 5= dlag (In_g, Pn_g),'
End if
T = hgrokr1, Y= Mgpaskrls
Ifk <n—3,then z := hita ky1;
End for;
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Algorithm (QR Algorithm)

Using Algorithm 1 to compute the Hessenberg decomposition
QTAQ = H, whereQ = P, --- P,_, and H is Hessenberg;
Repeat: Set to zero all subdiagonal elements that satisfy
|hii—1] < € (Jhi| + [hiz1i-1]);
Find the largest non-negative q and the smallest non-negative p s.t

Hyy  Hip  His D
H = 0 Hyy  Hos n—p—q
0 0 Hjs q
p n—p—q ¢
where Hss is upper quasi-triangular and Hys is unreduced.
If ¢ = n, then upper triangularize all 2 x 2 diagonal blocks in H that
have real eigenvalues, accumulate the orthogonal transformations
if necessary, and quit.
Apply a Francis QR-step to Hyy: Hay := ZTHyyZ;
IfQ and T are desired, then Q := Q diag(1,, Z, 1,);
SetH12 = H9Z andH23 = ZTH23,'
Go To Repeat.

Y
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