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Chapter 1

Mathematical Preliminaries

In this chapter, we review some of the most important topics from Calculus, Linear
Algebra, and Matrix Analysis that will be required in the subsequent chapters throught
this course. Throught this book, R will denote the set of all real numbers.

1.1 Review of Calculus

We start with the review of some definitions and theorems in Calculus including limit,
continuity, derivative, and Riemann integral. We shall emphasize the various forms of
Taylor’s theorem.

1.1.1 Limit, Continuity, Derivative, and Integral

Unless otherwise stated, f will denote a real-valued function defined in a domain Ω ⊆ R,
i.e., f : Ω→ R.

Definition 1.1 (Limit) We say f has the limit L at c, written as lim
x→c

f(x) = L, if

∀ ε > 0, ∃ δ > 0, such that |x− c| < δ ⇒ |f(x)− L| < ε.

If there is no number L with this property, then we say the limit of f at c does not exist.

Definition 1.2 (Continuous) The function f is said to be continuous at c if

lim
x→c

f(x) = f(c).

Definition 1.3 Let {xi}∞i=1, where xi ∈ R or C, be an infinite sequence. The sequence
converges to x?, write lim

i→∞
xi = x? or xi → x? as i→∞, if for any ε > 0, there exists a

positive integer N(ε) such that i > N implies |xi − x?| < ε.

Theorem 1.1 Suppose f : Ω → R, where Ω ⊆ R, is a function and x? ∈ X. Then the
following are equivalent.

1. f is continuous at x?.
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2. If {xi}∞i=1 is any sequence in X and lim
i→∞

xi = x?, then lim
i→∞

f(xi) = f(x?).

Definition 1.4 (Derivative) The derivative of the function f at c is the limit, if it
exists, defined by

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

If f ′(c) exists, then we say f is defferentiable at c.

Remarks 1.1 Another form of derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Theorem 1.2 If f is differentiable at c, then f must be continuous at c. But the converse
is not true.

Definition 1.5 By convention, we use the following definitions and notations.

• C(Ω): the set of all functions that are continuous everywhere in Ω.

• C1(Ω): the set of all functions f for which f ′ exists and is continuous everywhere
in Ω.

• Cn(Ω): the set of all functions f for which f (n) exists and is continuous everywhere
in Ω.

• C∞(Ω): the set of all functions each of whose derivatives is continuous.

Property 1.1 C∞(Ω) ⊂ . . . ⊂ C2(Ω) ⊂ C1(Ω) ⊂ C(Ω)

Remarks 1.2 Similarly, we define Cn[a, b] to be the set of all functions f defined on
[a, b] such that f (n) exists and is continuous everywhere in the interval (a, b).

Theorem 1.3 (Rolle’s Theorem) If f ∈ C[a, b], f ′ exists on (a, b), and f(a) = f(b) =
0, then there exists at least one ξ ∈ (a, b) such that f ′(ξ) = 0.

Theorem 1.4 (Generalized Roll’s Theorem) Suppose f ∈ C[a, b] is n times differ-
entiable on (a, b). If f(x) = 0 for x = x0, x1, . . . , xn, where xi ∈ [a, b], are distinct, then
there is a ξ ∈ (a, b) such that f (n)(ξ) = 0.

Theorem 1.5 (Mean Value Theorem) If f ∈ C[a, b] and f ′ exists on (a, b), then for
any x, c ∈ [a, b], there exist a number ξ between x and c, such that

f(x) = f(c) + f ′(ξ)(x− c),

or, equivalently,

f ′(ξ) =
f(x)− f(c)

x− c
.

Remarks 1.3 Rolle’s theorem is a special case of the Mean Value theorem.
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Theorem 1.6 (Intermediate Value Theorem) If f ∈ C[a, b] and η is some number
between f(a) and f(b), then there exists ξ ∈ (a, b) such that f(ξ) = η.

Theorem 1.7 (Extreme Value Theorem) If f ∈ C[a, b], then there exist ξ and η in
[a, b] such that f(ξ) ≤ f(x) ≤ f(η) for all x ∈ [a, b]. If, in addition, f is differentiable on
(a, b), then ξ and η occur either at the end-points of [a, b] or where f ′ is zero.

Definition 1.6 (Riemann Integral) Suppose f is a function defined on [a, b]. The
Riemann integral of f on [a, b] is the limit, if it exists,∫ b

a

f(x)dx = lim
max4xi→0

n∑
i=1

f(zi)4 xi,

where 4xi = xi − xi−1, zi ∈ [xi−1, xi] is arbitrary, and a = x0 ≤ x1 ≤ · · · ≤ xn = b is a
partition of [a, b].

Remarks 1.4 In the case of equally spaced partition and zi = xi, one has∫ b

a

f(x)dx = lim
n→∞

b− a
n

n∑
i=1

f(xi),

where xi = a+ i(b− 1)/n.

Theorem 1.8 (Mean Value Theorem for Integral) If f is continuous on [a, b] and
g is integrable and does not change sign on [a, b], then there exists ξ ∈ (a, b), such that∫ b

a

f(x)g(x)dx = f(ξ)

∫ b

a

g(x)dx.

In the special case when g(x) ≡ 1 on [a, b], then one has∫ b

a

f(x)dx = f(ξ)(b− a).

1.1.2 Taylor’s Theorem

Theorem 1.9 (Taylor’s Theorem with Lagrange Formula) Suppose f ∈ Cn[a, b]
and f (n+1) exists on (a, b). Then for any x and c in [a, b], there exists a number ξ,
depending on x, between x and c such that

f(x) = Pn(x) + En(x), (1.1)

where

Pn(x) =
n∑

k=0

1

k!
f (k)(c)(x− c)k (1.2)

is called the n-th Taylor polynomial for f centered at c, and

En(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1 (1.3)

is called the remainder term, error term, or truncation error associated with Pn(x). The
infinite series by taking the limit of Pn(x) as n→∞ is called the Taylor series for f(x).
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Remarks 1.5 The mean-value theorem is a special case of Tayler’s theorem by taking
n = 0.

Theorem 1.10 (Taylor’s Theorem with Integral Form) If f ∈ Cn+1[a, b], then for
any x and c in [a, b],

f(x) =
n∑

k=0

1

k!
f (k)(c)(x− c)k +Rn(x), (1.4)

where

Rn(x) =
1

n!

∫ x

c

f (n+1)(t)(x− t)ndt. (1.5)

Theorem 1.11 (Other forms of Taylor’s Theorem) If f ∈ Cn+1[a, b], then for any
x ∈ (a, b) and h ≥ 0 in a neighborhood of x, there exists ξ such that

f(x+ h) =
n∑

k=0

1

k!
f (k)(x)hk +

1

(n+ 1)!
f (n+1)(ξ)hn+1, (1.6)

if x < ξ < x+ h, and

f(x− h) =
n∑

k=0

(−1)k 1

k!
f (k)(x)hk +

(−1)n+1

(n+ 1)!
f (n+1)(ξ)hn+1, (1.7)

if x− h < ξ < x.

Theorem 1.12 (Taylor’s Theorem in Two Variables) Suppose that f(x, y) and all
its partial derivatives of order less than or equal to n+1 are continuous on D = {(x, y)|a ≤
x ≤ b, c ≤ y ≤ d}, and let (x0, y0) ∈ D. For every (x, y) ∈ D, there exists ξ between x
and x0 and µ between y and y0 with

f(x, y) = Pn(x, y) +Rn(x, y), (1.8)

where

Pn(x, y) = f(x0, y0) +

[
(x− x0)

∂f

∂x
(x0, y0) + (y − y0)

∂f

∂y
(x0, y0)

]
+

[
(x− x0)

2

2

∂2f

∂x2
(x0, y0) + (x− x0)(y − y0)

∂2f

∂x∂y
(x0, y0)

+
(y − y0)

2

2

∂2f

∂y2
(x0, y0)

]
+ · · · · · ·

+

[
1

n!

n∑
j=0

(
n

j

)
(x− x0)

n−j(y − y0)
j ∂nf

∂xn−j∂yj
(x0, y0)

]
(1.9)

and

Rn(x, y) =
1

(n+ 1)!

n+1∑
j=0

(
n+ 1

j

)
(x− x0)

n+1−j(y − y0)
j ∂n+1f

∂xn+1−j∂yj
(ξ, µ). (1.10)
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The function Pn(x, y) is called the n-th Taylor polynomial in two variables for thefunction
f(x, y), and Rn(x, y) is the remainder term associated with Pn(x, y).

Example 1.1 Consider the function f(x) = lnx in the interval [1, 2]. Since f ′(x) = x−1,
f ′′(x) = −x−2, f ′′′(x) = 2x−3, · · · and so on. In general, f (k)(x) = (−1)k−1(k − 1)!x−k.
Hence, with c = 1, Taylor’s theorem 1.9 gives,

lnx =
n∑

k=1

(−1)k−1

k
(x− 1)k +

(−1)n

n+ 1
ξ−(n+1)(x− 1)n+1,

where 1 ≤ x ≤ 2 and 1 < ξ < x. The error term is

|En| =
1

n+ 1
ξ−(n+1)(x− 1)n+1 ≤ 1

n+ 1
(x− 1)n+1,

since ξ > 1 and ξ−(n+1) < 1. To estimate ln 2 with an error less than 10−8, it would
require

|En| ≤
1

n+ 1
≤ 10−8.

This means n ≥ 108− 1. Similarly, to estimate ln 1.5 with the same precision, it requires

|En| ≤
1

n+ 1

(
1

2

)n+1

≤ 10−8.

It is sufficient to attain the accuracy if n ≥ 26.

Example 1.2 Consider the function f(x) = cos x defined on R. Since f ∈ C∞(R),
Taylor’s theorem can be applied for any n > 0. With n = 2 and c = 0, we have

f(x) = cosx = 1− 1

2
x2 +

1

6
x3 sin ξ,

where 0 < ξ < x. To estimate cos(0.01) using the Taylor’s theorem, one has

cos(0.01) = 1− 1

2
(0.01)2 +

1

6
(0.01)3 sin ξ = 0.99995 +

1

6
× 10−6 sin ξ,

where 0 < ξ < 0.01. Since | sin ξ| < 1, the error is

| cos(0.01)− 0.99995| ≤ 1

6
× 10−6 ≈ 0.167× 10−6.

This means that the approximation 0.99995 matches at least the first five digits of cos(0.01).
On the other hand, with n = 3, we also have

f(x) = cosx = 1− 1

2
x2 +

1

24
x4 cos ξ.

The apporximation of cos(0.01) with this formula remains the same, still 0.99995, but we
now have much better accuracy assurance since the error is now

| 1
24
x4 cos ξ| ≤ 1

24
(0.01)4 ≈ 0.42× 10−9.

This means that the approximation 0.99995 matches at least the first eight digits when
compared to the 11-digit accuracy cos(0.01) = 0.99995000042.
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These examples illustrate the two objectives of numerical analysis. The first is to find
approximation, which both Taylor polynomials provide. The second objective is to de-
termine the accuracy of the approximation. In the previous example, the later analysis
is much more informative, even though both gave the same approximation.

1.2 Review of Linear Algebra and Matrix Analysis

1.2.1 Matrices and Vectors

We let Rn denote the set of all real n-vectors (column vectors):

x ∈ Rn ⇐⇒ x =


x1

x2
...
xn

 , xi ∈ R, ∀ i = 1, 2, . . . , n,

in which xi is referred as the i-th component of x. By convection, Rn×1 = Rn denotes the
set of column vectors and R1×n the row vectors, x ∈ R1×n, x = [x1, x2, . . . , xn], xi ∈ R.

Rm×n will denote the set of all m× n matrices:

A ∈ Rm×n ⇐⇒ A = [aij] =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,
in which aij ∈ R is called the (i, j) component of A. Frequently, we use the notation

A = [a1, a2, . . . , an] ,

in which

aj =


a1j

a2j
...
amj

 ∈ Rm

denotes the j-th column of A. Analogously, we use Cn and Cm×n to denote the set of
complex n-vectors and complex m× n matrices, respectively.

The transpose of matrix A is AT ∈ Rn×m and

AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 .
For complex matrix A ∈ Cm×n, the Hermitian of A is

AH =


ā11 ā21 · · · ām1

ā12 ā22 · · · ām2
...

...
. . .

...
ā1n ā2n · · · āmn

 ,
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where aij ∈ C andāij denotes the complex conjugate of aij.
Some basic matrix-vector operations include

• dot-product: for x, y ∈ Rn,

xTy = x1y1 + · · ·+ xnyn =
n∑

i=1

xiyi ∈ R.

• outer product: for x ∈ Rm, y ∈ Rn,

xyT = [xiyj] =


x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn

 ∈ Rm×n.

• matrix-vector multiplication: for A = [a1, a2, . . . , an] ∈ Rm×n and x ∈ Rn,

y = Ax = x1a1 + x2a2 + · · ·+ xnan, or yi =
n∑

k=1

aikxk, i = 1, 2, . . . , n.

• matrix-matrix multiplication: for A ∈ Rm×p and B ∈ Rp×n,

C = AB ∈ Rm×n with cij =

p∑
k=1

aikbkj.

• saxpy:

z = αx+ y, or zi = αxi + yi

with x, y, z ∈ Rn, α ∈ R.

• outer-product update:

A← A+ xyT or aij ← aij + xiyj

with A ∈ Rm×n, x ∈ Rm, y ∈ Rn.

• Gaxpy:

z = Ax+ y or zi =
n∑

k=1

aikxk + yi

with A ∈ Rm×n, x ∈ Rn, y ∈ Rm, z ∈ Rm.

The identity matrix of order n, In = [δij], is a special matrix with entries

δij =

{
1, if i = j,

0 if i 6= j.
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The columns of In,

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , · · · , en =


0
0
0
...
1

 ,

are called the standard unit vectors. When the size of In is clear from the content, this
matrix is generally written simply as I.

A square matrix A ∈ Rn×n is said to be nonsingular (or invertible) if there exists
B ∈ Rn×n such that BA = AB = In, the n× n identity matrix. The matrix B is called
the inverse of A and is denoted as A−1.

When A and B are both n-by-n non-singular matrices, we have

(AB)−1 = B−1A−1 and (A−1)T = (AT )−1 = A−T .

Suppose A ∈ Rn×n is nonsingular and A−1 is known. The the inverse (A + xyT )−1,
where x, y ∈ Rn, can be computed by the so-called Sherman-Morrison-Woodbury formula

(A+ xyT )−1 = A−1 − A−1xyTA−1

1 + yTA−1x

if 1 + yTA−1x 6= 0. The extension to rank-k formula for U, V ∈ Rn×k is

(A+ UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1

if I + V TA−1U is nonsingular.
We list in the following some matrices which has either special structure or property.

Definition 1.7 Let A = [aij] be a square or rectangular matrix, A is called

• diagonal if aij = 0, ∀ i 6= j;

• tridiagonal if aij = 0 if |i− j| > 1;

• upper bidiagonal if aij = 0, ∀ i > j or j > i+ 1;

• upper triangular if aij = 0, ∀ i > j;

• strictly upper triangular if aij = 0, ∀ i ≥ j;

• upper Hessenberg matrix if aij = 0, ∀ i > j + 1;

• symmetric if AT = A;

• skew symmetric if AT = −A;

• if positive if aij > 0, ∀ i, j;

• positive definite if xTAx > 0, ∀ x 6= 0, x ∈ Rn;
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• non-negative definite or positive semi-definite if xTAx ≥ 0, ∀ x ∈ Rn;

• indefinite if there exist x, y ∈ Rn such that (xTAx)(yTAy) < 0;

• idempotent if A2 = A.

• nilpotent if Ak = 0 for some positive integer k;

• diagonal dominant if |aii| >
∑
j 6=i

|aij|, ∀ i;

• orthogonal if ATA = I (that is, AT = A−1) when A ∈ Rn×n and unitary if AHA = I
when A ∈ Cn×n;

• normal if ATA = AAT when A ∈ Rn×n and AHA = AAH when A ∈ Cn×n.

1.2.2 Vector Space, Range Space, and Null Space

Definition 1.8 (Linearly Independent) We say vectors x1, x2, . . . , xm ∈ Rn are lin-
early independent if α1, α2, . . . , αm ∈ R

α1x1 + α2x2 + . . .+ αmxm = 0 =⇒ α1 = α2 = . . . = αm = 0.

If there exists any αk 6= 0 but
m∑

i=1

αixi = 0, then x1, x2, . . . , xm are said to be linearly

dependent.

A subspace spanned by x1, x2, . . . , xm is denoted and defined as

span {x1, x2, . . . , xm} =

{
y ∈ Rn | y =

m∑
i=1

αixifor someαi ∈ R

}
.

Suppose S ⊆ Rn is a subspace and B = {b1, . . . , bm} ⊆ S is a subset. If b1, . . . , bm are
linearly independent and span(B) = S, then B is called a basis for S and dim(S) = m.

Definition 1.9 (Range and Null Space) Let A = [a1, . . . , an] ∈ Rm×n, where ai ∈
Rm are columns of A. The range of A is denoted and defined as

R(A) = {y ∈ Rm| y = Ax, for some x ∈ Rn} = span {a1, a2, . . . , an} , (1.11)

and the null space of A is denoted and defined as

N (A) = {x ∈ Rn|Ax = 0} . (1.12)

Definition 1.10 (Rank and Nullity) The rank of a matrix A, rank(A), is the dimen-
sion of R(A) and the nullity of A, nullity(A), is the dimension of N (A).

Note 1.1 rank(A) = rank(AT ) is the maximal number of linearly independent columns
(or rows) in A.
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Note 1.2 Suppose A ∈ Rm×n and m ≥ n, then

rank(A) + nullity(A) = n.

Note 1.3 Suppose A ∈ Rn×n. Then

A is non-singular (invertible, A−1 exists)

⇐⇒ Ax = 0⇒ x = 0

⇐⇒ Ax = b has a unique solution

⇐⇒ rank(A) = n

⇐⇒ det(A) 6= 0

1.2.3 Orthogonality

Definition 1.11 (Orthogonal and Orthonormal) A set of vectors x1, . . . , xm ∈ Rn

are said to be orthogonal if
xT

i xj = 0, ∀ i 6= j,

and orthonormal if

xT
i xj = δij =

{
0 i 6= j
1 i = j

Definition 1.12 Two subspaces S1 and S2 of Rn are said to be orthogonal if xTy = 0
for all x ∈ S1 and y ∈ S2.

Definition 1.13 (Orthogonal Complement) Suppose S ⊆ Rn is a subspace. The
orthogonal complement of S is defined as

S⊥ =
{
y ∈ Rn | yTx = 0, ∀ x ∈ S

}
Definition 1.14 (Direct Sum) Suppose U and V are subspaces of a vector space S. If
each s ∈ S can be written uniquely as a sum u+ v, where u ∈ U and v ∈ V , then we say
that S is a direct sum of U and V and we write S = U ⊕ V .

Theorem 1.13 Suppose A ∈ Rm×n. Then

1. R(A)⊥ = N (AT );

2. N (A) = R(AT )⊥;

3. Rn = R(AT )⊕N (A).

Proof: For any y ∈ R(A)⊥, yTx = 0, ∀x ∈ R(A). Since x is in R(A), there exists
z ∈ Rn such that x = Az. Then

0 = yTx = yT (Az) = (ATy)T z.

Since z = ATy is arbitrary, it must be ATy = 0. That is, y ∈ N (AT ). Hence

R(A)⊥ ⊆ N (AT ).

Conversely, suppose y ∈ N (AT ). Then ATy = 0 and hence (ATy)Tx = yT (Ax) = 0
for any x ∈ Rn. This means y ∈ R(A)⊥. Therefore

N (AT ) ⊆ R(A)⊥.
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1.3 Norms

1.3.1 Vector Norm Definition and Properties

Definition 1.15 A vector norm is a function ‖ · ‖ : Rn → R satisfying the following
conditions for all x, y ∈ Rn and α ∈ R.

1. ‖x‖ ≥ 0 (‖x‖ = 0⇔ x = 0);

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

3. ‖αx‖ = |α|‖x‖.

Definition 1.16 For x ∈ Rn, some of the most frequently used vector norms are

• 1-norm:

‖x‖1 =
n∑

i=1

|xi| = |x1|+ |x2|+ . . .+ |xn|. (1.13)

• 2-norm:

‖x‖2 =

√√√√ n∑
i=1

|xi|2 =
(
|x1|2 + |x2|2 + . . .+ |xn|2

)1/2
=
√
xTx. (1.14)

• ∞-norm:
‖x‖∞ = max

1≤i≤n
|xi|. (1.15)

• p-norm:

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

= (|x1|p + |x2|p + . . .+ |xn|p)1/p . (1.16)

Definition 1.17 (unit vector) x ∈ Rn is called a unit vector if ‖x‖ = 1 with respect to
some vector norm.

Property 1.2 For any x, y ∈ Rn, the following two inequalities hold.

• Hölder inequality:

|xTy| ≤ ‖x‖p‖y‖q, where
1

p
+

1

q
= 1.

• Cauchy-Schwartz inequality:

|xTy| ≤ ‖x‖2‖y‖2.

Definition 1.18 Two vector norms ‖ ·‖α and ‖ ·‖β are equivalent if there exist constants
c1, c2 ∈ R such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α
for any x ∈ Rn.
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In fact, all vector norms on Rn are equivalent, and it is easy to show the following
equivalence properties for vector norms.

Property 1.3 For all x ∈ Rn,

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2. (1.17)

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞. (1.18)

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞. (1.19)

Definition 1.19 (absolute error and relative error) Suppose x ∈ Rn is the exact
solution of some problem and x̃ is an approximation to x. We define

absolute error = ‖x− x̃‖ (1.20)

and

relative error =
‖x− x̃‖
‖x‖

, if x 6= 0. (1.21)

Definition 1.20 (convergence) Suppose {xk} is a sequence of vectors in Rn. We say
xk converges to x?

xk −→ x? iff lim
k→∞
‖xk − x?‖ = 0,

for some vector norm.

1.3.2 Matrix Norm Definition and Properties

Definition 1.21 A matrix norm is a function ‖ · ‖ : Rm×n → R satisfying the following
conditions for all A,B ∈ Rm×n and α ∈ R.

1. ‖A‖ ≥ 0 (‖A‖ = 0⇔ A = 0);

2. ‖A+B‖ ≤ ‖A‖+ ‖B‖;

3. ‖αA‖ = |α|‖A‖.

Definition 1.22 Some of the most frequently used matrix norms are

• Frobenius norm:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2. (1.22)

• 2-norm:

‖A‖2 = max
x∈Rn

x 6=0

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2. (1.23)

• 1-norm:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij|. (1.24)
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• ∞-norm:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij|. (1.25)

• p-norm:

‖A‖p = max
x∈Rn

x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p. (1.26)

Remarks 1.6 Frobenius norm, 1-norm, and ∞-norm are easy to compute, but not the
2-norm or general p-norm.

Theorem 1.14 Suppose A ∈ Rm×n. Then there exists z ∈ Rn, ‖z‖2 = 1, such that
ATAz = µ2z, where µ = ‖A‖2.

Proof: Let z ∈ Rn, ‖z‖2 = 1, be a unit vector that satisfies ‖A‖2 = ‖Az‖2 =
max
‖x‖2=1

‖Ax‖2. Define

g(x) =
1

2

xTATAx

xTx
=

1

2

‖Ax‖22
‖x‖22

=
1

2

(
‖Ax‖2
‖x‖2

)2

,

for x ∈ Rn. Then z is a maximizer of g(x) which impliese 5g(z) = 0. Since

5g(x) =
(xTx)(ATAx)− (xTATAx)(x)

(xTx)2
.

Hence

5g(z) = 0 ⇒ (zT z)(ATAz)− (zTATAz)z = 0

⇒ ‖z‖22(ATAz)− ‖Az‖22z = 0

⇒ ATAz = ‖A‖22z = µ2z.

Remarks 1.7 ‖A‖2 is the square root of the largest eigenvalue of ATA. When A is
symmetric, ‖A‖2 is the absolute value of the largest eigenvalue in magnitude.

Definition 1.23 (submultiplicative property) A matrix norm ‖ · ‖ is said to have
the submultiplicative property if for any matrices A ∈ Rm×p and B ∈ Rp×n such that

‖AB‖ ≤ ‖A‖‖B‖.

Not all matrix norms satisfy the submultiplicative property, e.g., define ‖A‖4 =

max
i,j
|aij|, and let A = B =

[
1 1
1 1

]
. But we conly consider matrix norms that satisfy

the submultiplicative property.

Property 1.4 p-norm satisfies the submultiplicative property.

‖Ax‖p ≤ ‖A‖p‖x‖p (1.27)

‖AB‖p ≤ ‖A‖p‖B‖p (1.28)



14 Chapter 1. Mathematical Preliminaries

Property 1.5 All matrix norms satisfying the submultiplicative property are equivalent.

‖A‖2 ≤ ‖A‖F≤
√
n‖A‖2. (1.29)

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞. (1.30)

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1. (1.31)

max
i,j
|aij| ≤ ‖A‖2 ≤

√
mnmax

i,j
|aij|. (1.32)

Property 1.6 Vector 2-norm is invariant under orthogonal transformation, that is, if Q
is an n-by-n orthogonal matrix, then

‖Qx‖2 = ‖x‖2 ∀ x ∈ Rn. (1.33)

Proof: Since
‖Qx‖22 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖22.

Property 1.7 Matrix 2-norm and Frobenius norm are invariant under orthogonal trans-
formation, that is, if Q is an n-by-n orthogonal matrix, then

‖QA‖2 = ‖A‖2 (1.34)

‖QA‖F = ‖A‖F (1.35)

for all A ∈ Rn×m.

Proof: Since
‖QA‖2 = max

‖x‖2=1
‖QAx‖2 = max

‖x‖2=1
‖Ax‖2 = ‖A‖2.

Property 1.8 If A ∈ Rm×n, then ‖A‖2 ≤
√
‖A‖1‖A‖∞.

Proof: From Theorem 1.14, there exists a vector z ∈ Rn, z 6= 0, such that ‖A‖22z =
ATAz. This implies

‖A‖22‖z‖1 = ‖ATAz‖1 ≤ ‖AT‖1‖A‖1‖z‖1 = ‖A‖∞‖A‖1‖z‖1.

Hence
‖A‖22 ≤ ‖A‖∞‖A‖1.

Theorem 1.15 Suppose that A ∈ Rn×n and ‖ · ‖ is a submultiplicative matrix norm. If
‖A‖ < 1, then I − A is nonsingular and

(I − A)−1 =
∞∑

k=0

Ak (1.36)

with

‖(I − A)−1‖ ≤ 1

1− ‖A‖
. (1.37)
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Proof: Suppose I − A is singular. Then there exists an x ∈ Rn, x 6= 0 such that
(I − A)x = 0. This implies

Ax = x =⇒ ‖Ax‖ = ‖x‖ =⇒ ‖Ax‖
‖x‖

= 1 =⇒ ‖A‖ = max
y 6=0

‖Ay‖
‖y‖

≥ 1.

This contradicts to the assumption ‖A‖ < 1. Hence I−A must be nonsingular. Moreover

(I − A)

(
N∑

k=0

Ak

)
= I − AN+1.

Since ‖A‖ < 1 and ‖·‖ is a submultiplicative matrix norm, ‖AN‖ ≤ ‖A‖N and lim
N→∞

AN =

0. Therefore

(I − A)

(
lim

N→∞

N∑
k=0

Ak

)
= I.

It follows that

(I − A)−1 = lim
N→∞

N∑
k=0

Ak =
∞∑

k=0

Ak

and

‖(I − A)−1‖ =

∥∥∥∥∥
∞∑

k=0

Ak

∥∥∥∥∥ ≤
∞∑

k=0

‖Ak‖ ≤
∞∑

k=0

‖A‖k =
1

1− ‖A‖
.

Theorem 1.16 If A is nonsingular and ‖A−1E‖ < 1, then A+ E is nonsingular and

‖(A+ E)−1 − A−1‖ ≤ ‖E‖‖A
−1‖2

1− ‖A−1E‖
. (1.38)

Proof: Since A is nonsingular, A + E = A(I + A−1E). Since ‖A−1E‖ < 1 it follows
from Theorem 1.15 that I+A−1E is nonsingular and ‖(I+A−1E)−1‖ ≤ 1

1−‖A−1E‖ . Hence

A+ E is nonsingular, (A+ E)−1 = (I + A−1E)−1A−1, and

‖(A+ E)−1‖ = ‖(I + A−1E)−1A−1‖ ≤ ‖(I + A−1E)−1‖‖A−1‖ ≤ ‖A−1‖
1− ‖A−1E‖

.

Now

(A+ E)−1 − A−1 =
(
I − A−1(A+ E)

)
(A+ E)−1 = −A−1E(A+ E)−1,

and so by taking norms we find

‖(A+ E)−1 − A−1‖ ≤ ‖A−1‖‖E‖‖(A+ E)−1‖ ≤ ‖E‖‖A
−1‖2

1− ‖A−1E‖
.
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1.4 SVD: The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization whose computation is
a step in many algorithms. Many problems of linear algebra can be better understood
by considering the SVD.

Theorem 1.17 (Existence of SVD) If A ∈ Rm×n, then there exists orthogonal matri-
ces

U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1.v2, . . . , vn] ∈ Rn×n

such that
A = UΣV T , (1.39)

where
Σ = diag(σ1, σ2, . . . , σp), p = min(m,n),

with
σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Proof: Let σ1 = ‖A‖2 6= 0. By the compactness arguement there exists v1 ∈ Rn,
‖v1‖2 = 1 such that ‖Av1‖2 = σ1. Let u1 = 1

σ1
Av1. Then Av1 = σ1u1, ‖u1‖2 = 1, and

uT
1Av1 = σ1.

Let V1 = [v1, V̂1] ∈ Rn×n and U1 = [u1, Û1] ∈ Rm×m be the orthogonal matrices using
the extension of v1 and u1 to form orthonormal bases for Rn and Rm, respectively. Note
that this can always be done by Gram-Schmidt process. Then

ÛT
1 Av1 = ÛT

1 (σ1u1) = σ1(Û
T
1 u1) = 0

and

UT
1 AV1 =

[
uT

1

ÛT
1

]
A
[
v1, V̂1

]
=

[
uT

1Av1 uT
1AV̂1

ÛT
1 Av1 ÛT

1 AV̂1

]
≡
[
σ1 wT

0 B

]
≡ A1.

Next we show that wT ≡ uT
1AV̂1 = 0. Since

A1

[
σ
w

]
=

[
σ wT

0 B

] [
σ
w

]
=

[
σ2 + wTw

Bw

]
,

hence

‖A1‖2 = max
‖A1x‖2
‖x‖2

≥

∥∥∥∥A1

[
σ
w

]∥∥∥∥
2∥∥∥∥[ σ

w

]∥∥∥∥
2

=

∥∥∥∥[ σ2 + wTw
Bw

]∥∥∥∥
2∥∥∥∥[ σ

w

]∥∥∥∥
2

=
((σ2

1 + wTw)2 + wTBTBw)1/2

(σ2
1 + wTw)1/2

≥
(
σ2

1 + wTw
)

(σ2
1 + wTw)

1/2
=
(
σ2

1 + wTw
)1/2 ≥ σ1.
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But
‖A1‖2 = ‖UT

1 AV1‖2 = ‖A‖2 = σ1.

Hence
wTw = 0 ⇒ w = 0.

Therefore

UT
1 AV1 =

[
σ1 0
0 B

]
⇒ A = U1

[
σ1 0
0 B

]
V T

1 .

Using induction argument, there exist orthogonal matrices U2 ∈ R(m−1)×(m−1) and V2 ∈
R(n−1)×(n−1) such that B = U2Σ2V

T
2 , where Σ2 ∈ R(m−1)×(n−1) is diagonal. Then

A = U1

[
σ1 0
0 B

]
V T

1

= U1

[
σ1 0
0 U2Σ2V

T
2

]
V T

1

= U1

[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V2

]T

V T
1

≡ UΣV T ,

where

U = U1

[
1 0
0 U2

]
, V = V1

[
1 0
0 V2

]
, Σ =

[
σ1 0
0 Σ2

]
.

This proves the theorem.
The σi are called the singular values of A and the vectors ui and vi the i-th left

singular vector and the i-th right singular vector, respectively. We usually use σmax(A)
to denote the largest singular value of A and σmin(A) the smallest singular value of A.

Suppose A ∈ Rm×n and rank(A) = r. Then

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = σp = 0,

and A can be expressed as the summation of r rank-one matrices

A =
r∑

i=1

σiuiv
T
i . (1.40)

The SVD gives complete information about the four fundamental subspaces associated
with A:

R(A) = span {u1, u2, . . . , ur} , (1.41)

N (A) = span {vr+1, vr+2, . . . , vn} , (1.42)

R(AT ) = span {v1, v2, . . . , vr} , (1.43)

N (AT ) = span {ur+1, ur+2, . . . , um} . (1.44)

The matrix 2-norm and Frobenius norm can be characterized in terms of singular
values.

‖A‖2 = σ1, (1.45)

‖A‖F =
√
σ2

1 + · · ·+ σ2
r . (1.46)
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If we write

A = UΣV T = U

[
Σr 0
0 0

]
V T ,

where

Σr =

 σ1

. . .

σr

 ∈ Rr×r,

then

ATA = V ΣTUTUΣV T = V ΣT ΣV T = V

[
Σ2

r 0
0 0

]
V T

and

AAT = UΣV TV ΣTUT = UΣΣTUT = U

[
Σ2

r 0
0 0

]
UT .

Thus σ2
1, . . . , σ

2
r are the nonzero eigenvalues of ATA and AAT , and vj and uj are the

corresponding eigenvectors. When A is symmetric, ATA = AAT = A2, and has real
eigenvalues λi, then the singular values are given by σi = |λi| for i = 1, . . . , r. In
principal, the SVD can be found from the eigenvalue decomposition of ATA and AAT .
However, this does not lead to a stable algorithm for computing the SVD. Finally, when
A is n× n and square, then | det(A)| = σ1 · · ·σn.



Chapter 2

Computer Arithmetic

In this chapter, we explain the floating-point number system and develop basic facts
about roundoff errors. Some topics such as loss of significance, stability of numerical
algorithms, and condition of problems will be introduced with examples. Error analysis
of computer arithmetic will be brifely discussed.

2.1 Floating-Point Number and Roundoff Error

In general, a nonzero real number x in the decimal number system can be written as

x = ±r × 10n,

where
1

10
≤ r < 1,

and n is an integer (positive, negative, or zero). This representation is the called nor-
malized scientific notation, r is called the mantissa and n is the exponent. Note that the
leading digit in the fraction is not zero (except when the number involved is zero). For
example,

42.965 = 4× 101 + 2× 100 + 9× 10−1 + 6× 10−2 + 5× 10−3

= 0.42965× 102,

−0.00234 = −0.234× 10−2.

Likewise, we can use the scientific notation for binary number system to express the
number x as

x = ±q × 2m

with
1

2
≤ q < 1,

and some integer m. Both q and m will be expressed in terms of binary numbers. For
example,

1001.1101 = 1× 23 + 1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−4

= 0.10011101× 2100

= (9.8125)10
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Allmost all microcomputers uses binary number system, but not necessary mainframe
computers.

Example 2.1 What is the binary representation of 2
3
?

Sol: To determine the binary representation for 2
3
, we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides. Substracting 1, we
have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Most computers work internally in binary system and output decimal system for
human users. A number that has a terminating exapnsion in one base may have a
nonterminating exapnsion in another. The conversion procedure frequently involves a
small error as shown in the following example.

Example 2.2 What is the binary representation of 1
10

?

Sol:
1

10
= (0.1)10 = (0.0001 1001 1001 1001 . . .)2.

Typically, only a relatively small subset of the real number system is used for the
representation of all the real numbers. This subset, which are called the floating-point
numbers, contains only rational numbers, both positive and negative. When a number
can not be represented exactly with the fixed finite number of digits in a computer, a
near-by floating-point number is chosed for approximate representation.

For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0, (2.1)

denote the normalized scientific binary representation of x. Note that the leading digit
in mantissa a1 6= 0, hence a1 = 1. If x is within the numerical range of the machine, the
floating-point form of x, denoted fl(x), is obtained by terminating the mantissa of x at
t digits for some integer t. There are two ways of preforming this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m. (2.2)
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2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a
number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m. (2.3)

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we
merely chop off all but the first t digits.

Since computers can only store real numbers using fixed finite numbers of digits, this
places a restriction on the precision with which real numbers can be represented. The
error results from replacing a number with its floating-point form is called roundoff error
or rounding error, regardless of whether the rounding or chopping method is used. The
following definition describes two methods for measuring approximation errors.

Definition 2.1 (Absolute Error and Relative Error) If x is an approximation to

the exact value x?, the absolute error is |x? − x| and the relative error is |x?−x|
|x?| , provided

that x? 6= 0.

Remark 2.1 As a measure of accuracy, the absolute error may be misleading and the
relative error more meaningful.

If the floating-point representation fl(x) for the number x is obtained by using t digits
and chopping procedure, then the relative error is

|x− fl(x)|
|x|

=
|0.00 · · · 0at+1at+2 · · · × 2m|
|0.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t.

Since a1 6= 0, the minimal value of the denominator is 1
2
. The numerator is bounded

above by 1. As a consequence ∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−t+1. (2.4)

In a similar manner, if t-digit rounding arithmetic is used and at+1 = 0, then fl(x) =
±0.a1a2 · · · at × 2m. A bound for the relative error is

|x− fl(x)|
|x|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−t.

since the numerator is bounded above by 1
2
. But if at+1 = 1, then fl(x) = ±(0.a1a2 · · · at+

2−t)× 2m, the upper bound for relative error becomes

|x− fl(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−t.

since the numerator is bounded by 1
2

due to at+1 = 1. Therefore the relative error for
rounding arithmetic is ∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−t =
1

2
× 2−t+1. (2.5)
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Figure 2.1: 32-bit single precision.

The number εM ≡ 2−t+1 is referred to as the unit roundoff error or machine epsilon. The
floating-point representation, fl(x), of x can be expressed as

fl(x) = x(1 + δ), |δ| ≤ εM . (2.6)

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a
report called Binary Floating Point Arithmetic Standard 754-1985. In this report, for-
mats were specified for single, double, and extended precisions, and these standards are
generally followed by microcomputer manufactures using floating-point hardware.

The single precision IEEE standard floating-point format allocates 32 bits for the
normalized floating-point number ±q× 2m as shown in Figure 2.1. The first bit is a sign
indicator, denoted s. This is followed by an 8-bit exponent c and a 23-bit mantissa f .
The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The
value of c is restricted by the inequality 0 < c < 255. The values 0 and 255 are reserved
for special cases including ±0 and ±∞, respectively. Hence the actual exponent of the
number is restricted by the inequality −126 ≤ c−127 ≤ 127. In addition, a normalization
is imposed that requires that the leading digit in fraction be 1, and this digit is not stored
as part of the 23-bit mantissa. Using this format gives a floating-point number of the
form

(−1)s × (1.f)2 × 2c−127.

Since the mantissa f actually corresponds to 24 binary digits (i.e., precision t = 24), the
machine epsilon is

εM = 2−24+1 = 2−23 ≈ 1.192× 10−7. (2.7)

This approximately corresponds to 6 accurate decimal digits. And the first single precision
floating-point number greater than 1 is 1 + 2−23.

The largest number that can be represented by the single precision format is approx-
imately 2128 ≈ 3.403 × 1038, and the smallest positive number is 2−126 ≈ 1.175 × 10−38.
This range is in general not sufficient for some scientific calculation. For this and other
reason, we need “double precision” arithmetic.

A floating point number in double precision IEEE standard format uses two words
(64 bits) to store the number as shown in Figure 2.2. The first bit is a sign indicator,
denoted s, same as the single precision format. This is followed by an 11-bit exponent
c and a 52-bit mantissa f . The actual exponent is c − 1023. Using this format gives a
floating-point number of the form

(−1)s × (1.f)2 × 2c−1023.

which provides between 15 and 16 decimal digits of accruacy, since the machine epsilon

εM = 2−52 ≈ 2.220× 10−16,
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Figure 2.2: 64-bit double precision.

single precision double precision
εM 2−23 ≈ 1.192× 10−7 2−52 ≈ 2.220× 10−16

smallest positive number 2−126 ≈ 1.175× 10−38 2−1022 ≈ 2.225× 10−308

largest number 2128 ≈ 3.403× 1038 21024 ≈ 1.798× 10308

decimal precision 6 15

Table 2.1: Some characteristics of IEEE standard floating-point numbers

and a range of approximately 2−1022 ≈ 2.225× 10−308 to 21024 ≈ 1.798× 10308. The first
double precision floating-point number greater than 1 is 1 + 2−52.

Table 2.1 summarizes some characteristics of IEEE standard floating-point representa-
tions. Clearly, for the most accuracy, computations should be done using double precision
floating-point numbers, however, the execution time is much higher.

In the IEEE floating-point standard, the round to nearest or correctly rounded value
of the real number x, denoted round(x), is defined as follows. First, let x+ be the
closest foating-point number greater than x and x− be the closest one less than x. Then
round(x) is either x+ or x−, whichever is nearer to x. If x is a floating-point number,
then round(x) = x. This method is almost always used since it is the most useful and
gives the floating-point number closest to x. Other rounding modes could be (1) round
towards 0 : round(x) is either x+ or x−, whichever is between 0 and x; (2) round towards
−∞/round dwon: round(x) = x−; (3) round towards ∞/round up: round(x) = x+.

If a number x = ±q × 2m with m outside the computer’s possible range (too large or
two small), then we say that an overflow or an underflow has occurred. Generally, an
overflow results in a fatal error (or exception), and the normal excution of the program
stops. An underflow, however, is usually treated automatically by setting x to zero
without any interruption of the program but with a warning message in most computers.

There are some useful special numbers in the IEEE standard. For example, instead
of terminating with an overflow when dividing a nonzero number by 0, the machine
representation for ∞, Inf, is stored, which is the mathematically sensible thing to do.
There are two different representations, +Inf and −Inf, that correspond to two quite
different numbers, +∞ and −∞. A NaN stands for Not a Number and is an error
pattern rather than a number. Table 2.2 lists the IEEE exception handling standard.

Because of the hidden bit representation, a special technique for storing zero is nec-
essary. Note that all zero bits in the mantissa field represents the significant 1.0 rather
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big*big ± Inf overflow
number/0.0 ± Inf division
0.0/0.0 NaN invalid
small/big subnormal number underflow
2.0/3.0 rounded

Table 2.2: IEEE exception handling.

than 0.0. Moreover, there are two different representations for the same number zero;
namely +0 and −0.

For single precision integers, 31 bits are allocated for the integer, because onley 1
bit is needed for the sign. Consequently, the range for integers is from −(231 − 1) to
(231 − 1) = 2147483647. Double precision integers, on the other hand, use 63-bit storage
and 1 bit for sign. Pure integer calculation is not common in numerical algorithms.

2.2 Loss of Significance, Stability, and Conditioning

Roundoff errors are inevitable and difficult to control. Other types of errors which occur
in computation may be under our control. The subject of numerical analysis is largely
preoccupied with understanding and controlling errors of various kinds. Here in this
section we examine some of them.

2.2.1 Loss of Significance

Suppose that x is a real number expressed in normalized scientific notation in the decimal
system

x = ±a1a2a3 · · · × 10n a1 6= 0.

The digits a1, a2, a3, . . ., used to express the fraction part of x do not all have the same
significance because they represent different power of 10. Thus, we say that a1 is the
most significant digit, and the significance of the digits diminishes from left to right.

One of the most common error-producing calculations involves the cancellation of
significant digits due to the subtraction of nearly equal numbers (or the addition of one
very large number and one very small number). Assume that two nearly equal numbers
x and y, with x > y, have the t-digit floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and
fl(x) = 0.d1d2 · · · dpβp+1βp+2 · · · βt × 10n.

Then the floating-point form of x− y is

fl(fl(x)− fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where
0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · · βt.
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As a result, the floating-point number used to represent x− y has at most t− p digits of
significance. However, in most computers, x − y will be assigned t digits, with the last
p digits being either zero or randomly assigned. Any further calculations involving the
results of x−y retain the problem of having only t−p digits of significance, since a chain
of calculations can not be expected to be more accurate than its weakest portion. The
phenomenon can be illustrated with the following example.

Example 2.3 If x = 0.3721478693 and y = 0.3720230572, what is the relative error in
the computation of x− y using five decimal digits of accuracy?

Sol: In exact computation using ten decimal digits of accuracy,

x− y = 0.0001248121.

But both x and y will be rounded to five decimal digits before subtraction. Thus

fl(x) = 0.37215

fl(y) = 0.37202

fl(x)− fl(y) = 0.00013 = 0.13000× 10−3

Therefore the relative error is

(x− y)− (fl(x)− fl(y))
x− y

≈ 0.04 = 4%.

An interesting question arised immediately would be how many significant binary bits
are lost in the subtraction when x is close to y?

Theorem 2.1 If x ≥ 0 and y ≥ 0 are normalized floating-point binary numbers such
that x > y and

2−q ≤ 1− y

x
≤ 2−p,

then at most q and at least p significant binary digits are lost in the subtraction x− y.

Proof: Write

x = r × 2n,
1

2
≤ r < 1

and

y = s× 2m,
1

2
≤ s < 1.

Since x > y, we must sift the decimal digits of y to the right

y = (s× 2m−n)× 2n.

Then

x− y = (r − s× 2m−n)× 2n = r

(
1− s× 2m

r × 2n

)
× 2n = r

(
1− y

x

)
× 2n.
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By assumption 2−q ≤ 1− y
x
≤ 2−p, hence

r
(
1− y

x

)
< 1 · 2−p = 2−p.

This means that to normalize the result x − y, a shift of at least p bits to the left is
required. Similarly,

r
(
1− y

x

)
≥ 1

2
· 2−q = 2−(q+1),

and a shift of at most q bits to the right is required.
Sometimes, loss of significance can be avoided by using double precision. This at least

doubles the number of bits in mantissa. But when both operands are already in double
precision, this means quadruple precision would be needed, and this is not available in
many machines and languages, or at least not cheaply. In some cases, rewriting the
mathematical formula is an alternative and can make the difference.

Example 2.4 Consider the two equivalent functions

f(x) = x(
√
x+ 1−

√
x) and g(x) =

x√
x+ 1 +

√
x
.

Compare the function evaluation of f(500) and g(500) using 6 digits and rounding.

Sol:

f(500) = 0.500000× 103 × (
√

501−
√

500)

= 0.500000× 103 × (0.223830× 102 − 0.223607× 102)

= 0.500000× 103 × 0.223000

= 0.111500× 103

and

g(500) =
500√

501 +
√

500

=
0.500000× 103

0.223830× 102 + 0.223607× 102

=
0.500000× 103

0.447437× 102

= 0.111748× 102

If more digits are used, we can calculated

f(500) = 500× (
√

501−
√

500)

= 500× (22.38302929− 22.36067977)

= 500× 0.022349516

= 11.1747553

Hence it can be argued that the formulation g(x) is better.
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Example 2.5 The quadratic formulas for computing the roots of ax2 + bx+ c = 0, when
a 6= 0, are

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

Consider the quadratic equation x2 + 62.10x+ 1 = 0 and discuss the numerical results.

Sol: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain the
roots

x1 = −0.01610723 and x2 = −62.08390.

We will use these values as “exact solutions”. Now we perform the calculations with
4-digit rounding arithmethic. First we have

√
b2 − 4ac =

√
62.102 − 4.000 =

√
3856− 4.000 =

√
3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=
−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1)− x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723|
=

0.00389277

0.01610723
≈ 0.2417.

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=
−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2)− x2|
|x2|

=
| − 62.10 + 62.08390|
| − 62.08390|

=
0.0161

62.08390
≈ 0.259× 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√
b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two
nearly equal numbers, in contrast, the calculation of x2 involves the addition of the nearly
equal numbers which will not cause serious loss of significance.

To obtain a more accurate 4-digit rounding approximation for x1, we change the
formulation by rationalizing the numerator, that is,

x1 =
−2c

b+
√
b2 − 4ac

.

Then

fl(x1) =
−2.000

62.10 + 62.06
=
−2.000

124.2
= −0.01610.

The relative error in computing x1 is now reduced to 0.62× 10−3. However, if we ratio-
nalize the numberator in x2 to get

x2 =
−2c

b−
√
b2 − 4ac

.
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The use of this formula results not only involve the subtraction of two nearly equal
numbers but also the division by the small number. This would cause degrade in accuracy.

fl(x2) =
−2.000

62.10− 62.06
=
−2.000

0.04000
= −50.00.

The relative error in x2 becomes 0.19.
The above example also shows that if a finite-precision representation or calculation

introduces an error, further enlargement of the error occurs when dividing by a num-
ber with small magnitude, or, equivalently, when multiplying by a number with large
magnitude.

There is another situation in which a drastic loss of significant digits will occur. This
is in the evaluation of polynomials and certain functions.

Example 2.6 Evaluate
f(x) = x3 − 6x2 + 3x− 0.149

at x = 4.71 using 3-digit arithmetic.

Sol: The following table gives the intermediate results in the calculation.

x x2 x3 6x2 3x
Exact 4.71 22.1841 104.487111 133.1046 14.13
3-digit chopping 4.71 22.1 104 132 14.1
3-digit rounding 4.71 22.2 105 133 14.1

The exact function value is
f(4.71) = −14.636489.

The result from 3-digit chopping arithmetic is

f̂(4.71) = −14.0,

and 3-digit rounding
f̃(4.71) = −14.0.

Hence relative error for both calculation is

| − 14.636489 + 14.0|
| − 14.636489|

≈ 0.4× 10−1.

Alternatively, if we rewrite the formulation of f(x) in nested manner as

f(x) = ((x− 6)x+ 3)x− 0.149.

Then the 3-digit chopping arithmetic gives

f̂(4.17) = −14.5

with relative error
| − 14.636489 + 14.5|
| − 14.636489|

≈ 0.93× 10−2,
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and 3-digit rounding

f̃(4.17) = −14.6

with relative error
| − 14.636489 + 14.6|
| − 14.636489|

≈ 0.25× 10−2.

Example 2.7 Let

p(x) = ((x3 − 3x2) + 3x)− 1,

q(x) = ((x− 3)x+ 3)x− 1.

Compare the function values at x = 2.19.

Sol: Use 3-digit and rounding for p(2.19) and q(2.19).

p̂(2.19) = ((2.193 − 3× 2.192) + 3× 2.19)− 1

= ((10.5− 14.4) + 3× 2.19)− 1

= (−3.9 + 6.57)− 1

= 2.67− 1

= 1.67

q̂(2.19) = ((2.19− 3)× 2.19 + 3)× 2.19− 1

= (−0.81× 2.19 + 3)× 2.19− 1

= (−1.77 + 3)× 2.19− 1

= 1.23× 2.19− 1

= 2.69− 1

= 1.69

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19)− p̂(2.19)| = 0.015159

and

|q(2.19)− q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x) is better than p(x).
In fact, polynomials should always be expressed in nested form before performing an

evaluation, since this form minimizes the number of required arithmetic calculations. One
way to reduce roundoff error is to reduce the number of error-producing computations.



30 Chapter 2. Computer Arithmetic

Example 2.8 How to evaluate

y = x− sin x

when x is small?

Sol: Since x ≈ sin x for small x, the computation will cause loss of significance. Alter-
natively, use Taylor series for sinx so that

y = x−
(
x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · ·

)
=

x3

3!
− x5

5!
+
x7

7!
− x9

9!
+ · · ·

=
x3

6
− x5

6× 20
+

x7

6× 20× 42
− x9

6× 20× 42× 72
· · ·

=
x3

6

(
1− x2

20

(
1− x2

42

(
1− x2

72
(· · · )

)))

Finally, floating-point arithmetic is not always associative. This can be illustrated
with the following example.

Example 2.9 Performing the calculation with 3-decimal mantissa and chopping arith-
metic will result

fl(fl(10−3 + 1)− 1) = 0

and

fl(fl(10−3 + fl(1− 1))) = 10−3.

2.2.2 Numerical Stability

Another theme that occurs repeatedly in numerical analysis is the distiction between
numerical algorithms that are stable and those that are not. Informally speaking, a
numerical process is unstable if small errors made at one stage of the process are magnified
and propagated in subsequent stages and seriously degrade the accuracy of the overall
calculation. Whether a process is stable or unstable should be decided on the basis of
relative error.

Example 2.10 Consider the following recurrence algorithm{
x0 = 1, x1 = 1

3

xn+1 = 13
3
xn − 4

3
xn−1

for computing the sequence of {xn = (1
3
)n}. This algorithm is unstable.

Sol: A computer implemention of the recurrence algorithm gives the following result.
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n xn n xn n xn n xn

0 1.0000000 4 0.0123466 8 0.0003757 12 0.0571502
1 0.3333333 5 0.0041187 9 0.0009437 13 0.2285939
2 0.1111112 6 0.0013857 10 0.0035887 14 0.9143735
3 0.0370373 7 0.0005153 11 0.0142927 15 3.6574934

The error present in xn is multiplied by 13
3

in computing xn+1. For example, the error

will be propagated with a factor of
(

13
3

)14
in computing x15. Additional roundoff errors

in computing x2, x3, . . . may also be propagated and added to that of x15.

2.2.3 Conditioning

The words condition and conditioning are used informally to indicate how sensitive the
solution of a problem may be to small relative changes in the input data. A problem is
ill-conditioned if small changes in the data can produce large changes in the resluts. For
certain types of problems, a condition number can be defined. If that number is large, it
indicates an ill-conditioned problem. In contrast, if the number is modest, the problem
is recognized as a well-conditioned problem.

For example, the condition number for a nonsingular square matrix A is defined as

κ(A) = ‖A‖‖A−1‖,

with respect to some matrix norm. The matrix A is said to be ill-conditioned if κ(A) is
large, and well-conditioned when κ(A) is modest. For a general rectangular matrix, the
singular values are used to characterize the condition number in 2-norm

κ2(A) =
σmax(A)

σmin(A)
,

where σmax(A) is the largest singular value and σmin(A) the smallest singular value of A.
A well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ Rn×n, where hij =
1

i+ j − 1
.

In general, ill-conditioning is not easy to detect.
In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

Example 2.11 Consider solving the following system of linear equations
20514 4424 987 224
4424 987 224 54
987 224 54 14
224 54 14 4



x1

x2

x3

x4

 =


20514
4424
987
224

 .
Sol: The numerical solution obtained by using Matlab command A\b, where A is the
coefficient matrix and b is the right-hand-side vector, is

x =


1.00000000000002
−0.00000000000003
−0.00000000000055

0.00000000000125

 .
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However, if b1 is changed from 20514 to 20515, then the numerical solution becomes

x =


0.99672906602257
−0.00528381642514

0.16978663445968
−0.33974939613341

 .
One may check that the 2-norm condition number of the coefficient is κ2(A) ≈ 6.1191×
105.

2.3 Floating-Point Error Analysis

In addition to inaccurate representation of numbers, the arithmetic performed in a com-
puter is not exact. The arithmetic involves manipulating binary digits by various shifting,
or logical, operations. We now consider the errors that are produced in the course of el-
ementary arithmetic operations.

Let � stand for any one of the four basic arithmetic operators +, −, ?, ÷. Whenever
two machine numbers x and y are to be combined arithmetically, the computer will
produce fl(x � y) instead of x � y. In the operation, x � y is first correctly formed,
normalized, and then rounded to become a machine number. Under this assumption and
(2.6), the relative error of fl(x� y) satisfies

fl(x� y) = (x� y)(1 + δ), δ ≤ εM , (2.8)

where εM is the unit roundoff. But if x, y are not machine numbers, then they must
first rounded to floating-point format before the arithmetic operation and the resulting
relative error becomes

fl(fl(x)� fl(y)) = (x(1 + δ1)� y(1 + δ2))(1 + δ3), δi ≤ εM , i = 1, 2, 3. (2.9)

Thus, the machine unit roundoff gives an upper bound for the relative error in any single
basic arithmetic operation.

The analysis (2.8) can be extended to arithmetic operations on three floating-point
numbers. For example,

fl(x(y + z)) = (x · fl(y + z))(1 + δ1)

= (x(y + z)(1 + δ2))(1 + δ1)

= x(y + z)(1 + δ1 + δ2 + δ1δ2)

≈ x(y + z)(1 + δ1 + δ2)

= x(y + z)(1 + δ3)

The generalization to the sum of n floating-point numbers is as follows.

Theorem 2.2 Let x0, x1, . . . , xn be positive floating-point numbers. Then the relative

error in computing
n∑

i=0

xi in the usual way is at most (1 + εM)n − 1 ≈ nεM , where εM is

the machine unit roundoff.
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Proof: Let Sk = x0 +x1 + · · ·+xk and S?
k = fl(Sk), and be computed in the usual way

{
S0 = x0

Sj+1 = Sj + xj+1
and

{
S?

0 = fl(x0)
S?

j+1 = fl(S?
j + xj+1)

Define

ρk =
S∗k − Sk

Sk

and δk =
S∗k+1 − Sk+1

S∗k + xk+1

,

where each |δk| ≤ εM . Then

ρk+1 =
S∗k+1 − Sk+1

Sk+1

=
(S∗k + xk+1)(1 + δk)− (Sk + xk+1)

Sk+1

=
(Sk(1 + ρk) + xk+1)(1 + δk)− (Sk + xk+1)

Sk+1

=
(Sk + ρkSk + xk+1)(1 + δk)− (Sk + xk+1)

Sk+1

=
Sk + ρkSk + xk+1 + δkSk + δkρkSk + δkxk+1 − Sk − xk+1

Sk+1

=
ρkSk + δkSk + δkρkSkδkxk+1

Sk+1

=
δk(Sk + xk+1) + ρk(Sk + δkSk)

Sk+1

=
δkSk+1 + ρkSk(1 + δk)

Sk+1

= δk + ρk

(
Sk

Sk+1

)
(1 + δk).

Since xi are all positive, Sk < Sk+1, and

|ρk+1| ≤ εM + |ρk|(1 + εM) = εM + θ|ρk|,

where θ = 1 + εM . Thus

|ρ0| = 0

|ρ1| ≤ εM

|ρ2| ≤ εM + εMθ

|ρ3| ≤ εM + εMθ + εθ2

...
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In general,

|ρn| ≤ εM + εMθ + εθ2 + · · ·+ εθn−1

= ε
(
1 + θ + θ2 + · · ·+ θn−1

)
= ε

(
θn − 1

θ − 1

)
= ε

(
(1 + εM)n − 1

1 + εM − 1

)
= (1 + εM)n − 1

= 1 +

(
n

1

)
εM +

(
n

2

)
ε2M + · · · − 1

≈
(
n

1

)
εM

= nεM .

2.4 Stability and Conditioning

2.4.1 Numerical Stability

A numerical process is unstable if small errors made at one stage of the process are
magnified and propagated in subsequent stages and seriously degrade the accuracy of the
overall calculation. Whether a process is stable or unstable should be decided on the
basis of relative error.

Example 2.12 Consider the following recurrence algorithm{
x0 = 1, x1 = 1

3

xn+1 = 13
3
xn − 4

3
xn−1

for computing the sequence of {xn = (1
3
)n}. This algorithm is unstable.

Sol: A computer implemention of the recurrence algorithm gives the following result.

n xn n xn n xn n xn

0 1.0000000 4 0.0123466 8 0.0003757 12 0.0571502
1 0.3333333 5 0.0041187 9 0.0009437 13 0.2285939
2 0.1111112 6 0.0013857 10 0.0035887 14 0.9143735
3 0.0370373 7 0.0005153 11 0.0142927 15 3.6574934

The error present in xn is multiplied by 13
3

in computing xn+1. For example, the error

will be propagated with a factor of
(

13
3

)14
in computing x15. Additional roundoff errors

in computing x2, x3, . . . may also be propagated and added to that of x15.
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2.4.2 Conditioning

A problem is ill-conditioned if small changes in the data can produce large changes in the
resluts. For a nonsingular square matrix A, the condition number of A is defined as

κ(A) = ‖A‖‖A−1‖,

with respect to some matrix norm. For a general rectangular matrix, the singular values
are used to characterize the condition number

κ(A) =
σmax

σmin

,

where σmax is the largest singular value of A and σmin the smallest singular value. A is
said to be ill-conditioned if κ(A) is large, and well-conditioned when κ(A) is modest. A
well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ Rn×n, where hij =
1

i+ j − 1
.

In general, ill-conditioning is not easy to detect.
In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

Example 2.13 Consider solving the following system of linear equations

A =


20514 4424 987 224
4424 987 224 54
987 224 54 14
224 54 14 4



x1

x2

x3

x4

 =


20514
4424
987
224

 .
A numerical solution gives

x =


1.000004
−0.000038

0.000126
−0.000131

 .
However, if b1 is changed from 20514 to 20515, then the numerical solution becomes

x =


0.642857
3.750000
−12.3928

12.7500

 .
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Chapter 3

Direct Methods for Solving Systems
of Linear Equations

Systems of linear equations are associated with many problems in engineering and science,
as well as with applications to the social sciences and the quantitative study of business
and economic problems.

The principal objective of this chapter is to discuss the numerical aspects of solving
linear systems of equations having the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

(3.1)

This is a linear system of n equations in n unknowns x1, x2, . . . , xn. This system can
simply be written in the matrix equation form

Ax = b, (3.2)

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , b =


b1
b2
...
bn

 , x =


x1

x2
...
xn

 . (3.3)

This equation has a unique solution x = A−1b when the coefficient matrix A is nonsin-
gular. Unless otherwise stated, we shall assume that this is the case. If A−1 is already
available, then x = A−1b provides a good method of computing the solution x. If A−1

is not available, then in general A−1 should not be computed solely for the purpose of
obtaining x. More efficient numerical procedures will be developed.

Direct methods, which are techniques that give a solution in a fixed number of steps,
subject only to round-off errors, are considered in this chapter. Guassian elimination
is the principal tool in the direct solution of (3.2). An important technique is to use
Gaussian elimination to factor the coefficient matrix into a product of matrices that
are easier to manipulate. The factorization is called LU-factorization and has the form
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A = LU , where L is unit lower triangular and U is upper triangular. We shall construct
a general-purpose algorithm, analyze the errors that are associated with the computer
solution, and study methods for controlling and reducing the errors.

3.1 Triangular Systems

The Gaussian elimination and LU factorization methods for linear systems involve the
conversion of the given square matrix to a triangular system that has the same solution.
This section is about the solution of triangular systems.

3.1.1 Diagonal System

We begin by considering the case in which A has a diagonal structure. The easiest linear
system of equations (3.2) is the one with diagonal coefficient matrix A, i.e., all the nonzero
elements of A are on the main diagonal,

A =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 .
In this case, computing the solution x is trivial

x =


x1

x2
...
xn

 =


b1/a11

b2/a22
...

bn/ann

 , (3.4)

provided that all aii 6= 0. If aii = 0 and bi = 0 for some index i, then xi can be any real
number. If aii = 0 but bi 6= 0, no solution of the system exists.

However, a linear system with diagonal coefficient matrix is not common and reducing
a general matrix to diagonal form is not practical.

3.1.2 Forward Substitution

When a linear system Lx = b is lower triangular of the form
`11 0 · · · 0
`21 `22 · · · 0
...

...
. . .

...
`n1 `n2 · · · `nn



x1

x2
...
xn

 =


b1
b2
...
bn

 , (3.5)
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where all diagonals `ii 6= 0, xi can be obtained by the following procedure

x1 = b1/`11

x2 = (b2 − `21x1)/`22

x3 = (b3 − `31x1 − `32x2)/`33
...

xn = (bn − `n1x1 − `n2x2 − · · · − `n,n−1xn−1)/`nn

The general formulation for computing xi is

xi =

(
bi −

i−1∑
j=1

`ijxj

)/
`ii, i = 1, 2, . . . , n. (3.6)

This procedure is known as the forward substitution and is used for solving a lower
triangular linear system. Algorithms for forward substitution in row-oriented and column-
oriented oder are presented.

Algorithm 3.1 (Forward Substitution: Row Version) Suppose that L ∈ Rn×n is
nonsingular lower triangular and b ∈ Rn. This algorithm computes the solution of Lx = b
using row-oriented procedure.

for i = 1, . . . , n do
tmp = 0.0
for j = 1, . . . , i− 1 do
tmp = tmp+ L(i, j) ∗ x(j)

end for
x(i) = (b(i)− tmp)/L(i, i)

end for

Algorithm 3.2 (Forward Substitution: Column version) Suppose that L ∈ Rn×n

is nonsingular lower triangular and b ∈ Rn. This algorithm computes the solution of
Lx = b using column-oriented procedure.

for i = 1, . . . , n do
x(i) = b(i)

end for
for j = 1, . . . , n do
x(j) = x(j)/L(j, j)
for i = (j + 1), . . . , n do
x(i) = x(i)− L(i, j) ∗ x(j)

end for
end for

Since bi is only involved in the formula for xi, therefore the memory storage for b
can be overwritten by x. The number of floating-point operations, flops, involved in the
forward substitution are

n∑
i=1

[2(i− 1) + 2] = n2 + n.

Hence the forward substitution algorithm is an O(n2) algorithm.
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3.1.3 Back Substitution

The analogous algorithm for upper triangular system Ux = b of the form
u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn



x1

x2
...
xn

 =


b1
b2
...
bn

 (3.7)

is called back substitution. The solution xi are computed in a reversed order by

xn = bn/unn

xn−1 = (bn−1 − un−1,nxn)/un−1,n−1

xn−2 = (bn−2 − un−2,n−1xn−1 − un−2,nxn)/un−2,n−2

...

x1 = (b1 − u12x2 − u13x3 − · · · − u1nxn)/u11

provided that all uii 6= 0. The general formulation is

xi =

(
bi −

n∑
j=i+1

uijxj

)/
uii, i = n, n− 1, . . . , 1. (3.8)

Algorithm 3.3 (Back Substitution: Row Version) Suppose that U ∈ Rn×n is non-
singular upper triangular and b ∈ Rn. This algorithm computes the solution of Ux = b
using row-oriented procedure.

x(n) = b(n)/U(n, n)
for i = (n− 1), . . . , 1 do
tmp = 0.0
for j = i+ 1 : n do
tmp = tmp+ U(i, j) ∗ x(j)

end for
x(i) = (b(i)− tmp)/U(i, i)

end for

Algorithm 3.4 (Back Substitution: Column Version) Suppose that U ∈ Rn×n is
nonsingular upper triangular and b ∈ Rn. This algorithm computes the solution of Ux = b
using row-oriented procedure.

for i = 1, . . . , n do
x(i) = b(i)

end for
for j = n, . . . , 1 do
x(j) = x(j)/U(j, j)
for i = 1 : (j − 1) do
x(i) = x(i)− U(i, j) ∗ x(j)

end for
end for

Once again the memory storage for b can be overwritten by x. Back substitution
requires n2 +O(n) flops.
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3.2 Gaussian Elimination and LU Factorization

In dealing with systems of linear equations there is a concept of equivalence that is
important. If two systems have precisely the same solutions, they are equivalent systems.
Thus, to solve a system of linear equations, we can instead solve any equivalent system,
no solutions are lost and no new ones appear.

As we have just seen in the previous section that triangular systems are “easy” to solve.
The motivation at the heart of Gaussian elimination is to convert a given system Ax = b
to an equivalent triangular system. The conversion is achieved by taking appropriate
linear combination of the equations. In this section we will give a complete specification
of this central procedure and derive an algorithm that computes a matrix factorization
called LU factorization such that A = LU , where L is unit lower triangular and U is
upper triangular. The solution to the original problem Ax = LUx = b is then found by
a two-step triangular solve process:

Ly = b, Ux = y. (3.9)

3.2.1 Gaussian Elimination

Given a system of linear equations to be solved, it can be transformed into a simpler
equivalent system by the following three types of elementary operations:

1. Interchange two equations in the system (or equivalently, interchange two rows in
A):

Ei ↔ Ej;

2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero
constant):

Ei ← λEi.

3. Add to an equation a multiple of some other equation (add to a row a multiple of
some other row):

Ei ← Ei + λEj.

Here Ei denotes the i-th equation in the system. If one system of equations is obtained
from another by a finite sequence of elementary operations, then the two systems can be
proved to be equivalent.

The first step in the Gaussian elimination process consists of performing, for each
i = 2, 3, . . . , n, the elementary operations

Ei ← (Ei −mi,1E1), where mi,1 =
ai1

a11

. (3.10)

These operations transform the system into one in which all the entries in the first column
below the diagonal are zero. Then the process is repeated on the resulting equations
E2, . . . , En, and so on.

The elementary operation can be carried out with matrix multiplications. An elemen-
tary matrix is defined to be an n×n matrix obtained by applying an elementary operation
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to the n × n identity matrix. Each elementary operation on A can be accomplished by
multiplying A on the left by an elementary matrix.

To describe formally the process of Gaussian elimination, we interpret it as a succes-
sion of n− 1 major steps resulting in a sequence of matrices as follows:

A = A(1) → A(2) → · · · → A(n),

where A(n) is upper triangular. At the conclusion of step k − 1, the matrix A(k) is
constructed from A(k−1) by elementary operations similar to (3.10), and has the following
form:

A(k) =



a
(k)
11 · · · a

(k)
1,k−1 a

(k)
1k · · · a

(k)
1j · · · a

(k)
1n

...
. . .

...
...

...
...

0 · · · a
(k)
k−1,k−1 a

(k)
k−1,k · · · a

(k)
k−1,j · · · a

(k)
k−1,n

0 · · · 0 a
(k)
kk · · · a

(k)
kj · · · a

(k)
kn

...
...

...
...

...

0 · · · 0 a
(k)
ik · · · a

(k)
ij · · · a

(k)
in

...
...

...
...

...

0 · · · 0 a
(k)
nk · · · a

(k)
nj · · · a

(k)
nn


In the k-th step, a

(k)
kk is used as a pivot element and the k-th row as pivot row, and elemen-

tary operations are applied to rows k+1 through n so that zeros are produced in column
k below the diagonal. That is, A(k+1) is obtained from A(k) in which a

(k+1)
k+1,k, · · · , a

(k+1)
nk

are zero, row k+1 through n are modified but row 1 through row k are unchanged when
compared to A(k). More precisely, the entries of A(k+1) are produced by the formula

a
(k+1)
ij =


a

(k)
ij , for i = 1, . . . , k, and j = 1, . . . , n;

0, for i = k + 1, . . . , n, and j = 1, . . . , k;

a
(k)
ij −

a
(k)
ik

a
(k)
kk

∗ a(k)
kj , for i = k + 1, . . . , n, and j = k + 1, . . . , n.

(3.11)

If we collect all the multipliers

`ik =


0, if i < k;

1, if i = k;
a
(k)
ik

a
(k)
kk

, if i > k,

(3.12)

and let L = [`ik] and U = A(n), then L is unit lower triangular, U is upper triangular,
and later we shall show that matrix A has the factorization A = LU .

An algorithm to carry out the basic Gaussian elimination process just described is as
follows.

Algorithm 3.5 (Gaussian elimination) Given A ∈ Rn×n and b ∈ Rn, this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and mod-
ify the entries of b accordingly.
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for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do
t = A(i, k)/A(k, k)
A(i, k) = 0
b(i) = b(i)− t ∗ b(k)
for j = k + 1, . . . , n do
A(i, j) = A(i, j)− t ∗ A(k, j)

end for
end for

end for

In the algorithm, it is assumed that all the pivot elements in the elimination pro-
cess are nonzero. However, it is clear from (3.11) and (3.12) the algorithm will break
down if a zero A(k, k) is encountered. A check for nonzero pivot should be included in
practical implementation. After the reduction, A becomes upper triangular and the back
substitution can be used to obtain the solution vector x.

Example 3.1 This example illustrates the application of Gaussian elimination in solving
system of linear equations.

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1

x2

x3

x4

 =


12
34
27
−38


Sol:

1st step Use 6 as pivot element, the first row as pivot row, and multipliers 2, 1
2
,−1 are

produced to reduce the system to
6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14



x1

x2

x3

x4

 =


12
10
21
−26


2nd step Use −4 as pivot element, the second row as pivot row, and multipliers 3,−1

2

are computed to reduce the system to
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13



x1

x2

x3

x4

 =


12
10
−9
−21


3rd step Use 2 as pivot element, the third row as pivot row, and multipliers 2 is found

to reduce the system to
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



x1

x2

x3

x4

 =


12
10
−9
−3


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Now the solution can be obtained by solving this triangular system with back substitution.
Note that if we collect all the multipliers and let

L =


1 0 0 0
2 1 0 0
1
2

3 1 0
−1 −1

2
2 1

 and U =


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

 ,
then one can verify that LU = A.

3.2.2 Gaussian Transformation and LU Factorization

To obtain a matrix factorization description of Gaussian elimination, it is easier to use
a matrix description of the zeroing process. For a given vector v ∈ Rn with vk 6= 0 for
some 1 ≤ k ≤ n, let

`ik =
vi

vk

, i = k + 1, . . . , n, lk =



0
...
0

`k+1,k
...
`n,k


,

and

Mk = I − lkeT
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · −`k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · −`n,k 0 · · · 1


. (3.13)

Then one can verify that

Mkv =



v1
...
vk

0
...
0


.

That is, Mk zeros vk+1, . . . , vn and keeps v1, . . . , vk unchanged. This unit lower triangular
matrix Mk is called a Gaussian transformation, the vector lk a Gauss vector, and the
entries `k+1, . . . , `n the multipliers. Furthermore, one can verify that

M−1
k = (I − lkeT

k )−1 = I + lke
T
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · `k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · `n,k 0 · · · 1


. (3.14)
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Given a nonsingular matrix A ∈ Rn×n, Gauss transformations M1,M2, . . . ,Mn−1 can
usually be found such that Mn−1 · · ·M2M1A ≡ U is upper triangular. To see this, we

denote A(1) = [a
(1)
ij ] = A. If a

(1)
11 6= 0, then the Gauss transformation

M1 = I − l1eT
1 , where l1 =


0
`21
...
`n1

 , `i1 =
a

(1)
i1

a
(1)
11

, i = 2, . . . , n,

can be formed such that

A(2) = M1A
(1) =


a

(2)
11 a

(2)
12 · · · a

(2)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn

 ,
where

a
(2)
ij =

{
a

(1)
ij , for i = 1 and j = 1, . . . , n;

a
(1)
ij − `i1 ∗ a

(1)
1j , for i = 2, . . . , n and j = 2, . . . , n.

The procedure can proceed to zero the entries in the second column below the diagonal,
and so on. In general, at the k-th step, we are confronted with a matrix

A(k) = Mk−1 · · ·M2M1A
(1)

=



a
(k)
11 a

(k)
12 · · · a

(k)
1,k−1 a

(k)
1k · · · a

(k)
1n

0 a
(k)
22 · · · a

(k)
2,k−1 a

(k)
2k · · · a

(k)
2n

...
...

. . .
...

...
...

0 0 · · · a
(k)
k−1,k−1 a

(k)
k−1,k · · · a

(k)
k−1,n

0 0 · · · 0 a
(k)
kk · · · a

(k)
kn

...
...

...
...

. . .
...

0 0 · · · 0 a
(k)
kn · · · a

(k)
nn



=



a
(1)
11 a

(1)
12 · · · a

(1)
1,k−1 a

(1)
1k · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2,k−1 a

(2)
2k · · · a

(2)
2n

...
...

. . .
...

...
...

0 0 · · · a
(k)
k−1,k−1 a

(k)
k−1,k · · · a

(k)
k−1,n

0 0 · · · 0 a
(k)
kk · · · a

(k)
kn

...
...

...
...

. . .
...

0 0 · · · 0 a
(k)
kn · · · a

(k)
nn


If the pivot a

(k)
kk 6= 0, then the multipliers

`ik =
a

(k)
ik

a
(k)
kk

, i = k + 1, . . . , n, (3.15)
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can be computed and the Gaussian transformation

Mk = I − lkeT
k , where lk =



0
...
0

`k+1,k
...
`nk


,

can be applied to the left of A(k) to obtain

A(k+1) = MkA
(k) =



a
(k+1)
11 a

(k+1)
12 · · · a

(k+1)
1,k−1 a

(k+1)
1k · · · · · · a

(k+1)
1n

0 a
(k+1)
22 · · · a

(k+1)
2,k−1 a

(k+1)
2k · · · · · · a

(k+1)
2n

...
...

. . .
...

... · · · ...

0 0 · · · a
(k+1)
k−1,k−1 a

(k+1)
k−1,k · · · · · · a

(k+1)
k−1,n

0 0 · · · 0 a
(k+1)
kk · · · · · · a

(k+1)
kn

...
...

... 0
. . .

...
...

...
...

...
. . .

...

0 0 · · · 0 0 · · · · · · a
(k+1)
nn


,

in which

a
(k+1)
ij =


a

(k)
ij , for i = 1, . . . , k, j = 1, . . . , n;

0, for i = k + 1, . . . , n, j = k;

a
(k)
ij − `ika

(k)
kj , for i = k + 1, . . . , n, j = k + 1, . . . , n.

(3.16)

Upon the completion,
U ≡ A(n) = Mn−1 · · ·M2M1A

is upper triangular. Hence

A = M−1
1 M−1

2 · · ·M−1
n−1U ≡ LU, (3.17)

where

L ≡M−1
1 M−1

2 · · ·M−1
n−1 = (I − l1eT

1 )−1(I − l2eT
2 )−1 · · · (I − ln−1e

T
n−1)

−1

= (I + l1e
T
1 )(I + l2e

T
2 ) · · · (I + ln−1e

T
n−1)

= I + l1e
T
1 + l2e

T
2 + · · ·+ ln−1e

T
n−1

=


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . .
...

`n1 `n2 `n3 · · · 1

 (3.18)

is unit lower triangular. This matrix factorization is called the LU-factorization of A.
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Equations (3.15) and (3.16) provide formulations for computing the LU-factorization.
Alternatively, the algorithm can be derived directly by componentwise comparison in
A = LU . Suppose that the factors L and U are written as

L =


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . .
...

`n1 `n2 `n3 · · · 1

 , U =


u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n
...

...
...

. . .
...

0 0 0 · · · unn

 .

By comparing the components in A = LU as
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann



=


u11 u12 u13 · · · u1n

`21u11 `21u12 + u22 `21u13 + `22u23 · · · l21u1n + u2n

`31u11 `31u12 + `32u22 `31u13 + `32u23 + u33 · · · ...
...

...
...

. . .
...

`n1u11 `n1u12 + `n2u2n `n1u13 + `n2u23 + `n3u33 · · · `n1u1n + · · ·+ unn

 ,

we see that u11 = a11, u12 = a12, . . . , u1n = a1n. Once u11 is determined, `21 = a21/u11, `31 =
a31/u11, . . . , `n1 = an1/u11 can be computed. Next, a22 = `21u12 + u22. Since `21 and
u12 are known at this stage, u22 = a22 − `21u12 is computed. Once u22 is determined,
u22, . . . , u2n, and `22, . . . , `n2 can be obtained. Then we proceed to compute the third row
of U and the third column of L, and so on.

The principal of the procedure follows from the identity

aij =

min(i,j)∑
p=1

`ipupj. (3.19)

Suppose that after k − 1 steps we have computed the first k − 1 columns of L and the
first k − 1 rows of U . At the k-th step, we can first determine ukk since

akk =
k∑

p=1

`kpupk =
k−1∑
p=1

`kpupk + ukk,

and `kp, upk, p = 1, 2, . . . , k − 1, are known. The computation is done by performing

ukk = akk −
k−1∑
p=1

`kpupk. (3.20)
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Once ukk is determined and ukk 6= 0, we can compute the k-th column of L and the k-th
row of U . By using the identities

aik =
k−1∑
p=1

lipupk + likukk, i = k + 1, . . . , n,

and

akj =
k−1∑
p=1

lkpupj + ukj, j = k + 1, . . . , n,

we can compute

`ik =

(
aik −

k−1∑
p=1

`ipupk

)/
ukk, i = k + 1, . . . , n, (3.21)

and

ukj = akj −
k−1∑
p=1

`kpupj, j = k + 1, . . . , n. (3.22)

Formulations (3.20), (3.21), and (3.22) together give the Doolittle LU-factorization
algorithm.

Algorithm 3.6 (Doolittle LU-Factorization) Given a nonsingular square matrix A ∈
Rn×n, this algorithm computes a unit lower triangular matrix L and an upper triangular
matrix U such that A = LU .

Initialize L = 0, U = 0
for k = 1, . . . , n do
L(k, k) = 1
t = 0
for p = 1, . . . , k − 1 do
t = t+ L(k, p) ∗ U(p.k)

end for
U(k, k) = A(k, k)− t
for i = k + 1, . . . , n do
t = 0
for p = 1, . . . , k − 1 do
t = t+ L(i, p) ∗ U(p, k)

end for
L(i, k) = (A(i, k)− t)/U(k, k)

end for
for j = k + 1, . . . , n do
t = 0
for p = 1, . . . , k − 1 do
t = t+ L(k, p) ∗ U(p, j)

end for
U(k, j) = A(k, j)− t

end for
end for
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For practical implementation, the storage of A can be overwritten by the entries of
L and U . The upper triangular components of U overwrite upper triangular part of A,
and the multipliers (the strictly lower triangular part of L) can be stored in the strictly
lower triangualr part of A. The diagonal part of L needs not to be stored since they are
all 1. An outer-product version of the LU-factorization is as follows.

Algorithm 3.7 (LU Factorization) Given a nonsingular square matrix A ∈ Rn×n,
this algorithm computes a unit lower triangular matrix L and an upper triangular matrix
U such that A = LU . The matrix A is overwritten by L and U .

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do
A(i, k) = A(i, k)/A(k, k)
for j = k + 1, . . . , n do
A(i, j) = A(i, j)− A(i, k) ? A(k, j)

end for
end for

end for

This algorithm requires

n−1∑
k=1

n∑
i=k+1

2(n− k) =
2

3
n3 − 1

2
n2 +

1

3
n

flops.
The LU-factorization together with forward substitution and back substitution is a

standard procedure for solving the linear system of equations. This approach requires
2
3
n3 +O(n2) flops. The computation of the factorization dominates the cost.

3.2.3 Existence and Uniqueness of LU Factorization

Definition 3.1 (Leading principal minor) Let A be an n× n matrix. The upper left
k × k submatrix, denoted as

Ak =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

 ,
is called the leading k × k principal submtrix, and the determinant of Ak, det(Ak), is
called the leading principal minor.

Theorem 3.1 If all leading principal minor of A ∈ Rn×n are nonzero, that is, all leading
principal submatrices are nonsingular, then A has an LU-factorization.

Proof: Proof by mathematical induction. When n = 1, A1 = [a11] is nonsingular, then
a11 6= 0. Let L1 = [1] and U1 = [a11]. Then A1 = L1U1. The theorem holds.
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Assume that the leading principal submatrices A1, . . . , Ak are nonsingular and Ak

has an LU-factorization Ak = LkUk, where Lk is unit lower triangular and Uk is upper
triangular. We shall show that there exist an unit lower triangular matrix Lk+1 and an
upper triangular matrix Uk+1 such that Ak+1 = Lk+1Uk+1.

Write

Ak+1 =

[
Ak vk

wT
k ak+1,k+1

]
, where vk =


a1,k+1

a2,k+1
...

ak,k+1

 and wk =


ak+1,1

ak+1,2
...

ak+1,k

 .
Since Ak is nonsingular, both Lk and Uk are nonsingular. Therefore the system Lkyk = vk

has a unique solution yk ∈ Rk, and ztUk = wT
k has a unique solution zk ∈ Rk. Let

Lk+1 =

[
Lk 0
zT

k 1

]
and Uk+1 =

[
Uk yk

0 ak+1,k+1 − zT
k yk

]
.

Then Lk+1 is unit lower triangular, Uk+1 is upper triangular, and

Lk+1Uk+1 =

[
LkUk Lkyk

zT
k Uk zT

k yk + ak+1,k+1 − zT
k yk

]
=

[
Ak vk

wT
k ak+1,k+1

]
= Ak+1.

This proves the theorem.

Theorem 3.2 If A is nonsingular and the LU factorization exists, then the LU factor-
ization is unique and det(A) = u11 · · ·unn.

Proof: Suppose both A = L1U1 and A = L2U2 are LU factorizations. Since A is
nonsingular, L1, U1, L2, U2 are all nonsingular, and

A = L1U1 = L2U2 =⇒ L−1
2 L1 = U2U

−1
1 .

Since L1 and L2 are unit lower triangular which implies L−1
2 L1 is unit lower triangular,

and U1 and U2 are upper triangular which implies U2U
−1
1 is upper triangular, it follows

that L−1
2 L1 = I = U2U

−1
1 . Therefore L1 = L2 and U1 = U2.

3.3 Pivoting

It is clear from the formulations, e.g., (3.20), (3.21), and (3.22), presented in the previous
section that Gaussian elimination may fail or may not give satisfactory results if a zero
or small pivot entry encountered during the procedure. Therefore good algorithms for
solving systems of linear equations must incorporate the interchanging of equations in a
system when the circumstances require it. In this section we shall illustrate some of these
situations and present the most commonly used pivoting strategies.
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3.3.1 The Need for Pivoting

The Gaussian elimination algorithm 3.5 could fail on systems that are in fact easy to
solve. For example, the algorithm would fail at the first step on the input system[

0 1
1 0

] [
x1

x2

]
=

[
1
1

]
since the first pivot element is zero. But if we interchange the rows, the system[

1 0
0 1

] [
x2

x1

]
=

[
1
1

]
becomes trivial to solve.

Another difficulty will arise when a pivot element encountered is a small number
ε different from zero. For example, the simple Gaussian elimination algorithm would
produce relatively large error on the system[

ε 1
1 1

] [
x1

x2

]
=

[
1
2

]
,

where ε < εM . Algorithm 3.5 would compute[
ε 1
0 1− 1

ε

] [
x1

x2

]
=

[
1

2− 1
ε

]
=⇒

[
ε 1
0 −1

ε

] [
x1

x2

]
=

[
1
−1

ε

]
,

since in the computer, if ε is small enough, 1− 1
ε

will be computed to be the same as −1
ε
.

Likewise, 2− 1
ε

will be computed to be the same as −1
ε
. Hence, under these circumstances,

back substitution would produce

x2 =
−1

ε

−1
ε

= 1 and x1 =
1− 1

ε
= 0.

The computed solution is accurate for x2 but is extremely inaccurate for x1 since[
ε 1
1 1

] [
0
1

]
=

[
1
1

]
.

But actually x1 = x2 = 1 would be a much better solution since[
ε 1
1 1

] [
1
1

]
=

[
1 + ε

2

]
≈
[

1
2

]
.

On the other hand, it would produce a much better result if we interchange the rows
since Gaussian elimination would compute[

1 1
ε 1

] [
x2

x1

]
=

[
2
1

]
=⇒

[
1 1
0 1− ε

] [
x2

x1

]
=

[
2

1− 2ε

]
,

and the back substitution will give

x1 =
1− 2ε

1− ε
≈ 1 and x2 = 2− x1 ≈ 2− 1 = 1.

The strategy of interchange rows/columns as described above is called “pivoting”.
And we have seen that pivoting is necessary for some systems.
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3.3.2 Partial Pivoting and Complete Pivoting

As we have observed in the previous subsection that if a
(k)
kk is small in magnitude compared

to a
(k)
ik , i = k + 1, . . . , n, then the multipliers

`ik =
a

(k)
ik

a
(k)
kk

will have magnitude much larger than 1. Roundoff introduced in computing

a
(k+1)
ij = a

(k)
ij − `ik ∗ a

(k)
kj , i = k + 1, . . . , n, j = k + 1, . . . , n,

will be large. Also when performing the back substitution for

xk =

(
b̃k −

n∑
j=k+1

a
(k)
kj

)/
a

(k)
kk ,

where b̃k is the modified bk by algorithm 3.5, any error in the numerator will be dramat-
ically increased when dividing by a small a

(k)
kk .

To ensure that no large entries appear in the computed triangular factors, one can
choose a pivot element to be the largest entry among |a(k)

kk |, . . . , |a
(k)
nk |. Then permute this

row with the k-th row. The multipliers `ik are computed after the permutation.
To explain the pivoting techniques in matrix language, let P1, . . . , Pk−1 be the permu-

tations chosen and M1, . . .Mk−1 denote the Gaussian transformations performed in the
first k − 1 steps. At the k-th step, a permutation matrix Pk is chosen so that

|(PkMk−1 · · ·M1P1A)kk| = max
k≤i≤n

|(Mk−1 · · ·M1P1A)ik| .

This row interchange strategy is called partial pivoting. As a consequence, no multipliers
is greater than one in magnitude, that is, |`ij| ≤ 1 for i = 1, . . . , n, j = 1, . . . , i. Upon
completion, we obtain an upper triangular matrix

U ≡Mn−1Pn−1 · · ·M1P1A. (3.23)

Since any permutation matrix Pk is symmetric and P T
k Pk = P 2

k = I, a manipulation of
(3.23) reveals that

Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1Pn−1 · · ·P1A = U,

therefore,
Pn−1 · · ·P1A = (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)

−1U.

In summary, Gaussian elimination with partial pivoting leads to the LU factorization

PA = LU, (3.24)

where
P = Pn−1 · · ·P1



3.3 Pivoting 53

is a permutation matrix, and

L ≡ (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1

is unit lower triangular.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the
current k-th subcolumn A(k)(k : n, k), another pivoting strategy called complete pivoting
searches for the largest entry in magnitude in the current submatrix A(k)(k : n, k : n) and
permutes to the (k, k) position. That is, at the k-th step two permutation matrices Pk

and Qk are determined so that

∣∣(PkA
(k)Qk)kk

∣∣ = max
k≤i,j≤n

∣∣(A(k))ij

∣∣ .
Gaussian elimination with complete pivoting leads to the LU factorization

PAQ = LU, (3.25)

where P,Q are permutation matrices, L is unit lower triangular, and U is upper triangular.

In practical implementation, no permutation matrix should ever be explicitly formed.
The permutations can be efficiently represented by an integer n-vector. For example, an
integer array p is usually used for partial pivoting to keep the indices of rows such that
p(k) stores the row index which interchanges with row k. In other words, (3.11) becomes

a
(k+1)
p(i),j =


a

(k)
p(i),j, for i = 1, . . . , k, and j = 1, . . . , n;

0, for i = k + 1, . . . , n, and j = k;

a
(k)
p(i),j −

a
(k)
p(i),k

a
(k)
p(k),k

∗ a(k)
p(k),j, for i = k + 1, . . . , n, and j = k + 1, . . . , n.

(3.26)

Two integer arrays will be required to store the permutation information for complete
pivoting.

It should be noted that although there is no floating-point arithmetic involved when a
permutation is applied to a matrix, only row/columns exchanged, it often causes irregular
data movement and significant computational overhead. The LU factorization algorithm
3.7 can be modified to incorporate with partial pivoting as shown in the following. The
one for complete pivoting is similar.

Algorithm 3.8 (LU-factorization with Partial Pivoting) Given a nonsingular square
matrix A ∈ Rn×n, this algorithm finds an appropriate permutation matrix P , and com-
putes a unit lower triangular matrix L and an upper triangular matrix U such that
PA = LU . The matrix A is overwritten by L and U , and the matrix P is not formed.
An integer array p is instead used for storing the row/column indices.
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for i = 1, . . . , n do
p(i) = i % initialize the pivoting vector

end for
for k = 1, . . . , n− 1 do
m = k
for i = k + 1, . . . , n do

if |A(p(m), k)| < |A(p(i), k)| then
m = i

end if
end for
` = p(k)
p(k) = p(m)
p(m) = `
for i = k + 1, . . . , n do
A(p(i), k) = A(p(i), k)/A(p(k), k)
for j = k + 1, . . . , n do
A(p(i), j) = A(p(i), j)− A(p(i), k) ∗ A(p(k), j)

end for
end for

end for

Since the Gaussian elimination with partial pivoting produces the factorization (3.24),
the linear system problem should comply accordingly.

Ax = b =⇒ PAx = Pb =⇒ LUx = Pb.

Hence the permutation needs to be applied to the right-hand-side vetor b, and the forward
substitution should be modified to

Algorithm 3.9 (Permuted Forward Substitution) Given an unit lower triangular
matrix L, a permutation matrix P , and an n-vector b, this algorithm solves the triangular
system Ly = Pb. The matrix L is stored in the strictly lower triangular part of matrix
A, and the premutation matrix P is represented by an integer array p.

y(p(1)) = b(p(1))/A(p(1), 1)
for i = 1, . . . , n do
t = 0
for j = 1, . . . , i− 1 do
t = t+ A(p(i), j) ∗ y(p(j))

end for
y(p(i)) = b(p(i))− t

end for

3.3.3 Scaled Row Pivoting

In the following example, one will see that it is not actually the smallness of the pivot
element that is causing the trouble. Rather, it is the smallness of the pivot element
relative to the other elements in its row. Consider[

1 1
ε

1 1

] [
x1

x2

]
=

[
1
ε

2

]
,
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where ε << εM . The algorithm of Gaussian elimination with or without pivoting would
give [

1 1
ε

0 1− 1
ε

] [
x1

x2

]
=

[
1
ε

2− 1
ε

]
=⇒

[
1 1

ε

0 −1
ε

] [
x1

x2

]
=

[
1
ε

−1
ε

]
,

and the back substitution will result

x2 =
−1
ε
−1
ε

= 1, and x1 =
1

ε
− 1

ε
· x2 = 0.

Again, the solution is accurate for x2 but is extremely inaccurate for x1 since[
1 1

ε

1 1

] [
x1

x2

]
=

[
1 1

ε

1 1

] [
0
1

]
=

[
1
ε

1

]
.

What causes the problem? One observes that the pivot element, 1, is too small relative
to the other entries, 1

ε
, in the pivot row in this example.

Another pivoting strategy called scaled row pivoting is introduced. We begin the
factorization by computing the scale of each row

si = max
1≤j≤n

|aij|, i = 1, . . . , n. (3.27)

These values are stored in an array s in the algorithm. To keep track of the row indices,
we begin by setting the permutation vector, also called pivoting vector, p = [1, 2, . . . , n]T .
In each Gaussian elimination step k, the algorithm scans the numbers

|ap(i),k|
sp(i)

, i = k, . . . , n,

looking for a maximal one. Suppose m is the row index of the maximal ratio, we exchange
indices p(k) and p(m), and use the new ap(k),k as the pivot element and row p(k) as the
pivot row to zero entries ap(k+1),k throught ap(n),k, and modify the lower right submatrix,
that is,

ap(i),j ← ap(i),j −
ap(i),k

ap(k),k

∗ ap(k),j j = k + 1, . . . , n, i = k + 1, . . . , n.

This procedure is repeated for k = 1, . . . , n− 1.
We use the following example to illustrate how the Gaussian elimination with scaled

row pivoting works.

Example 3.2 Consider solving the linear system of equations in Example 3.1 using
Gaussian elimination with scaled row pivoting.

Sol: Initially, we have

A =


6 −2 2 4

12 −8 6 10
3 −13 9 3
−6 4 1 −18

 , p =


1
2
3
4

 , s =


6
12
13
18

 .
Step through the Gaussian elimination with scaled row pivoting we have
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k = 1 : Scan 6
6
, 12

12
, 3

13
, 6

18
, choose row 1 as the pivot row, vector p unchanged.

A =


6 −2 2 4
2 −4 2 2
1
2
−12 8 1

−1 2 3 −14

 , p =


1
2
3
4

 .

k = 2 : Scan 4
12
, 12

13
, 2

18
, choose row 3 as the pivot row.

A =


6 −2 2 4
2 1

3
−2

3
5
3

1
2
−12 8 1

−1 −1
6

13
3
−83

6

 , p =


1
3
2
4

 .

k = 3 : Scan 2/3
12
, 13/3

18
, choose row 4 as the pivot row.

A =


6 −2 2 4
2 1

3
− 2

13
−18

39
1
2
−12 8 1

−1 −1
6

13
3
−83

6

 , p =


1
3
4
2

 .

Note that the entries of A are not actually moved and some positions of A are overwritten
by the multipliers. If we let

P =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


denote the permutation matrix and

L =


1 0 0 0
1
2

1 0 0
−1 −1

6
1 0

2 1
3
− 2

13
1

 , U =


6 −2 2 4
0 −12 8 1
0 0 13

3
−83

6

0 0 0 −18
39

 ,
then one can verify that PA = LU .

Algorithm 3.10 (Gaussian Elimination with Scaled-Row Pivoting) Let A ∈ Rn×n

be a nonsingular matrix. This algorithm performs the Gaussian elimination with scaled
row pivoting to produce the factorization PA = LU . The matrix A is modified and the
multipliers are stored in A. An integer array p is used to store the permutation informa-
tion.
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for i = 1, . . . , n do
p(i) = i
s(i) = max

1≤j≤n
|aij|

end for
for k = 1, . . . , n− 1 do
m = k
for i = k + 1, . . . , n do

if |A(p(m), k)|/s(p(m)) < |A(p(i), k)|/s(p(i)) then
m = i

end if
end for
` = p(k)
p(k) = p(m)
p(m) = `
for i = k + 1, . . . , n do
A(p(i), k) = A(p(i), k)/A(p(k), k)
for j = k + 1, . . . , n do
A(p(i), j) = A(p(i), j)− A(p(i), k) ∗ A(p(k), j)

end for
end for

end for

The number of arithmetic operations in the factorization can be approximately esti-
mated as

n−1∑
k=1

[(n− k) + 2(n− k)(n− k + 1)] = 2
n−1∑
k=1

k2 + 3
n−1∑
k=1

k + (n− 1)

=
2

3
n3 +

1

2
n2 − 1

6
n− 1 ≈ 2

3
n3 +

1

2
n2.

For large n, the term 2
3
n3 is the dominant one.

Notice that the multipliers are being stored in A at the locations where 0’s would
have been created by the elimination process. That is, factors L and U overwrite A. The
original matrix A should be saved in a separate array if it will be need again in later
computation.

Once the factorization has been carried out on A, we apply the forward substitution
algorithm using the final permutation array p and the multipliers that were determined by
the factorization process and were stored in A. Finally we carry out the back substitution
algorithm to solve for x.

Algorithm 3.11 (Updating & Back Substitution) Given b ∈ Rn, an integer array
p, and A ∈ Rn×n, where A is the resulting matrix after Gaussian elimination with scaled
row pivoting, this algorithm solves Ax = b for x.
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for i = 1, . . . , n− 1 do

for j = i+ 1, . . . , n do
b(p(j)) = b(p(j))− A(p(j), i) ∗ b(p(i))

end for
end for
for i = n, n− 1, . . . , 1 do
t = 0
for j = i+ 1, . . . , n do
t = t+ A(p(i), j) ∗ x(j)

end for
x(i) = (b(p(i))− t)/A(p(i), i)

end for

The number of floating-point operations involved in the solution phase is about

n−1∑
i=1

2(n− i) +
n∑

i=1

[2(n− i) + 2] = 2
n−1∑
k=1

k + 2
n∑

k=1

k = 2n2.

In summary, it costs 2
3
n3 +O(n2) flops to solve the linear system of equations Ax = b

using Gaussian elimination with scaled row pivoting. Note that it would take 4
3
n3+O(n2)

just to compute A−1. Be advised that A−1 should not be computed when solving a linear
system Ax = b, but rather x should be solved for directly.

3.4 Some Special Linear Systems

It is a basic tenet of numerical analysis that structure should be exploited whenever solv-
ing a problem. Algorithms for general matrix problems can be streamlined in the presence
of such properties as symmetry, definiteness, and sparsity. This is the central theme of
this section, where our principal aim is to discuss special algorithms for computing special
variants of the LU factorization.

3.4.1 Symmetric Positive Definite System and Cholesky Fac-
torization

An n × n matrix A is positive definite if xTAx > 0, for all x ∈ Rn, x 6= 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called
the Choleseky factorization.

Lemma 3.1 If A ∈ Rn×n is positive definite, then A is nonsingular and aii > 0 for
i = 1, . . . , n.

Proof: Suppose A is singular. Then there exists x ∈ Rn and x 6= 0 such that Ax = 0.
This implies xTAx = 0, which contradicts the fact that A is positive definite. Therefore
A is nonsingular. It is also easy to see that

aii = eT
i Aei > 0,

where ei is the i-th column of the n× n identify matrix.
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Lemma 3.2 If A ∈ Rn×n is positive definite, then all leading principal submatrices of A
are nonsingular.

Proof: For 1 ≤ k ≤ n, let zk = [x1, . . . , xk]
T ∈ Rk and x = [x1, . . . , xk, 0, . . . , 0]T ∈ Rn,

where x1, . . . , xk ∈ R are not all zero. Since A is positive definite,

zT
k Akzk = xTAx > 0,

where Ak is the k × k leading principal submatrix of A. This shows that Ak are also
positive definite, hence Ak are nonsingular.

Theorem 3.3 If A ∈ Rn×n is symmetric positive definite, then there exists a unique
lower triangular matrix G ∈ Rn×n with positive diagonal entries such that A has the
factorization

A = GGT . (3.28)

Proof: From Lemma 3.2, all leading principal submatrices of a positive definite ma-
trix are nonsingular, hence A has the LU factorization A = LU , where L is unit lower
triangular and U is upper triangular. Since A is symmetric,

LU = A = AT = UTLT =⇒ U(LT )−1 = L−1UT .

Note that U(LT )−1 is upper triangular and L−1UT is lower triangular, this forces U(LT )−1

to be a diagonal matrix, say, U(LT )−1 = D. Then U = DLT . Hence

A = LDLT .

Since A is positive definite,

xTAx > 0 =⇒ xTLDLTx = (LTx)TD(LTx) > 0.

This means D is also positive definite, and hence dii > 0. Thus D1/2 is well-defined and
we have

A = LDLT = LD1/2D1/2LT ≡ GGT ,

where G ≡ LD1/2. Since the LU factorization is unique, G is unique.
The factorization (3.28) is referred to as the Cholesky factorization and G is referred

to as the Cholesky factor or Cholesky triangle, when A is both symmetric and positive
definite.

To derive an algorithm for computing the Cholesky factorization (3.28) we assume that
the first k − 1 columns of G have been determined after k − 1 steps. By componentwise
comparison with equation (3.28), one has

akk =
k∑

j=1

g2
kj,

which gives

g2
kk = akk −

k−1∑
j=1

g2
kj. (3.29)
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Moreover,

aik =
k∑

j=1

gij ∗ gkj, i = k + 1, . . . , n,

hence the k-th column of G can be computed by

gik =

(
aik −

k−1∑
j=1

gij ∗ gkj

)/
gkk, i = k + 1, . . . , n. (3.30)

Equations (3.29) and (3.30) lay out the formulations for the Cholesky factorization algo-
rithm.

Algorithm 3.12 (Cholesy Factorization) Given an n×n symmetric positive definite
matrix A, this algorithm computes the Cholesky factorization A = GGT .

Initialize G = 0
for k = 1, . . . , n do

G(k, k) =

√√√√A(k, k)−
k−1∑
j=1

G(k, j) ∗G(k, j)

for i = k + 1, . . . , n do

G(i, k) =

(
A(i, k)−

k−1∑
j=1

G(i, j) ∗G(k, j)

)/
G(k, k)

end for
end for

In addition to n square root operations, there are approximately

n∑
k=1

[2k − 1 + 2k(n− k)] =
1

3
n3 + n2 − 1

3
n

floating-point arithmetic required by the algorithm. In practical implementation, the
lower triangular part of A can be overwritten by the Cholesy factor G.

It is clear from (3.29) that

akk =
k∑

j=1

g2
kj ≥ g2

ki, i = 1, . . . , k.

Hence

|gki| ≤
√
akk, ∀ i = 1, . . . , k. (3.31)

This means that the entries of G are nicely bounded and will not grow large relative to the
diagonals of A. Therefore, pivoting will not be required, and the Cholesky factorization
is a stable numerical algorithm.
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3.4.2 Diagonally Dominant Systems

A matrix A ∈ Rn×n is said to be diagonally dominant if

|aii| >
n∑

j=1,j 6=i

|aij|.

We shall show that Guassian elimination without pivoting can be safely used for this
class of matrices.

Lemma 3.3 If A ∈ Rn×n is diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists x ∈ Rn, x 6= 0 such that Ax = 0. Let
k be the integer index such that

|xk| = max
1≤i≤n

|xi| =⇒ |xi|
|xk|

< 1, ∀ i 6= k.

Since Ax = 0, for the fixed k, we have

n∑
j=1

akjxj = 0 =⇒ akkxk = −
n∑

j=1,j 6=k

akjxj =⇒ |akk||xk| ≤
n∑

j=1,j 6=k

|akj||xj|,

which implies

|akk| ≤
n∑

j=1,j 6=k

|akj|
|xj|
|xk|

<
n∑

j=1,j 6=k

|akj|.

But this contradicts the assumption that A is diagonally dominant. Therefore A must
be nonsingular.

Theorem 3.4 Gaussian elimination without pivoting preserve the diagonal dominance
of a matrix.

Proof: Let A ∈ Rn×n be a diagonally dominant matrix and A(2) = [a
(2)
ij ] is the result

of applying one step of Gaussian elimination to A(1) = A without any pivoting strategy.

After one step of Gaussian elimination, a
(2)
i1 = 0 for i = 2, . . . , n, and the first row is

unchanged. Therefore, the property

a
(2)
11 >

n∑
j=2

|a(2)
1j |

is preserved, and all we need to show is that

a
(2)
ii >

n∑
j=2,j 6=i

|a(2)
ij |, for i = 2, . . . , n.
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Using the Gaussian elimination formula (3.11), we have

|a(2)
ii | =

∣∣∣∣∣a(1)
ii −

a
(1)
i1

a
(1)
11

∗ a(1)
1i

∣∣∣∣∣ =

∣∣∣∣aii −
ai1

a11

∗ a1i

∣∣∣∣
≥ |aii| −

|ai1|
|a11|

∗ |a1i|

= |aii| − |ai1|+ |ai1| −
|ai1|
|a11|

∗ |a1i|

= |aii| − |ai1|+
|ai1|
|a11|

∗ (|a11| − |a1i|)

>

n∑
j=2,j 6=i

|aij|+
|ai1|
|a11|

n∑
j=2,j 6=i

|a1j|

=
n∑

j=2,j 6=i

|aij|+
n∑

j=2,j 6=i

|ai1|
|a11|
|a1j|

≥
n∑

j=2,j 6=i

∣∣∣∣aij −
ai1

a11

a1j

∣∣∣∣
=

n∑
j=2,j 6=i

|a(2)
ij |

Thus A(2) is still diagonally dominant. Since the subsequent steps of Gaussian elimination
mimic the first, except for being applied to submatrices of smaller size, it suffices to
conclude that Gaussian elimination without pivoting preserves the diagonal dominance
of a matrix.

Theorem 3.5 If the Gaussian elimination with scaled row pivoting algorithm is applied
to a diagonally dominant matrix A ∈ Rn×n, then the pivot vector will be p = [1, 2, . . . , n]T .
That is, no permutation is needed.

Proof: By theorem 3.4, it is sufficient to prove that the first pivot row chosen by
Algorithm 3.10 is row one. That is, it is enough to show that

|a11|
s1

>
|ai1|
si

, ∀ i = 2, . . . , n.

Because of the diagonal dominance,

|aii| >
n∑

j=1,j 6=i

|aij| =⇒ |aii| > |aij|, 1 ≤ j ≤ n, j 6= i =⇒ si = max
1≤j≤n

|aij| = |aii|,

for i = 1, . . . , n, hence

|a11|
s1

=
|a11|
|a11|

= 1, and
|ai1|
si

=
|ai1|
|aii|

< 1, ∀ i = 2, . . . n.

Thus the theorem is proved.
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3.4.3 Tridiagonal System

A square matrix A = [aij] is said to be tridiagonal if aij = 0 for all i, j that satisfy
|i− j| > 1, that is, A has the structure

A =


a11 a12

a21 a22 a23

. . . . . . . . .
. . . . . . an−1,n

an,n−1 an,n

 .

In the display, matrix elements not shown are zero’s. The factorization algorithm can
be simplified considerably in the case of tridiagonal matrix if Guassian elimination can
be applied safely without pivoting. This is true, for example, if the matrix is symmetric
positive definite or diagonally dominant. The L and U factors would have the form

L =


1
`21 1

. . . . . .
. . . . . .

`n,n−1 1

 and U =


u11 u12

u22 u23

. . . . . .
. . . un−1,n

unn

 ,

and the entries are computed by the simple algorithm which only costs 3n flops.

Algorithm 3.13 (Tridiagonal LU Factorization) This algorithm computes the LU
factorization for a tridiagonal matrix without using pivoting strategy.

U(1, 1) = A(1, 1)
for i = 2, . . . , n do
U(i− 1, i) = A(i− 1, i)
L(i, i− 1) = A(i, i− 1)/U(i− 1, i− 1)
U(i, i) = A(i, i)− L(i, i− 1) ∗ U(i− 1, i)

end for

For practical implementation, A can be overwritten by the entries of L and U . More-
over, a tridiagonal matrix can be stored in an n× 3 array. Alternatively we can arrange
the notation like this

A =


d1 c1
a1 d2 c2

. . . . . . . . .
. . . . . . cn−1

an−1 dn

 , (3.32)

and use three n-vectors for storage. A tridiagonal linear system arises in many appli-
cations, such as finite difference discretization to second order linear boundary-value
problem and the cubic spline approximations. Such a system can be solved efficiently by
the following algorithm, which costs only 8n flops.
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Algorithm 3.14 (Solving Tridiagonal System) This algorithm solves a tridiagonal
linear sytem Ax = b of the form (3.32) using Gaussian elimination without pivoting.

for i = 2, . . . , n do
t = a(i− 1)/d(i− 1)
d(i) = d(i)− t ∗ c(i− 1)
b(i) = b(i)− t ∗ b(i− 1)

end for
x(n) = b(n)/d(n)
for i = n− 1, . . . , 1 do
x(i) = (b(i)− c(i) ∗ x(i+ 1))/d(i)

end for

If partial pivoting is necessary, then, in addition to the pivoting vector, an extra
storage should be arranged for the entries appear in the second superdiagonal because of
pivoting.

3.4.4 General Banded Systems

In many applications that involve linear systems, the coefficient matrix is banded. For-
mally, we say that A = [aij] has upper bandwidth q if aij = 0 whenever j > i + q and
lower bandwidth p if aij = 0 whenever i > j + p. Substantial economies can be realized
when solving banded systems because the triangular factors in the LU factorization are
also banded.

3.5 Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear
systems Ax = b. If we solve such a system numerically, we obtain not the exact solution
x but an approximate computed solution x̂. The difference

e = x− x̂

is called the error vector which is, however, not known. Instead one can test the accuracy
of x̂ by forming Ax̂ to see whether it is close to b. Thus we have the definition for the
residual vector.

Definition 3.2 Let x̂ be the computed solution to the linear system of equations Ax = b.
Then the vector

r = b− Ax̂ (3.33)

is called the residual vector.

Then we can derive the residual equation

Ae = Ax− Ax̂ = b− Ax̂ = r (3.34)

between the error vector and the residual vector.
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Notice that x̂ is the exact solution of the linear system

Ax̂ = b̂,

which has a perturbed right-hand side

b̂ = b− r.

Then

‖x− x̂‖ = ‖A−1b− A−1b̂‖ = ‖A−1(b− b̂)‖

≤ ‖A−1‖‖b− b̂‖ = ‖A−1‖‖b‖‖b− b̂‖
‖b‖

= ‖A−1‖‖Ax‖‖b− b̂‖
‖b‖

≤ ‖A−1‖‖A‖‖x‖‖b− b̂‖
‖b‖

Therefore
‖x− x̂‖
‖x‖

≤ κ(A)
‖b− b̂‖
‖b‖

= κ(A)
‖r‖
‖b‖

, (3.35)

where
κ(A) = ‖A‖‖A−1‖ (3.36)

is called the condition number of A.
On the other hand, by the residual vector, we have

‖r‖‖x‖ = ‖Ae‖‖A−1b‖ ≤ ‖A‖‖A−1‖‖e‖‖b‖ = κ(A)‖x− x̂‖‖b‖.

Hence
1

κ(A)

‖r‖
‖b‖
≤ ‖x− x̂‖

‖x‖
. (3.37)

Therefore we have established relationships between the relative error in x and b.

Theorem 3.6
1

κ(A)

‖r‖
‖b‖
≤ ‖x− x̂‖

‖x‖
≤ κ(A)

‖r‖
‖b‖

. (3.38)

Next we further analyze the situation when there are both perturbations in the coef-
ficient matrix and the right-hand-side vector.

Lemma 3.4 Suppose that x and x̃ satisfy

Ax = b and (A+4A)x̃ = b+4b,

where A ∈ Rn×n, 4A ∈ Rn×n, 0 6= b ∈ Rn, and 4b ∈ Rn, with

‖4A‖
‖A‖

≤ δ and
‖4b‖
‖b‖

≤ δ.

If κ(A) · δ < 1, then A+4A is nonsingular and

‖x̃‖
‖x‖
≤ 1 + κ(A)δ

1− κ(A)δ
. (3.39)
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Proof: Since ‖A−14A‖ ≤ ‖A−1‖‖4A‖ ≤ δ‖A−1‖‖A‖ = δκ(A) < 1, it follows from
Theorem 1.16 that A+4A is nonsingular. Now (A+4A)x̃ = b+4b,

(I + A−14A)x̃ = A−1b+ A−14b = x+ A−14b,

and so by taking norms and using Theorem 1.15 we find

‖x̃‖ ≤ ‖(I + A−14A)−1‖
(
‖x‖+ ‖A−1‖‖4b‖

)
≤ ‖(I + A−14A)−1‖

(
‖x‖+ δ‖A−1‖‖b‖

)
≤ 1

1− ‖A−14A‖
(
‖x‖+ δ‖A−1‖‖b‖

)
≤ 1

1− δκ(A)

(
‖x‖+ δ‖A−1‖‖b‖

)
=

1

1− δκ(A)

(
‖x‖+ δ‖A−1‖‖Ax‖

)
≤ 1

1− δκ(A)

(
‖x‖+ δ‖A−1‖‖A‖‖x‖

)
=

1

1− δκ(A)
(‖x‖+ δκ(A)‖x‖)

=
1

1− δκ(A)
(1 + δκ(A)) ‖x‖.

Therefore
‖x̃‖
‖x‖
≤ 1 + δκ(A)

1− δκ(A)
.

Theorem 3.7 If the conditions of Lemma 3.4 hold then

‖x− x̃‖
‖x‖

≤ 2δ

1− κ(A)δ
κ(A) (3.40)

Proof: Since x̃ satisfies (A+4A)x̃ = b+4b, Ax̃ = b+4b−4Ax̃. Then we have

Ax̃− Ax = 4b+4Ax̃

and
x̃− x = A−1 (4b+4Ax̃) .

Hence

‖x̃− x‖ ≤ ‖A−1‖ (‖4b‖+ ‖4A‖‖x̃‖)
≤ ‖A−1‖ (δ‖b‖+ δ‖A‖‖x̃‖)
= δ‖A−1‖ (‖Ax‖+ ‖A‖‖x̃‖)
≤ δ‖A‖‖A−1‖ (‖x‖+ ‖x̃‖) ,

which gives

‖x̃− x‖
‖x‖

≤ δκ(A)

(
1 +
‖x̃‖
‖x‖

)
≤ δκ(A)

(
1 +

1 + κ(A)δ

1− κ(A)δ

)
=

2δκ(A)

1− δκ(A)
.



Chapter 4

Iterative Methods for Solving
Systems of Linear Equations

In this chapter we present some iterative methods for solving a linear system of equations
Ax = b.

4.1 Classic Iterative Methods

4.1.1 Basic Concept

First of all we give an example to illustrate the process of iterative methods for solving
systems of linear equations.

Consider solving [
3 2
1 4

] [
x1

x2

]
=

[
5
5

]
.

This system has the exact solution x1 = x2 = 1. Equivalently we can write the system as{
3x1 + 2x2 = 5

x1 + 4x2 = 5

This implies that {
x1 = 1

3
(5− 2x2)

x2 = 1
4
(5− x1)

A naieve idea is to solve the system by{
x

(k)
1 = 1

3
(5− 2x

(k−1)
2 )

x
(k)
2 = 1

4
(5− x(k−1)

1 )

that is, to use the iterative formulation[
x

(k)
1

x
(k)
2

]
=

[
1
3

0
0 1

4

]([
5
5

]
−
[

0 2
1 0

][
x

(k−1)
1

x
(k−1)
2

])
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If we choose the initial guess x
(0)
1 = x

(0)
2 = 0, we would otain[

x
(1)
1

x
(1)
2

]
=

[
1
3

0
0 1

4

]([
5
5

]
−
[

0 2
1 0

] [
0
0

])
=

[
1.6667
1.2500

]
[
x

(2)
1

x
(2)
2

]
=

[
1
3

0
0 1

4

]([
5
5

]
−
[

0 2
1 0

] [
1.6667
1.2500

])
=

[
0.8333
0.8333

]
By repeating the process, we have the following table

k 3 4 5 6 7

x
(k)
1 1.1111 0.9722 1.0185 0.9954 1.0031

x
(k)
2 1.0417 0.9722 1.0000 0.9954 1.0012

From this example, we observe that the basic idea is to split the coefficient matrix A
into

A = M − (M − A), (4.1)

for some matrix M , which is called the splitting matrix. Here we assume that A and M
are both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M − A)x+ b.

This suggests an iterative process

x(k) = (I −M−1A)x(k−1) +M−1b ≡ Tx(k−1) + c, (4.2)

where T is usually called the iteration matrix. The initial vector x(0) can be arbitrary or
be chosen according to certain conditions.

Two criteria for choosing the splitting matrix M are

1. x(k) is easily computed. More precisely, the system Mx(k) = y is easy to solve;

2. the sequence {x(k)} converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose M so that M−1 approximate
A−1,

In the following subsections, we will introduce some of the mostly commonly used
classic iterative methods.

4.1.2 Richard’s Method

When we choose M = I such that A = I − (I − A), we obtain the iteration procedure

x(k) = (I − A)x(k−1) + b = x(k−1) − Ax(k−1) + b ≡ x(k−1) + r(k−1), (4.3)

This algorithm is called the Richard’s method.
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Algorithm 4.1 (Richard’s Method)
for k = 1, 2, . . . do

for i = 1, 2, . . . , n do

r
(k−1)
i = bi −

n∑
j=1

aijx
(k−1)
j

x
(k)
i = x

(k−1)
i + r

(k−1)
i

end for
end for

Two n-vectors are required to implement this algorithm.

4.1.3 Jacobi Method

If we decompose the coefficient matrix A as

A = L+D + U, (4.4)

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly
upper triangular part, of A, and choose M = D, then we derive the iterative formulation
for Jacobi method:

x(k) = −D−1(L+ U)x(k−1) +D−1b. (4.5)

With this method, the iteration matrix T = −D−1(L+U) and c = D−1b. Each component

x
(k)
i can be computed by

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

)/
aii. (4.6)

Algorithm 4.2 (Jacobi Method)
for k = 1, 2, . . . do

for i = 1, 2, . . . , n do

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

)/
aii

end for
end for

Two n-vectors are required to implement this algorithm. A big advantage of Jacobi
method is that x

(k)
i , i = 1, . . . , n, can be computed in parallel at each iteration k.

Another important observation is that in Jacobi method, only the components of
x(k−1) are used to compute x(k). When computing x

(k)
i for i > 1, x

(k)
1 , . . . , x

(k)
i−1 have already

been computed and are likely to be better approximations to the exact x1, . . . , xi−1 than

x
(k−1)
1 , . . . , x

(k−1)
i−1 . It seems reasonable to compute x

(k)
i using these most recently computed

values. This improvement induce the Gauss-Seidel method which is to be discussed in
the next subsection.
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4.1.4 Gauss-Seidel Method

The Gauss-Seidel method sets M = D + L and defines the iteration as

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b. (4.7)

That is, Gauss-Seidel method uses T = −(D + L)−1U as the iteration matrix. The
formulation above can be rewritten as

x(k) = −D−1
(
Lx(k) + Ux(k−1) − b

)
. (4.8)

Hence each component x
(k)
i can be computed by

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

)/
aii. (4.9)

Algorithm 4.3 (Gauss-Seidel Method)
for k = 1, 2, . . . do

for i = 1, 2, . . . , n do

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

)/
aii

end for
end for

At each iteration, since x
(k)
i can not be computed until x

(k)
1 , . . . , x

(k)
i−1 are available,

Gauss-Seidel method is not a parallel algorithm in nature. Moreover, only one n-vector
is required for implementation in theory, but two are usually used in practice.

4.1.5 Successive Over Relaxation (SOR) Method

The successive over relaxation (SOR) method choose M = ω−1(D+ωL), where 0 < ω < 2
is called the relaxation parameter, and defines the iteration

(D + ωL)x(k) = [(1− ω)D − ωU ]x(k−1) + ωb. (4.10)

Hence the iteration matrix T = (D + ωL)−1((1− ω)D − ωU). Each component x
(k)
i can

be computed by the formulation

x
(k)
i = ω

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

)/
aii + (1− ω)x

(k−1)
i . (4.11)

The question of choosing a good relaxation parameter ω is a very complex topic.
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4.1.6 Symmetric Successive Over Relaxation (SSOR) Method

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting
matrix M = 1

ω(2−ω)
(D + ωL)D−1(D + ωU) and iterates with the iteration matrix

T = (D + ωU)−1 ((1− ω)D − ωL) (D + ωL)−1 ((1− ω)D − ωU) . (4.12)

The idea is in fact to implement the SOR formulation twice, one forward and one back-
ward, at each iteration. That is, SSOR method defines

(D + ωL)x(k− 1
2
) = ((1− ω)D − ωU)x(k−1) + ωb (4.13)

(D + ωU)x(k) = ((1− ω)D − ωL)x(k− 1
2
) + ωb (4.14)

Each component x
(k)
i is obtained by first computing

x
(k− 1

2
)

i = ω

(
bi −

i−1∑
j=1

aijx
(k− 1

2
)

j −
n∑

j=i+1

aijx
(k−1)
j

)/
aii + (1− ω)x

(k)
i (4.15)

followed by

x
(k)
i = ω

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k− 1

2
)

j

)/
aii + (1− ω)x

(k− 1
2
)

i . (4.16)

4.2 Convergence Analysis

Definition 4.1 (Eigenvalue) Suppose A is a square matrix. The number λ is called an
eigenvalue of A if there exists a nonzero vector x such that Ax = λx. And x is called the
corresponding eigenvector of A.

Definition 4.2 The polynomial defined by

p(λ) = det(λI − A)

is called the characteristic polynomial of A.

Theorem 4.1 λ is an eigenvalue of A if and only if λ is a root of the characteristic
polynomial of A, that is, p(λ) = 0.

Definition 4.3 (Spectrum and Spectral Radius) The set of all eigenvalues of a ma-
trix A is called the spectrum of A and is denoted by λ(A). The spectral radius of A is

ρ(λ) = max{|λ||λ ∈ λ(A)}. (4.17)

Lemma 4.1 If A ∈ Rn×n, then

1. ‖A‖2 =
√
ρ(ATA);

2. ρ(A) ≤ ‖A‖ for any subordinate matrix norm.
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Proof: Proof for the second part. Suppose λ is an eigenvalue of A and x 6= 0 is a
corresponding eigenvector such that Ax = λx and ‖x‖ = 1. Then

|λ| = |λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,

that is, |λ| ≤ ‖A‖. Since λ is arbitrary, this implies that ρ(A) = max |λ| ≤ ‖A‖.

Theorem 4.2 For any A and any ε > 0, there exists a subordinate norm such that

ρ(A) < ‖A‖ < ρ(A) + ε. (4.18)

Lemma 4.2 If ρ(A) < 1, then (I−A)−1 exists and (I−A)−1 =
∞∑
i=0

Ai = I+A+A2+· · · .

Proof: Suppose that λ is an eigenvalue of A, then 1−λ is an eigenvalue of I−A. Since
|λ| ≤ ρ(A) < 1, this implies 1 − λ 6= 0. Hence 0 is not an eigenvalue of I − A, which
means (I − A) is nonsingular.

Next we show that (I − A)−1 = I + A+ A2 + · · · . Since

(I − A)

(
m∑

i=0

Ai

)
= I − Am+1,

and ρ(A) < 1 implies ‖Am‖ → 0 as m→∞, we have

(I − A)

(
lim

m→∞

m∑
i=0

Ai

)
= I.

This proves (I − A)−1 =
∞∑

k=1

Ak.

Lemma 4.3 Suppose that A ∈ Rn×n and ‖ · ‖ is a subordinate matrix norm. If ‖A‖ < 1,
then I − A is nonsingular and

(I − A)−1 =
∞∑

k=0

Ak, (4.19)

with

‖(I − A)−1‖ ≤ 1

1− ‖A‖
. (4.20)

Proof: Suppose I − A is singular. Then there exist x ∈ Rn, x 6= 0 (so ‖x‖ 6= 0) such
that (I − A)x = 0. Thus x = Ax and ‖x‖ = ‖Ax‖ ≤ ‖A‖‖x‖, which gives ‖A‖ > 1.
However, this contradicts to the assumption that ‖A‖ < 1. Hence I − A is nonsingular.

Next, one can verify that

(I − A)

(
m∑

k=0

Ak

)
= I − Am+1.
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Since ‖A‖ < 1, lim
m→∞

Am = 0, hence

(I − A)

(
∞∑

k=0

Ak

)
= (I − A)

(
lim

m→∞

m∑
k=0

Ak

)
= I − lim

m→∞
Am+1 = I.

This shows that (I − A)−1 =
∞∑

k=0

Ak. Finally, since ‖A‖ < 1,

‖(I − A)−1‖ =

∥∥∥∥∥
∞∑

k=0

Ak

∥∥∥∥∥ ≤
∞∑

k=0

‖Ak‖ ≤
∞∑

k=0

‖A‖k =
1

1− ‖A‖
.

Theorem 4.3 The following statements are equivalent.

1. A is a convergent matrix, i.e., Ak →∞ as k →∞;

2. lim
k→∞
‖Ak‖ = 0 for some subordinate matrix norm;

3. lim
k→∞
‖Ak‖ = 0 for all subordinate matrix norm;

4. ρ(A) < 1;

5. lim
k→∞

Akx = 0 for any x.

Theorem 4.4 For any x(0) ∈ Rn, the sequence produced by

x(k) = Tx(k−1) + c, k = 1, 2, . . . , (4.21)

converges to the unique solution of x = Tx+ c if and only if

ρ(T ) < 1. (4.22)

Proof: Suppose ρ(T ) < 1. The sequence of vectors x(k) produced by the iterative
formulation are

x(1) = Tx(0) + c

x(2) = Tx(1) + c = T 2x(0) + (T + I)c

x(3) = Tx(2) + c = T 3x(0) + (T 2 + T + I)c
...

In general
x(k) = T kx(0) + (T k−1 + T k−2 + · · ·T + I)c.

Since ρ(T ) < 1, lim∞
k=0 T

kx(0) = 0 for any x(0) ∈ Rn. Then

x(k) → (T k−1 + T k−2 + · · ·T + I)c, as k →∞.
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By Lemma
x(k) → (I − T )−1c as k →∞.

Conversely, suppose that the sequence of vectors x(k) converges to x = (I − T )−1c.
Since

x− x(k) = Tx+ c− Tx(k−1) − c = T (x− x(k−1)) = T 2(x− x(k−2)) = · · · = T k(x− x(0)).

Let z = x− x(0). Then
lim
k→∞

T kz lim
k→∞

(x− x(k)) = 0.

It follows from theorem ρ(T ) < 1.

Corollary 4.1 If ‖T‖ < 1 for some subordinate matrix norm, then the sequence produced
by

x(k) = Tx(k−1) + c

converges to the solution of Ax = b for any initial vector x(0).

Proof: Since ρ(T ) < ‖T‖ for any subordinate matrix norm, the result follows immedi-
ately from the previous theorem.

Theorem 4.5 If δ = ‖T‖ < 1, then

‖x(k) − x‖ ≤ δ

1− δ
‖x(k) − x(k−1)‖. (4.23)

Proof: Since x(k) − x = T (x(k−1) − x),

‖x(k)−x‖ ≤ ‖T‖‖x(k−1)−x‖ = δ‖x(k−1)−x(k) +x(k)−x‖ ≤ δ‖x(k−1)−x(k)‖+δ‖x(k)−x‖,

and 1− δ > 0, we obtain

‖x(k) − x‖ ≤ δ

1− δ
‖x(k) − x(k−1)‖.

This theorem implies that we can stop the iteration if ‖x(k) − x(k−1) is less than a
small tolerance.

Theorem 4.6 If ‖T‖ < 1, then the sequence x(k) converges to x for any initial x(0) and

1. ‖x− x(k)‖ ≤ ‖T‖k‖x− x(0)‖

2. ‖x− x(k)‖ ≤ ‖T‖k

1−‖T‖‖x
(1) − x(0)‖.

Proof: Since x = Tx+ c and x(k) = Tx(k−1) + c,

x− x(k) = Tx+ c− Tx(k−1) − c
= T (x− x(k−1))

= T 2(x− x(k−2)) = · · · · · · = T k(x− x(0)).
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The first statement can then be derived

‖x− x(k)‖ = ‖T k(x− x(0))‖ ≤ ‖T‖k‖x− x(0)‖.

For the second result, we first show that ‖x(n)−x(n−1)‖ ≤ ‖T‖n−1‖x(1)−x(0)‖ for any
n ≥ 1. Since

x(n) − x(n−1) = Tx(n−1) + c− Tx(n−2) − c
= T (x(n−1) − x(n−2))

= T 2(x(n−2) − x(n−3)) = · · · · · · = T n−1(x(1) − x(0)),

‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖.

Let m ≥ k,

x(m) − x(k) =
(
x(m) − x(m−1)

)
+
(
x(m−1) − x(m−2)

)
+ · · ·+

(
x(k+1) − x(k)

)
= Tm−1

(
x(1) − x(0)

)
+ Tm−2

(
x(1) − x(0)

)
+ · · ·+ T k

(
x(1) − x(0)

)
=

(
Tm−1 + Tm−2 + · · ·T k

) (
x(1) − x(0)

)
,

hence

‖x(m) − x(k)‖ ≤
(
‖T‖m−1 + ‖T‖m−2 + · · ·+ ‖T‖k

)
‖x(1) − x(0)‖

= ‖T‖k
(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
‖x(1) − x(0)‖.

Since limm→∞ x
(m) = x,

‖x− x(k)‖ = lim
m→∞

‖x(m) − x(k)‖

≤ lim
m→∞

‖T‖k
(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
‖x(1) − x(0)‖

= ‖T‖k‖x(1) − x(0)‖ lim
m→∞

(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
= ‖T‖k 1

1− ‖T‖
‖x(1) − x(0)‖.

This proves the second result.

Theorem 4.7 If A is strictly diagonal domainant, then both the Jacobi and Gauss-Seidel
methods converges for any initial vector x(0).

Proof: By assumption, A is strictly diagonal dominant, hence aii 6= 0 (otherwise A is
singular) and

|aii| >
n∑

j=1,j 6=i

|aij|, i = 1, 2, . . . , n.

For Jacobi method, the iteration matrix TJ = −D−1(L+ U) has entries

[TJ ]ij =

{
−aij

aii
i 6= j

0 i = j
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Hence

‖TJ‖∞ = max
1≤i≤n

∣∣∣∣∣
n∑

j=1,j 6=i

aij

aii

∣∣∣∣∣ = max
1≤i≤n

1

|aii|

n∑
j=1,j 6=i

|aij| < 1,

and this implies that the Jacobi method converges.
For Gauss-Seidel method, the iteration matrix TGS = −(D + L)−1U . Let λ be any

eigenvalue of TGS and y, ‖y‖∞ = 1, is a corresponding eigenvector. Thus

TGSy = λy =⇒ −Uy = λ(D + L)y.

Hence for i = 1, . . . , n,

−
n∑

j=i+1

aijyj = λ
i∑

j=1

aijyj = λaiiyi +
i−1∑
j=1

aijyj.

This gives

λaiiyi = −λ
i−1∑
j=1

aijyj +
n∑

j=i+1

aijyj

and

|λ||aii||yi| ≤ |λ|
i−1∑
j=1

|aij||yj|+
n∑

j=i+1

|aij||yj|.

Choose the index k such that |yk| = 1 ≥ |yj| (this index can always be found since
‖y‖∞ = 1). Then

|λ||akk| ≤ |λ|
k−1∑
j=1

|akj|+
n∑

j=k+1

|akj|

which gives

|λ| ≤
∑n

j=k+1 |akj|
|akk| −

∑k−1
j=1 |akj|

<

∑n
j=k+1 |akj|∑n
j=k+1 |akj|

= 1

Since λ is arbitrary, ρ(TGS) < 1. This means the Gauss-Seidel method converges.

Theorem 4.8 If A is positive definite and the relaxation parameter ω satisfying 0 < ω <
2, then the SOR iteration converges for any initial vector x(0).

Theorem 4.9 If A is positive definite and tridiagonal, then ρ(TGS) = [ρ(TJ)]2 < 1 and
the optimal choice of ω for the SOR iteration is

ω =
2

1 +
√

1− [ρ(TJ)]2
. (4.24)

With this choice of ω, ρ(TSOR) = ω − 1.



Chapter 5

Solutions of Non-linear Equations

This chapter is devoted to the problem of determining roots of nonlinear equations (zeros
of functions). It is a problem of frequent occurence in scientific work. The general
question, posed in the simplest case of a real-valued function of one real variable, is this:
Given a function f : R→ R, find x ∈ R such thatf(x) = 0.

The extension of the simple formulation is a system of nonlinear equations of the form
f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

where xi ∈ R are real variables and each fi is a function from Rn to R. To simplify the
representation, we let

x =


x1

x2
...
xn

 ∈ Rn

and F : Rn → Rn be the function

F (x) = F (x1, x2, . . . , xn) =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)

 .
Then the problem of solving system of nonlinear equations becomes finding x ∈ Rn such
that F (x) = 0.

5.1 Preliminaries

Definition 5.1 Let {xn} be a sequence of real numbers that converges to x∗. We say
that the rate of convergence is
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1. linear if there exist a constant 0 < c < 1 and an integer N > 0 such that

|xn+1 − x∗| ≤ c|xn − x∗|, ∀ n ≥ N ; (5.1)

2. superlinear if there exist a sequence {cn}, cn → 0 as n→∞, and an integer N > 0
such that

|xn+1 − x∗| ≤ cn|xn − x∗|, ∀ n ≥ N, (5.2)

or, equivalently,

lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= 0; (5.3)

3. quadratic if there exist a constant c > 0 (not necessarily less than 1) and an integer
N > 0 such that

|xn+1 − x∗| ≤ c|xn − x∗|2, ∀ n ≥ N. (5.4)

In general, if there are positive constants c and α and an integer N > 0 such that

|xn+1 − x∗| ≤ c|xn − x∗|α, ∀ n ≥ N, (5.5)

then we say the rate of convergence is of order α.

Definition 5.2 Suppose {βn} is a sequence known to converge to zero and {xn} converge
s to x∗. If there exist a postive constant c and an integer N > 0 such that

|xn − x∗| ≤ c|βn|, ∀ n ≥ N, (5.6)

then we say {xn} converges to x∗ with rate of convergence O(βn), and write xn = x∗ +
O(βn).

Example 5.1 Compare the convergence behavior of the sequences {xn} and {yn}, where

xn =
n+ 1

n2
, and yn =

n+ 3

n3
.

Sol: Note that both

lim
n→∞

xn = 0 and lim
n→∞

yn = 0.

Let αn = 1
n

and βn = 1
n2 . Then

|xn − 0| =
n+ 1

n2
≤ n+ n

n2
=

2

n
= 2αn,

|yn − 0| =
n+ 3

n3
≤ n+ 3n

n3
=

4

n2
= 4βn.

Hence

xn = 0 +O(
1

n
) and yn = 0 +O(

1

n2
).

This shows that {yn} converges to 0 much faster than {xn}.
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5.2 Bisection Method

The bisection method is based on the intermediate value theorem. The idea behind the
method is that if f(x) ∈ C[a, b] and f(a)f(b) < 0, then there exists a root c ∈ (a, b) such
that f(c) = 0.

Algorithm 5.1 (Biesection Method) Given a function f(x) defined on an interval
(a, b), the maximal number of iterations M , and stop criteria δ and ε, this algorithm tries
to locate one root of f(x).

compute u = f(a), v = f(b), and e = b− a.
if sign(u) = sign(v) then

stop
end if
for k = 1, 2, . . . ,M do
e = e/2
c = a+ e
w = f(c)
if |e| < δ or |w| < ε then

stop
end if
if sign(w) 6= sign(u) then
b = c
v = w

else
a = c
u = w

end if
end for

Let c1, c2, . . . be the sequence of numbers produced. The algorithm should stop if one
of the following conditions is satisfied.

1. the iteration number k > M ,

2. |ck − ck−1| < δ, or

3. |f(ck)| < ε.

In fact, these criteria can be applied to any iterative techniques considered in this chapter.
Also note that the algorithm computes c = a + (b − a)/2, instead of c = (a + b)/2, for
numerical reason. Furthermore, the bisection method find one zero, but not all the zeros,
in the given interval [a, b].

Let [a0, b0], [a1, b1], . . . denote the successive intervals produced by the bisection algo-
rithm. Then

a = a0 ≤ a1 ≤ a2 ≤ · · · ≤ b0 = b

b = b0 ≥ b1 ≥ b2 ≥ · · · ≥ a0 = a.
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This means that the sequences {an} and {bn} are bounded. Hence lim
n→∞

an and lim
n→∞

bn

exist. Since

b1 − a1 =
1

2
(b0 − a0)

b2 − a2 =
1

2
(b1 − a1) =

1

4
(b0 − a0)

...

bn − an =
1

2n
(b0 − a0)

hence

lim
n→∞

bn − lim
n→∞

an = lim
n→∞

(bn − an) = lim
n→∞

1

2n
(b0 − a0) = 0.

Therefore
lim

n→∞
an = lim

n→∞
bn ≡ z.

Since f is a continuous function

limn→∞f(an) = f( lim
n→∞

an) = f(z) and limn→∞f(bn) = f( lim
n→∞

bn) = f(z).

The bisection method ensures that f(an)f(bn) ≤ 0. This implies that lim
n→∞

f(an)f(bn) =

f 2(z) ≤ 0., and, consequently, f(z) = 0. That is, the limit of the sequences {an} and
{bn} is a zero of f in [a, b].

Let cn = 1
2
(an + bn). Then

|z − cn| = | lim
n→∞

an −
1

2
(an + bn)| ≤ |bn −

1

2
(an + bn)| = 1

2
|bn − an| =

1

2n+1
|b0 − a0|.

This proves the following theorem.

Theorem 5.1 Let [a0, b0], [a1, b1], . . . denote the intervals produced by the bisection al-
gorithm. Then lim

n→∞
an and lim

n→∞
bn exist, are equal, and represent a zero of f(x). If

z = lim
n→∞

an = lim
n→∞

bn and cn = 1
2
(an + bn), then

|z − cn| ≤
1

2n+1
(b0 − a0) .

Remarks 5.1 The implication of the theorem above is that {cn} converges to z with the
rate of O(2−n).

Example 5.2 If bisection method starts with interval [50, 75], then how many steps
should be taken to compute a root with relative error that is less than 10−12?

Sol: We want to seek an n such that

|z − cn|
|z|

≤ 10−12.
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Since the bisection method starts with the interval [50, 75], this implies that z ≥ 50,
hence it is sufficient to show

|z − cn|
|z|

≤ |z − cn|
50

≤ 10−12.

That is, we solve
2−(n+1)(75− 50) ≤ 50× 10−12

for n, which gives n ≥ 38.

5.3 Newton’s Method

5.3.1 Derivation of Newton’s Method

Newton-Raphson’s method is widely applied to problems of finding a zero of a function.
It is simply called Newton’s method. Suppose that f : R → R and f ∈ C2[a, b], i.e.,
f” exists and is continuous. If x∗ is a zero of f and x is a point close to x∗ such that
x∗ = x+ h, then by Taylor’s theorem

0 = f(x∗) = f(x+ h) = f(x) + f ′(x)h+
1

2
f”(x)h2 +

1

3!
f ′′′(x)h3 + · · ·

= f(x) + f ′(x)h+O(h2).

Since we assume that x is close to x∗, i.e., h is small, O(h2) is negligible. It is reasonable
to drop O(h2) terms. This implies

f(x) + f ′(x)h ≈ 0 and h ≈ − f(x)

f ′(x)
,

if f ′(x) 6= 0. Hence

x+ h = x− f(x)

f ′(x)

is a better approximation to x∗. This sets the stage for the Newton-Raphson’s method,
which starts with an initial approximation x0 and generates the sequence {xk}∞k=0 defined
by

xk+1 = xk −
f(xk)

f ′(xk)
. (5.7)

Figure gives a graphic interpretation of the Newon’s method. Since the Taylor’s
expansion of f(x) at xk is given by

f(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f”(xk)(x− xk)

2 + · · · .

At xk, one uses the tangent line

y = `(x) = f(xk) + f ′(xk)(x− xk)

to approximate the curve of f(x) and uses the zero of the tangent line to approximate
the zero of f(x), which gives the formulation, and tehn uses this point, xk+1, as a new
starting point to repeat the process. Hence the Newton’s method involving linearizing
the function, that is, the function f(x) is replaced by a linear function `(x) such that
`(xk) = f(xk) and `′(xk) = f ′(xk).
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Algorithm 5.2 (Newton’s Method) Given a function f : R → R, an initial guess
x0 to the zero of f , and stop criteria M , δ, and ε, this algorithm performs the Newton’s
iteration to approximate one root of f .

u = f(x0)
v = f ′(x0)
x1 = x0 − u

v

k = 1
u = f(xk)
while (k < M) or (|xk−xk−1| < δ) or (|f(xk)| < ε do
v = f ′(xk)
xk+1 = xk − u

v

k = k + 1
u = f(xk)

end while

Note that there are two function evaluations, f(xk) and f ′(xk), in each Newton iter-
ation. The stop criteria δ and ε are usually chosen to be a constant times of square root
of the machine epsilon, i.e.,

√
εM . Deciding when to stop is somewhat difficult, and can

not be perfect for every problem, yet it needs some careful attention.

5.3.2 Convergence Analysis

Suppose that f ′′ is continuous and x∗ is a simple zero of f , i.e., f(x∗) = 0 but f ′(x∗) 6= 0.
Choose δ > 0 and let

D = {x||x− x∗| ≤ δ}

and

γ =
1

2
· maxx∈D |f ′′(x)|

minx∈D |f ′(x)|
.

Note that it is possible to choose δ such that ρ = δγ < 1 since f ′′ is continuous and when
δ → 0, x→ x∗ and γ → 1

2
· f ′′(x∗)

f ′(x∗)
.

Now suppose we start Newton’s iteration with x0 satisfying |e0| = |x0 − x∗| ≤ δ. By
Taylor’s theorem

0 = f(x∗) = f(x0) + f ′(x0)(x∗ − x0) +
1

2
f ′′(ξ0)(x∗ − x0)

2,

where ξ0 is between x∗ and x0. Consequently |ξ0 − x∗| ≤ δ and

−f(x0)− f ′(x0)(x∗ − x0) =
1

2
f ′′(ξ0)(x∗ − x0)

2.

One iteration of Newton’s algorithm gives

x1 = x0 −
f(x0

f ′(x0)
.
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Hence

e1 = x1 − x∗ = x0 −
f(x0)

f ′(x0)
− x∗

=
1

f ′(x0)
(−f(x0)− x∗f ′(x0) + x0f

′(x0))

=
1

f ′(x0)
(−f(x0)− f ′(x0)(x∗ − x0))

=
1

f ′(x0)
· 1
2
· f ′′(ξ0)(x∗ − x0)

2

=
f ′′(ξ0)

2f ′(x0)
e20,

and

|e1| ≤ γ|e0|2 ≤ γδ|e0| = ρ|e0|.

Repeat the argument, we have, in general,

|ek| ≤ ρ|ek−1| ≤ · · · ≤ ρk|e0|.

Since ρ < 1, |ek| → 0 as k → 0, that is, xk → x∗.
In summary, Newton’s method will generate a seqence of numbers {xk}k≥0 that con-

verges to the zero, x∗, of f if

1. f ′′ is continuous;

2. x∗ is a simple zero of f ; and

3. x0 is close enough to x∗.

To investigate the convergence rate, we start with

xk+1 = xk+1 − x∗ = xk −
f(xk)

f ′(xk)
− x∗ =

f ′(xk)ek − f(xk)

f ′(xk)
.

Using Taylor’s theorem

0 = f(x∗) = f(xk − ek) = f(xk)− f ′(xk)ek +
1

2
f ′′(ξk)e

2
k,

where ξk is between xk and x∗, one has

f ′(xk)ek − f(xk) =
1

2
f ′′(ξk)e

2
k.

Hence

|ek+1| =
|f ′′(ξk)|
2|f ′(xk)|

|ek|2 ≈
|f ′′(x∗)|
2|f ′(x∗)|

|ek|2 ≡ C|ek|2.

This shows that Newton’s method is quadratic convergent.
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Theorem 5.2 Suppose f ′′ is continous and x∗ is a simple zero of f . Then there exists a
neighborhood D of x∗ and a constant C such that when Newton’s methdo is applied with
starting point x0 ∈ D, the seqence {xk} generated converges to x∗ and satisfies

|xk+1 − x∗| ≤ C|xk − x∗|. (5.8)

Definition 5.3 (Lipschitz Continuous) A function f(x) is Lipschitz continuous with
Lipschitz contant γ in a set X, written f ∈ Lipγ(X), if

|f(x)− f(y)| ≤ γ|x− y|,

for all x, y ∈ X.

Lemma 5.1 Suppose f : Ω→ R for some open interval Ω ⊆ R and f ′ ∈ Lipγ(Ω). Then
for all x, y ∈ Ω,

|f(y)− f(x)− f ′(x)(y − x)| ≤ γ

2
(y − x)2. (5.9)

Proof: From Calculus

f(y)− f(x)− f ′(x)(y − x) =

∫ y

x

(f ′(u)− f ′(x)) du.

Apply changing variable u = x+ t(y−x), du = (y−x) dt and the fact that f ′ ∈ Lipγ(Ω),
we have

|f(y)− f(x)− f ′(x)(y − x)| =

∣∣∣∣∫ 1

0

(f ′(x+ t(y − x))− f ′(x)) (y − x) dt
∣∣∣∣

≤ |y − x|
∫ 1

0

γ|t(y − x)| dt

=
γ

2
|y − x|2.

Theorem 5.3 Let f : Ω→ R for some open interval Ω ⊆ R. Assume

1. exists x∗ ∈ Ω such that f(x∗) = 0;

2. f ′ ∈ Lipγ(Ω);

3. ∃ ρ > 0 such that |f ′(x)| ≥ ρ for all x ∈ Ω, that is, f ′(x) 6= 0 for all x ∈ Ω.

Then there exists η > 0 such that if |x0−x∗| < η, then the sequence produced by Newton’s
iteration

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

exists and converges to x∗. Furthermore,

|xk+1 − x∗| ≤
γ

2ρ
|xk − x∗|2 (5.10)

or, equivalently,

|ek+1| ≤
γ

2ρ
|ek|2 (5.11)
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x0 2.0
x1 1.25
x2 1.025
x3 1.0003048780488
x4 1.0000000464611
x5 1.0

Proof: With the result of previous Lemma,

|xk+1 − x∗| = |xk −
f(xk)

f ′(xk)
− x∗|

= |xk − x∗ −
f(xk)− f(x∗)

f ′(xk)
|

=
1

|f ′(xk)|
|f(x∗)− f(xk)− f ′(xk)(xk − x∗)|

≤ γ

2|f ′(xk)|
|xk − x∗|2

≤ γ

2ρ
|xk − x∗|2.

Note that this convergence property is local since it requires the starting point x0 ∈ D,
that is, Newton’s method only guarantee the convergence from a good starting point x0

that is close enought to x∗. In fact, Newton’s iteration may not converge at all if |x0−x∗|
is large. Therefore some globally convergent algorithm needs to be incorporated with
Newton’s method. Furthermore, f ′(x∗) must be nonzero for the method to converge
quadratically. Indeed, if f ′(x∗) = 0, i.e., x∗ is a multiple root of f , then Newton’s method
converges only linearly. However, when f is a linear function, Newton’s method will
converge in one step.

A simple strategy to modify Newton’s method for global convergent is to incorporate
a back-tracking procedure in each Newton step. The idea is that in the direction of the
tangent line, we find a point where the function value decreases in magnitude. More
precisely, one involves

xk+1 = xk − f(xk)
f ′(xk)

while |f(xk+1)| ≥ |f(xk)| do
xk+1 = 1

2
(xk+1 + xk)

end while

5.3.3 Examples and Pitfalls

Example 5.3 The following table shows the convergence behavior of Newton’s method
applied to solving f(x) = x2 − 1 = 0. Observe the quadratic convergence rate.

Example 5.4 Newton’s method will fail (the sequence {xk} does not converge) on solving
f(x) = x2 − 4x+ 5 = 0 since f does not have any real root.
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Example 5.5 When Newton’s method applied to f(x) = cosx with starting point x0 = 3,
which is close to the root π

2
of f , it produces x1 = −4.01525, x2 = −4.8526, · · · , which

converges to another root −3π
2
.

Example 5.6 When Newton’s method applied to f(x) = xe−x with starting point xx =
2.0, it produces x1 = 4.0, x2 = 5.333, . . .. The sequence {xk} diverges to ∞ slowly,
however, f(xk) goes to zero rapidly as xk gets larger in a finite precision environment,
and could be mistaken as a zero of f .

Example 5.7 When Newton’s method applied to f(x) = x3 − x − 3 with starting point
x0 = 0, it produces x1 = −3, x2 = −1.961538, x3 = −1.147176, x4 = −0.00679, x5 =
−3.000389, x6 = −1.961818, x7 = −1.147430, . . .. The sequence will not converge. But
if the algorithm starts with x0 = 2, then it produces x1 = 1.727272, x2 = 1.67369, x3 =
1.6717025, . . .. The sequence converges to the root 1.671699881. This example illustrates
that the starting point x0 must be close enough to the zero of f .

5.3.4 System of Nonlinear Equations

First consider solving the following system of nonlinear equations:{
f1(x1, x2) = 0,

f2(x1, x2) = 0.
(5.12)

Suppose (x
(k)
1 , x

(k)
2 ) is an approximation to the solution of the system above, and we try

to compute h
(k)
1 and h

(k)
2 such that (x

(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 ) satisfies the system. By the

Taylor’s theorem for two variables,

0 = f1(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 ) ≈ f1(x

(k)
1 , x

(k)
2 ) + h

(k)
1

∂f1

∂x1

(x
(k)
1 , x

(k)
2 ) + h

(k)
2

∂f1

∂x2

(x
(k)
1 , x

(k)
2 )

0 = f2(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 ) ≈ f2(x

(k)
1 , x

(k)
2 ) + h

(k)
1

∂f2

∂x1

(x
(k)
1 , x

(k)
2 ) + h

(k)
2

∂f2

∂x2

(x
(k)
1 , x

(k)
2 )

Put this in matrix form[
∂f1

∂x1
(x

(k)
1 , x

(k)
2 ) ∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

∂f2

∂x1
(x

(k)
1 , x

(k)
2 ) ∂f2

∂x2
(x

(k)
1 , x

(k)
2 )

][
h

(k)
1

h
(k)
2

]
+

[
f1(x

(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )

]
≈
[

0
0

]
.

The matrix

J(x
(k)
1 , x

(k)
2 ) ≡

[
∂f1

∂x1
(x

(k)
1 , x

(k)
2 ) ∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

∂f2

∂x1
(x

(k)
1 , x

(k)
2 ) ∂f2

∂x2
(x

(k)
1 , x

(k)
2 )

]
(5.13)

is called the Jacobian matrix. Set h
(k)
1 and h

(k)
2 be the solution of the linear system

J−1(x
(k)
1 , x

(k)
2 )

[
h

(k)
1

h
(k)
2

]
= −

[
f1(x

(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )

]
then [

x
(k+1)
1

x
(k+1)
2

]
=

[
x

(k)
1

x
(k)
2

]
+

[
h

(k+1)
1

h
(k+1)
2

]
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is expected to be a better approximation.
In general, we solve the system of n nonlinear equations fi(x1, · · · , xn) = 0, i =

1, . . . , n. Let

X =


x1

x2
...
xn

 and F (X) =


f1(X)
f2(X)

...
fn(X)

 .
The problem can be formulated as solving

F (X) = 0, F : Rn → Rn. (5.14)

Let F ′(X), where the (i, j) entry is ∂fi

∂xj
(X), be the n × n Jacobian matrix. Then the

Newton’s iteration is defined as

X(k+1) = X(k) + S(k), (5.15)

where S(k) ∈ Rn is the solution of the linear system

F ′(X(k))S(k) = −F (X(k)). (5.16)

Newton’s method for solving systems of nonlinear equations still enjoys the property
of rapid quadratic convergence if the starting point is near the exact solution point
in terms of vector norm. However, a significant weakness of Newton’s method is the
requirement that, at each iteration, a Jacobian matrix has to be evaluated and an n× n
linear system involving this matrix must be solved. To construct the Jacobian matrix,
n2 partial derivatives have to be available and evaluated. Then an LU-factorization has
to be performed for the solution of the the linear system involved.

5.4 Quasi-Newton’s Method (Secant Method)

5.4.1 The Secant Method

The Newton’s iteration

xk+1 = xk −
f(xk)

f ′(xk)

involves the evaluation of derivative of f . In many applications (situations), the derivative
f ′(x) is very expensive to compute, or the function f(x) is not given in an algebraic
formula so that f ′(x) is not available.

An alternative is to replace the derivative evaluation by finite difference approxima-
tion. Since

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

it is reasonable to approximate f ′(xk) in the Newton’s iteration by

f ′(xk) ≈
f(xk + hk)− f(xk)

hk
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for some small hk. This leads to the so-called finite-difference Newton’s iteration

xk+1 = xk − f(xk)
hk

f(xk + hk)− f(xk)
(5.17)

From geometric point of view, we use a secant line through xk and a near-by point
xk +hk instead of the tangent line to approximate the function at the point xk. The slope
of the secant line is

sk =
f(xk + hk)− f(xk)

hk

(5.18)

and the equation is

M(x) = f(xk) + sk(x− xk). (5.19)

The zero of the secant line

x = xk −
f(xk)

sk

= xk − f(xk)
hk

f(xk + hk)− f(xK)
(5.20)

is then used as a new approximate xk+1. This leads to exactly the same formulation for
the finite-difference Newton’s iteration.

Two questions arise so far: “Will this method work?” and “How should hk be chosen?”
From the limit definition of derivative, it seems reasonable to assume that the finite-
difference formulation should work almost as well as Newton’s method if hk is chosen
small enough. However, it requires two function evaluations f(xk +hk) and f(xk) in each
iteration. If the function evaluation is expensive, we may set

hk = xk − xk−1.

This leads to the so-called secant method or quasi-Newton method.

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
(5.21)

Note that the secant method requires two initial guesses x0 and x−1. However, there is
only one function evaluation required in each iteration.

It turns out that the secant method requires only a few more iterations to converge
than the finite difference approach with a properly chosen hk, but it’s usually more
efficient in terms of total number of function evaluations.

Example 5.8 The following table shows the convergence history for the finite-difference
Newton’s method with hk = 10−7 ? xk and secant method for solving f(x) = x2 − 1 = 0.
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finite-difference Newton secant method

x0 2 2
x1 1.2500000266453 1.2500000266453
x2 1.0250000179057 1.0769230844910
x3 1.0003048001120 1.0082644643823
x4 1.0000000464701 1.0003048781354
x5 1 1.0000012544523
x6 1.0000000001912
x7 1

5.4.2 Error Analysis of Secant Method

Let x∗ denote the exact solution of f(x) = 0, ek = xk − x∗ be the errors at the k-th step.
Then

ek+1 = xk+1 − x∗
= xk − f(xk)

xk − xk−1

f(xk)− f(xk−1)
− x∗

=
1

f(xk)− f(xk−1)
[xkf(xk)− xkf(xk−1)− xkf(xk) + xk−1f(xk)− x∗f(xk) + x∗f(xk−1)]

=
1

f(xk)− f(xk−1)
[(xk+1 − x∗)f(xk)− (xk − x∗)f(xk−1)]

=
1

f(xk)− f(xk−1)
(ek−1f(xk)− ekf(xk−1))

= ekek−1

(
1
ek
f(xk)− 1

ek−1
f(xk)

xk − xk−1

· xk − xk−1

f(xk − f(xk−1)

)

To estimate the numerator
1

ek
f(xk)− 1

ek−1
f(xk)

xk−xk−1
, we apply the Taylor’s theorem

f(xk) = f(x∗ + ek) = f(x∗) + f ′(x∗)ek +
1

2
f ′′(x∗)e

2
k +O(e3k),

to get
1

ek

f(xk) = f ′(x∗) +
1

2
f ′′(x∗)ek +O(e2k).

Similarly,
1

ek−1

f(xk−1) = f ′(x∗) +
1

2
f ′′(x∗)ek−1 +O(e2k−1).

Hence
1

ek

f(xk)−
1

ek−1

f(xk−1) ≈
1

2
(ek − ek−1)f

′′(x∗).

Since xk − xk−1 = ek − ek−1 and

xk − xk−1

f(xk)− f(xk−1)
→ 1

f ′(x∗)
,
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we have

ek+1 ≈ ekek−1

( 1
2
(ek − ek−1)f

′(x∗)

ek − ek−1

· 1

f ′(x∗)

)
=

1

2

f ′′(x∗)

f ′(x∗)
ekek−1 ≡ Cekek−1 (5.22)

To estimate the convergence rate, we assume

|ek+1| ≈ η|ek|α,

where η > 0 and α > 0 are constants, i.e.,

|ek+1|
η|ek|α

→ 1 as k →∞.

Then |ek| ≈ η|ek−1|α which implies ek−1 ≈ η−1/α|ek|1/α. Hence () gives

η|ek|α ≈ C|ek|η−1/α|ek|1/α =⇒ C−1η1+ 1
α ≈ |ek|1−α+ 1

α .

Since |ek| → 0 as k →∞, and C−1η1+ 1
α is a nonzero constant,

1− α+
1

α
= 0 =⇒ α =

1 +
√

5

2
≈ 1.62.

This result implies that C−1η1+ 1
α → 1 and

η → C
α

1+α =

(
f ′′(x∗)

2f ′(x∗)

)0.62

.

In summary, we have shown that

|ek+1| = η|ek|α, α ≈ 1.62, (5.23)

that is, the convergence rate is superlinear.
The rapidity of convergence of the secant method is not as good as the Newton’s

method, but is better than the bisection method. However, each iteration of the secant
method requires only one function evaluation while the Newton’s method requires two,
namely, f(xk) and f ′′(xk). Therefore, we may regard two steps of secant method are
comparable to one step of Newton’s method. Thus

|ek+2| ≈ η|ek+1|α ≈ η1+α|e
3+
√

5
2

k .

Since 3+
√

5
2
≈ 2.62, this shows that secant method is more efficient than Newton’s method.

Of course, two steps of secant method would require a little more work than one step of
Newton’s method.

Next we will extend secant method to solving system of nonlinear equations. Recall
that in one dimensional case, one uses the linear model

`k(x) = f(xk) + ak(x− xk) (5.24)
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to approximate the function f(x) at xk. That is, `k(xk) = f(xk) for any ak ∈ R. If we
further require that `′(xk) = f ′(xk), then ak = f ′(xk). The zero of `k(x) is used to give a
new approximate for the zero of f(x), that is,

xk+1 = xk −
1

f ′(xk)
f(xk)

which yields Newton’s method.
If f ′(xk) is not available, one instead asks the linear model to satisfy

`k(xk) = f(xk) and `k(xk−1) = f(xk−1). (5.25)

In doing this, the identity

f(xk−1) = `k(xk−1) = f(xk) + ak(xk−1 − xk)

gives

ak =
f(xk − f(xk−1)

xk − xk−1

. (5.26)

Solving `k(x) = 0 yields the secant iteration

xk+1 = xk −
xk − xk−1

f(xk − f(xk−1)
f(xk). (5.27)

In multiple dimension, the analogue affine modle becomes

Mk(x) = F (xk) + Ak(x− xk), (5.28)

where x, xk ∈ Rn and Ak ∈ Rn×n, and satisfies

Mk(xk) = F (xk), (5.29)

for any Ak. The zero of Mk(x) is then used to give a new approximate for the zero of
F (x), that is,

xk+1 = xk − A−1
k F (xk). (5.30)

The Newton’s method chooses

Ak = F ′(xk) ≡ J(xk) = the Jacobian matrix. (5.31)

and yields the iteration
xk+1 = xk − (F ′(xk))

−1
F (xk). (5.32)

When the Jacobian matrix J(xk) ≡ F ′(xk) is not available, one can require

Mk(xk−1) = F (xk−1). (5.33)

Then
F (xk−1) = Mk(xk−1) = F (xk) + Ak(xk−1 − xk),

which gives
Ak(xk − xk−1) = F (xk)− F (xk−1) (5.34)
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and this is the so-called secant equation. Let

sk = xk − xk−1 and yk = F (xk)− F (xk−1). (5.35)

The secant equation becomes
Aksk = yk. (5.36)

However, this secant equation can not uniquely determine Ak. One way of choosing Ak

is to minimize Mk −Mk−1 subject to the secant equation. Note

Mk(x)−Mk−1(x) = F (xk) + Ak(x− xk)− F (xk−1)− Ak−1(x− xk−1)

= (F (xk − F (xk−1)) + Ak(x− xk)− Ak−1(x− xk−1)

= Ak(xk − xk−1) + Ak(x− xk)− Ak−1(x− xk−1)

= Ak(x− xk−1)− Ak−1(x− xk−1)

= (Ak − Ak−1)(x− xk−1).

For any x ∈ Rn, we express
x− xk−1 = αsk + tk, (5.37)

for some α ∈ R, tk ∈ Rn, and sT
k tk = 0. Then

Mk −Mk−1 = (Ak − Ak−1)(αsk + tk) = α(Ak − Ak−1)sk + (Ak − Ak−1)tk.

Since
(Ak − Ak−1)sk = Aksk − Ak−1sk = yk − Ak−1sk,

both yk and Ak−1sk are old values, we have no control over the first part (Ak −Ak−1)sk.
In order to minimize Mk(x)−Mk−1(x), we try to choose Ak so that

(Ak − Ak−1)tk = 0 (5.38)

for all tk ∈ Rn, sT
k tk = 0. This requires that Ak − Ak−1 to be a rank-one matrix of the

form
Ak − Ak−1 = uks

T
k (5.39)

for some uk ∈ Rn. Then

uks
T
k sk = (Ak − Ak−1)sk = yk − Ak−1sk

which gives

uk =
yk − Ak−1sk

sT
k sk

. (5.40)

Therefore,

Ak = Ak−1 +
(yk − Ak−1sk)s

T
k

sT
k sk

(5.41)

After Ak is determined, the new iterate xk+1 is derived from solving Mk(x) = 0. It can
be done by first noting that

sk+1 = xk+1 − xk =⇒ xk+1 = xk + sk+1 (5.42)

and

Mk(xk+1) = 0 =⇒ F (xk) + Ak(xk+1 − xk) = 0 =⇒ Aksk+1 = −F (xk) (5.43)

These formulations give the Broyden’s method.
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Algorithm 5.3 (Broyden’s Method) Given a n-variable nonlinear function F : Rn →
Rn, an initial iterate x0 and initial Jacobian matrix A0 ∈ Rn×n (e.g., A0 = I), this algo-
rithm finds the solution for F (x) = 0.

for k = 0, 1, · · · , do
Solve Aksk+1 = −F (xk) for sk+1

Update xk+1 = xk + sk+1

Compute yk+1 = F (xk+1)− F (xk)

Update Ak+1 = Ak +
(yk+1 − Aksk+1)s

T
k+1

sT
k+1sk+1

= Ak +

(yk+1 + F (xk)s
T
k+1

sT
k+1sk+1

end for

Since a new matrix Ak is used to approximate the Jacobian matrix in each iteration of
the Broyden’s method, LU-factorization has to be performed in order to solve the linear
system Aksk+1 = −F (xk) for sk+1. One LU-factorization would cost frac23n3 + O(n2)
floating-point operations. But if we apply the Shermann-Morrison-Woodbury formula to
(), we have

A−1
k = A−1

k−1 +
(sk − A−1

k yk)y
T
k

yT
k yk

. (5.44)

With a given A−1
0 , we can then update A−1

k in each iteration using this formula and sk+1

can be easily computed by matrix-vector multiplication sk+1 = −A−1
k F (xk) in O(n2)

operations.

5.5 Fixed Point and Functional Iteration

In this section, we consider the problem of finding a fixed point with functional iteration
method for a given fuction f : D → R, where D ⊆ R is a closed set.

Definition 5.4 x is called a fixed point of a given function f if f(x) = x.

If f : R→ R is a function, then the fixed point of f can be viewed as the intersection
of the curve y = f(x) and the straight line y = x.

The problem of finding a fixed point for a given function is equivalent to the problem
of finding a zero for a nonlinear fucntion. For instance, given a function f(x) and a root
x∗ such that f(x∗) = 0, let g(x) = x− f(x). Then g(x∗) = x∗ − f(x∗) = x∗. That is, x∗
is a fixed point for g(x). Conversely, suppose that g(x) has a fixed point at x∗. Then one
may define f(x) = x− g(x) so that f(x∗) = x∗ − g(x∗) = x∗ − x∗ = 0, i.e., x∗ is a zero of
f(x).

Two questions arise: “When does a function have a fixed point?” and “How to find a
fixed point?”.
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5.5.1 Functional Iteration

To determine a fixed point x∗ for a continuous function f , we choose an initial point x0

and generate a sequence of points {xk}k≥0 by

xk+1 = f(xk), k ≥ 0. (5.45)

This algorithm is called fixed-point iteation or functional iteration. This formulation may
generate sequences that do not converge, e.g., f(x) = 3x. However, wehn the sequence
converges, say,

lim
k→∞

xk = x∗,

then, since f is continuous,

f(x∗) = f( lim
k→∞

xk) = lim
k→∞

f(xk) = lim
k→∞

xk+1 = x∗.

That is, x∗ is a fixed point of f .
Note that Newton’s method for solving g(x) = 0

xk+1 = xk −
g(xk)

g′(xk)

is just a special case of functional iteration in which

f(x) = x− g(x)

g′(x)
.

Definition 5.5 A function (mapping) f is said to be contractive if there exists a constant
0 ≤ λ < 1 such that

|f(x)− f(y)| ≤ λ|x− y| (5.46)

for all x, y in the domain of f .

Theorem 5.4 (Contractive Mapping Theorem) Suppose f : D → D, where D ⊆ R
is a closed set, is a contractive mapping. Then f has a unique fixed point in D. Moreover,
this fixed point is the limit of every sequence obtained by

xk+1 = f(xk)

with any initial point x0.

Proof: We first show that lim
k→∞

xk exists. Since

xk = x0 + (x1 − x0) + (x2 − x1) + · · ·+ (xk − xk−1) = x0 +
k∑

i=1

(xi − xi−1),

{xk}k≥0 converges if and only if
∑∞

i=1(xi − xi−1) converges and it is sufficient to show∑∞
i=1 |xi − xi−1| converges.
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Since f is contractive, we have

|xi − xi−1| = |f(xi−1)− f(xi−2)|
≤ λ|xi−1 − xi−2|
≤ λ2|xi−2 − xi−3|
...

≤ λi−1|x1 − x0|.

Then we have

∞∑
i=1

|xi − xi−1| ≤
∞∑
i=1

λi−1|x1 − x0|

= |x1 − x0|
∞∑
i=1

λi−1

=
1

1− λ
|x1 − x0|

since 0 ≤ λ < 1. This show that
∑∞

i=1 |xi − xi−1| is bounded, hence it converges. This
shows that the sequence {xk}k≥0 converges for any initial point x0.

Let lim
k→∞

xk = x∗. Then we have showed that x∗ would be a fixed point of f . (note:

contractivenedd implies continuity)
To prove the uniqueness, let x and y both be fixed points of f . Then

|x− y| = |f(x)− f(y)| ≤ λ|x− y|.

Since λ < 1, this forces |x− y| = 0. That is, x = y.

Theorem 5.5 If f ∈ C[a, b] such that a ≤ f(x) ≤ b for all x ∈ [a, b], then f has a fixed
point in [a, b]. Suppose, in addition, that f ′(x) exists in (a, b) and there exists a positive
constant M < 1 such that |f ′(x)| ≤ M < 1 for all x ∈ (a, b). Then the fixed point is
unique.

Proof: If f(a) = a or f(b) = b, then a or b is a fixed point of f and we are done.
Otherwise, it must be g(a) > a and g(b) < b. Let h(x) = f(x)−x. Then h ∈ C[a, b] since
f ∈ C[a, b], and h(a) = f(a)− a > 0 and h(b) = f(b)− b < 0. By the itermediate value
theorem, there exists x∗ ∈ [a, b] such that h(x∗) = 0. This implies that f(x∗) − x∗ = 0
and f(x∗) = x∗. Hence f has a fixed point x∗ in [a, b].

Suppose that p 6= q are both fixed points of f in [a, b]. By the Mean-Value theorem,
there exists ξ between p and q such that

f ′(ξ) =
f(p)− f(q)

p− q
=
p− q
p− q

= 1.

However, this contradicts to the assumption that f ′(x) ≤ M < 1 for all x in [a, b].
Therefore the fixed point of f is unique.
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5.5.2 Convergence Analysis

For the underlined function f : D → D, we make the following assumptions:

1. f has a fixed point x∗, and the sequence {xk}k≥0 is generated by the iteration

xk+1 = f(xk), k = 0, 1, . . . ,

with an arbitrary initial point x0;

2. f ′ exists, is continuous, and |f ′(x)| < 1 for all x in the domain of f ;

3. m is a positive integer such that f (i)(x∗) = 0 for i = 1, . . . ,m, but f (m)(x∗) 6= 0.

Let ek = xk− x∗ be the error at the k-th iteration. Then by the Mean-Value theorem

ek+1 = xk+1 − x∗ = f(xk)− f(x∗) = f ′(ξk)(xk − x∗) = f ′(ξk)ek, (5.47)

where ξk is between xk and x∗. Since |f ′(ξk)| < 1 by assumption, it ensures the error
decreases in magnitude.

When xk is close to x∗, i.e., ek is small, ξk will be close to x∗, and f ′(ξk) will be close
to f ′(x∗) since f ′ is continuous. Hence () can be written as

ek+1 ≈ f ′(x∗)ek,

and we can expect rapid convergence if f ′(x∗) is small.
Using Taylor’s theorem, we have

ek+1 = xk+1 − x∗
= f(xk)− f(x∗)

= f(x∗ + ek)− f(x∗)

=

(
f(x∗) + f ′(x∗)ek +

1

2
f ′′(x∗)e

2
k + · · ·+ 1

(m− 1)!
f (m−1)(x∗)e

m−1
k +

1

m!
f (m)(ηk)e

m
k

)
− f(x∗)

=
1

m!
f (m)(ηk)e

m
k ,

where ηk is between x∗ and xk. Since lim
k→∞

xk = x∗,

ηk → x∗ =⇒ f (m)(ηk)→ f (m)(x∗).

Therefore we have

lim
k→∞

|ek+1|
|ek|m

=
1

m!
f (m)(x∗). (5.48)

This shows that the convergence rate of the functional iteration is m.
Since Newton’s method is a special case of functional iteration, we can also show

the quadratic convergence of Newton’s method using this analysis. Suppose Newton’s
method is applied to solving g(x) = 0. Let f(x) = x− g(x)

g′(x)
. Then

f ′(x∗) = 1− [g′(x∗)]
2 − g(x∗)g′′(x∗)
[g′(x∗)]2

=
g(x∗)g

′′(x∗)

[g′(x∗)]2
= 0
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since the fixed point of f is a zero of g. The second derivative of f at x∗

f ′′(x∗) =
1

[g′(x∗)]4
(
[g′(x∗)]

2(g(x∗)g
′′′(x∗) + g′′(x∗)g

′(x∗))− 2g(x∗)g
′(x∗)[g

′′(x∗)]
2
)

is usually not zero. Hence it shows that Newton’s method has quadratic convergence
rate.

Theorem 5.6 Suppose that f ∈ C[a, b] such that a ≤ f(x) ≤ b for all x ∈ [a, b], and that
f ′(x) exists on (a, b) with f ′(x) ≤M < 1 for some constant M . If x0 ∈ [a, b] is arbitrary,
then the sequence {xk}k≥0 generated by the functional iteration xk+1 = f(xk) converges
to the unique fixed point x∗ of f .

Proof: By Theorem (), the fixed point x∗ of f exists and is unique.
Since a ≤ f(x) ≤ b for all x ∈ [a, b],

a ≤ xk = f(xk−1) ≤ b, for all k = 1, 2, . . ..

By the Mean-Value theorem, there exists ξk ∈ (a, b) such that

f ′(ξk) =
f(xk)− f(x∗)

xk − x∗
.

Thus

|ek| = |xk − x∗| = |f ′(ξk)||f(xk)− f(x∗)|
= |f ′(ξk)||xk−1 − x∗|
≤ M |ek−1| ≤M2|ek−2| ≤ · · · ≤Mk|e0| = Mk|x0 − x∗|.

Since M < 1, Mk → 0 as k →∞. Therefore

lim
k→∞
|xk − x∗| ≤ lim

k→∞
Mk|x0 − x∗| = 0 =⇒ lim

k→∞
xk = x∗.

Corollary 5.1 Suppose f satisfies the conditions of the previous theorem and the se-
quence {xk}k≥0 is produced by the functional iteration xk+1 = g(xk) with an arbitrary
initial point x0. Then

|ek| = |xk − x∗| ≤Mk max{x0 − a, b− x0} (5.49)

and

|ek| = |xk − x∗| ≤
Mk

1−M
|x0 − x1| =

Mk

1−M
|e0|. (5.50)

Proof: From the proof of the previous theorem,

|ek| = |xk − x∗| ≤Mk|x0 − x∗| ≤Mk max{x0 − a, b− x0}.
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Since

|xk+1 − xk| = |f(xk)− f(xk−1)|
= |f ′(ξk)||xk − xk−1|
≤ M |xk − xk−1|
≤ M2|xk−1 − xk−2|
...

≤ Mk|x1 − x0|,

for m > k ≤ 1,

|xm − xk| = |xm − xm−1 + xm−1 − xm−2 + · · ·+ xk+1 − xk|
≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xk+1 − xk|
≤ Mm−1|x1 − x0|+Mm−2|x1 − x0|+ · · ·+Mk|x1 − x0|
= Mk(Mm−1−k +Mm−2−k + · · ·+M + 1)|x1 − x0|.

Since lim
m→∞

xm = x∗,

|xk − x∗| = lim
m→∞

|xk − xm|

≤ Mk|x1 − x0| lim
m→∞

(Mm−1−k +Mm−2−k + · · ·+M + 1)

= Mk|x1 − x0|
∞∑
i=1

M i

=
Mk

1−M
|x1 − x0|.



Chapter 6

Interpolation

In this chapter, we consider the interpolation problem: Suppose we do not know the
function f , but a few information (data) about f , now we try to compute a function g
that approximates f .

6.1 Polynomial Interpolation

The polynomial interpolation problem, also called Lagrange interpolation, can be de-
scribed as follows: Given n + 1 data points (xi, yi), i = 0, 1, . . . , n, find a polynomial P
of lowest possible degree such that

yi = P (xi), i = 0, 1, . . . , n. (6.1)

Such a polynomial is said to interpolate the data. Here yi may be the value of some
unknown function f at xi, i.e., yi = f(xi).

One reason for considering the class of polynomials in approximation of functions is
that they uniformly approximate continuous function.

Theorem 6.1 (Weierstrass Approximation Theorem) Suppose that f is defined and
continuous on [a, b]. For any ε > 0, there exists a polynomial P (x), defined on [a, b], with
the property that

|f(x)− P (x)| < ε, for all x in [a, b].

Another important reason for considering the class of polynomials in approximation
of functions is that the derivatives and indefinite integral of a polynomial are easy to
determine and are also polynomials. For these reasons, polynomials are often used for
approximating continuous functions.

6.1.1 Existence And Uniqueness

The theorem that governs the polynomial interpolation problem stats

Theorem 6.2 If (xi, yi), xi, yi ∈ R, i = 0, 1, . . . , n, are n+1 distinct pairs of data point,
then there is a unique polynomial Pn of degree at most n such that

Pn(xi) = yi, (0 ≤ i ≤ n). (6.2)
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Proof: Existence: Proof by mathematical induction. The theorem clearly holds for
n = 0 (only one data point (x0, y0)) since one may choose the constant polynomial
P0(x) = y0 for all x. Assume that the theorem holds for n ≤ k, that is, there is a
polynomial Pk, deg(Pk) ≤ k, such that yi = Pk(xi), for 0 ≤ i ≤ k. Next we try to
construct a polynomial of degree at most k+ 1 to interpolate (xi, yi), 0 ≤ i ≤ k+ 1. Let

Pk+1(x) = Pk(x) + c(x− x0)(x− x1) · · · (x− xk),

where

c =
yk+1 − Pk(xk+1)

(xk+1 − x0)(xk+1 − x1) · · · (xk+1 − xk)
.

Since xi are distinct, the polynomial Pk+1(x) is well-defined and deg(Pk+1) ≤ k+ 1. It is
easy to verify that

Pk+1(xi) = yi, 0 ≤ i ≤ k + 1.

Uniqueness: Suppose there are two such polynomials Pn and Qn satisfying (6.2). Define

Sn(x) = Pn(x)−Qn(x).

Since both deg(Pn) ≤ n and deg(Qn) ≤ n, deg(Sn) ≤ n. Moreover

Sn(xi) = Pn(xi)−Qn(xi) = yi − yi = 0,

for 0 ≤ i ≤ n. This means that Sn has at least n+ 1 zeros, it therefore must be Sn = 0.
Hence Pn = Qn.

6.1.2 Naive Approach for Polynomial Interpolation

Suppose we require the interpolating polynomial to be expressed in power of x as

Pn(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n. (6.3)

The straightforward approach for solving the polynomial interpolation is try to determine
the coefficients c0, c1, . . . cn using the conditions

Pn(xi) = yi, i = 0, 1, 2, . . . , n.

These lead to

c0 + c1x1 + c2x
2
1 + · · ·+ cnx

n
1 = y0,

c0 + c1x2 + c2x
2
2 + · · ·+ cnx

n
2 = y1,

...

c0 + c1xn + c2x
2
n + · · ·+ cnx

n
n = yn,

which is equivalent to the system of linear equations:
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...
1 xn x2

n · · · xn
n



c0
c1
...
cn

 =


y0

y1
...
yn

 . (6.4)
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The coefficient matrix is called Vandermonde matrix. It can be proved that

det


1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...
1 xn x2

n · · · xn
n

 =
∏

0≤j<k≤n

(xk − xj). (6.5)

Since xi are distinct, the Vandermonde system is nonsingular, and solving this system
gives the coefficients c0, c1, . . . , cn which solves the polynomial interpolation problem (6.1).
However, a Vandermonde matrix is often very ill-conditioned, thus the computed solutions
ci will be inaccurate. Moreover, the amount of computational cost, including forming the
matrix, factorization, and triangular substitutions, is excessive. Therefore, this approach
is not recommended.

6.1.3 Lagrange Form and Neville’s Method

Next we present an alternative form for the interpolating polynomial P (x) associated
with the n + 1 distinct data points (xi, yi) for 0 ≤ i ≤ n. It is important to remember
that there is one and only one polynomial of degree less than or equal to n that solves
the problem (6.1), various approaches produce the same polynomial in different forms.

Polynomial interpolation in Lagrange form expresses the polynomial as

Pn(x) = y0L0(x) + y1L1(x) + · · ·+ ynLn(x) =
n∑

k=0

ykLk(x), (6.6)

where

Lk(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
=

n∏
i=0
i6=k

x− xi

xk − xi

, (6.7)

are known as cardinal polynomials.

One advantage of using the Lagrange form of the interpolating polynomial is that
it can be written down at once, since the coefficients in the Lagrange formula are the
given yi. This fact will be useful in numerical integration when quadrature formulas are
constructed.

Example 6.1 Given the following 4 data points,

xi 0 1 3 5
yi 1 2 6 7

find a polynomial in Lagrange form to interpolate these data.
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Sol: The cardinal functions are

L0(x) =
(x− 1)(x− 3)(x− 5)

(0− 1)(0− 3)(0− 5)
= − 1

15
(x− 1)(x− 3)(x− 5),

L1(x) =
(x− 0)(x− 3)(x− 5)

(1− 0)(1− 3)(1− 5)
=

1

8
x(x− 3)(x− 5),

L2(x) =
(x− 0)(x− 1)(x− 5)

(3− 0)(3− 1)(3− 5)
= − 1

12
x(x− 1)(x− 5),

L3(x) =
(x− 0)(x− 1)(x− 3)

(5− 0)(5− 1)(5− 3)
=

1

40
x(x− 1)(x− 3).

The interpolating polynomial in the Lagrange form is

P3(x) = L0(x) + 2L1(x) + 6L2(x) + 7L3(x).

One difficulty for the interpolating polynomial in the Lagrange form is that if more
data points are added to the interpolation problem, all the cardinal functions have to be
recalculated. We will now derive the interpolating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 6.1 Let (xi, yi), 0 ≤ i ≤ n, where yi = f(xi) for some unknown function f ,
be (n+ 1) given distinct data points. Suppose that m1,m2, . . . ,mk are k distinct integers
with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that interpolates f at the k points
xm1 , xm2 , . . . , xmk

is denoted Pm1,m2,...,mk
(x).

Theorem 6.3 Let f be defined at distinct points x0, x1, . . . , xk, and 0 ≤, i, j ≤ k, i 6= j.
Then

P0,1,...,k(x) =
(x− xj)

(xi − xj)
P0,1,...,j−1,j+1,...,k(x)−

(x− xi)

(xi − xj)
P0,1,...,i−1,i+1,...,k(x) (6.8)

describes the k-th Lagrange polynomial that interpolates f at the k+1 points x0, x1, . . . , xk.

Proof: Since deg(P0,1,...,j−1,j+1,...,k) ≤ k − 1 and deg(P0,1,...,i−1,i+1,...,k) ≤ k − 1, by
definition deg(P0,1,...,k) ≤ k. If r 6= i, j, then

P0,1,...,k(xr) =
(xr − xj)

(xi − xj)
P0,1,...,j−1,j+1,...,k(xr)−

(xr − xi)

(xi − xj)
P0,1,...,i−1,i+1,...,k(xr)

=
(xr − xj)

(xi − xj)
f(xr)−

(xr − xi)

(xi − xj)
f(xr) = f(xr).

Moreover

P0,1,...,k(xi) =
(xi − xj)

(xi − xj)
P0,1,...,j−1,j+1,...,k(xi)−

(xi − xi)

(xi − xj)
P0,1,...,i−1,i+1,...,k(xi) = f(xi)

and

P0,1,...,k(xj) =
(xj − xj)

(xi − xj)
P0,1,...,j−1,j+1,...,k(xj)−

(xj − xi)

(xi − xj)
P0,1,...,i−1,i+1,...,k(xj) = f(xj).
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Therefore P0,1,...,k(x) agrees with f at all points x0, x1, . . . , xk. By the uniqueness theo-
rem, P0,1,...,k(x) is the k-th Lagrange polynomial that interpolates f at the k + 1 points
x0, x1, . . . , xk.

The theorem implies that the Lagrange interpolating polynomial can be generated re-
cursively. The procedure is called the Neville’s method. For example, the polynomials
can be computed in a manner as shown in the following table.

x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

For ease of notation, we denote, in the table

Qi,j = Pi−j,i−j+1,...,i−1,i.

Hence Qi,j, 0 ≤ j ≤ i, denotes the interpolating polynomial of degree j on the j + 1
points xi−j, xi−j+1, . . . , xi−1, xi.

Note that the Neville’s method is usually used to generated successively higher degree
polynomial approximations at a specified point, but not to generate the polynomials
themselves.

6.1.4 Newton’s Form of Polynomial Interpolation

Since there is one and only one polynomial of degree ≤ n that takes prescribed values at
given n + 1 distinct points, various algorithms will produce the same polynomial but in
different forms. For example, the polynomial can be constructed as a linear combination
of the basic polynomials 1, x, x2, . . . , xn. For numerical work, it is preferable to use the
following basis

q0(x) = 1,

q1(x) = (x− x0),

q2(x) = (x− x0)(x− x1),
...

qn(x) = (x− x0)(x− x1) · · · (x− xn−1),

and express P (x) as

Pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1).

=
n∑

k=0

ckqk(x) (6.9)

This polynomial is called the interpolating polynomial in Newton’s form.
The interpolation conditions

Pn(xi) =
n∑

k=0

ckqk(xi) = yi, i = 0, 1, . . . , n,
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give rise to n+ 1 equations with n+ 1 parameters c0, c1, . . . , cn to be determined

c0 = y0,

c0 + c1(x1 − x0) = y1,

c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1) = y2,
...

c0 + c1(xn − x0) + c2(xn − x0)(xn − x1) + · · ·+ cn(xn − x0) · · · (xn − xn−1) = yn.

In matrix equation, we have a triangular linear system
1 0 0 · · · 0
1 x1 − x0 0 · · · 0
1 x2 − x0 (x2 − x0)(x2 − x1) · · · 0
...

...
...

. . .
...

1 xn − x0 (xn − x0)(xn − x1) · · · (xn − x0) · · · (xn − xn−1)




c0
c1
c2
...
cn

 =


y0

y1

y2
...
yn

 .
(6.10)

Use forward substitution, we can solve for c0, c1, . . . , cn. Computational work involved in
this approach includes forming and solving the system.

Example 6.2 Given the following 4 points (n = 3)

xi 0 1 3 5
yi 1 2 6 7

find a polynomial of degree 3 in Newton’s form to interpolate these data.

Sol: Write

P (x) = c0 + c1(x− 0) + c2(x− 0)(x− 1) + c3(x− 0)(x− 1)(x− 3)

= c0 + c1x+ c2x(x− 1) + c3x(x− 1)(x− 3).

Plug in the interpolation conditions,

P (0) = c0 = 1.

P (1) = c0 + c1 = 2.

P (3) = c0 + 3c1 + 6c2 = 6.

P (5) = c0 + 5c1 + 20c2 + 40c3 = 7,

which lead to
1 0 0 0
1 1 0 0
1 3 6 0
1 5 20 40



c0
c1
c2
c3

 =


1
2
6
7

 =⇒


c0
c1
c2
c3

 =


1
1
1
3

− 17
120

 .
Thus

P (x) = 1 + x+
1

3
x(x− 1)− 17

120
x(x− 1)(x− 3).
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6.1.5 Divided Differences Scheme

With proper arrangement, the triangular linear system in the previous subsection can be
solved with the formulations

c0 = f(x0)

c1 =
f(x1)− f(x0)

x1 − x0

c2 =
1

x2 − x0

[
f(x2)− f(x1)

x2 − x1

− f(x1)− f(x0)

x1 − x0

]
...

and so on. An efficient procedure, called the divided-difference method, can be derived
for computing the n + 1 coefficients c0, c1, · · · , cn in the Newton’s form interpolating
polynomial.

First we introduce the divided-difference notation. The zero divided difference of the
function f with respect to xi,

f [xi] = f(xi), (6.11)

is simply the value of f at xi. The first divided difference of f with respect to xi and
xi+1 is denoted and defined as

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi

. (6.12)

The second divided difference of f is defined as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi

. (6.13)

In general, the k-th divided difference relative to xi, xi+1, . . . , xi+k is given by

f [xi, xi+1, . . . , xi+k] =
f [xi+1, xi+2, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi

. (6.14)

As might be expected from the evaluation of c0, c1, . . . , cn in the Newton form interpo-
lating polynomial, the required coefficients are given by

ck = f [x0, x1, . . . , xk], k = 0, 1, . . . , n. (6.15)

Therefore the interpolating polynomial in Newton’s form can be expressed as

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1). (6.16)

This formula is known as the Newton’s interpolatory divided-difference formula. The
determination of the divided differences is best described by using tabular form as shown
in the following table as an example.
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xi k = 0 k = 1 k = 2 k = 3
x0 f [x0]

> f [x0, x1]
x1 f [x1] > f [x0, x1, x2]

> f [x1, x2] > f [x0, x1, x2, x3]
x2 f [x2] > f [x1, x2, x3]

> f [x2, x3]
x3 f [x3]

Example 6.3 Given the following 4 points (n = 3)

xi 0 1 3 5
yi 1 2 6 7

find a polynomial of degree 3 in Newton’s form to interpolate these data.

Sol:

xi k = 0 k = 1 k = 2 k = 3
0 1

> 1
1 2 > 1

3

> 2 > − 17
120

3 6 > −3
8

> 1
2

5 7

So,

P (x) = 1 + x+
1

3
x(x− 1)− 17

120
x(x− 1)(x− 3).

Note that xi can be reordered, but must be distinct. When the order of xi are changed,
one obtains the same polynomial but in different form.

Example 6.4 Given the following 4 points (n = 3)

xi 3 1 5 0
yi 6 2 7 1

find a polynomial of degree 3 in Newton’s form to interpolate these data.

Sol:

xi k = 0 k = 1 k = 2 k = 3
3 6

> 2
1 2 > −3

8

> 5
4

> − 17
120

5 7 > 1
20

> 6
5

0 1
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So,

P (x) = 6 + 2(x− 3)− 3

8
(x− 3)(x− 1)− 17

120
(x− 3)(x− 1)(x− 5).

Note that c0, c1, . . . , cn−1 are changed, but cn is unchanged, and the polynomial is
expressed in different form.

Theorem 6.4 Suppose f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct numbers in [a, b].
Then there exists ξ ∈ (a, b) such that

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

Sol: Let

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1)

be the interpolating polynomial of f in Newton’s form. Define

g(x) = f(x)− Pn(x).

Since Pn(xi) = f(xi) for i = 0, 1, . . . , n, the function g has n + 1 distinct zeros in [a, b].
By the generalized Rolle’s Theorem, there exists ξ ∈ (a, b) such that

g(n)(ξ) = f (n)(ξ)− P (n)
n (ξ) = 0.

Note that

P (n)
n (x) = n!f [x0, x1, . . . , xn].

As a consequence

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

An algorithm, to be introduced, for computing the divided-difference table is very
efficient and is recommended as the best scheme for producing an interpolating polynomial
in Newton’s form. First we change the notation to

ai,k = f [xi, xi+1, . . . , xi+k]

=
f [xi+1, xi+2, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi

=
ai+1,k−1 − ai,k−1

xi+k − xi

so that the divided-difference table has the entries as shown in the following.
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xi k = 0 k = 1 k = 2 k = n
x0 a00

〉 a01

x1 a10 〉 a02

〉 a12
. . .

x2 a20 〉 a12
. . .

〉 a21 · · · a0,n

x3 a30
...

. . .
...

...
. . .

...
...

. . .

〉 an−1,1

xn an,0

The interpolating polynomial, of course, is

Pn(x) = a00 +
n∑

k=1

a0,k

k−1∏
j=0

(x− xj). (6.17)

Algorithm 6.1 (Divided-Difference Table) Given n+ 1 distinct data points (xi, yi),
i = 0, 1, . . . , n, this algorithm computes the coefficients of the interpolating polynomial in
Newton’s form by constructing the divided-difference table.

for i = 0, 1, . . . n do
a(i, 0) = y(i) = f(x(i))

end for
for k = 1, . . . , n do

for i = 0, 1, . . . , n− k do

a(i, k) =
a(i+ 1, k − 1)− a(i, k − 1)

x(i+ k)− x(i)
end for

end for

This algorithm uses one 2-d array of (n + 1) × (n + 1) for the storage of all aij.
The inner i-loop can be performed in parallel. If only the coefficients in the Newton’s
interpolating polynomial are required for one set of data, an improved algorithm which
uses only one 1-d array of size n + 1 can be derived. The modified algorithm, however,
can not be executed in parallel.

Algorithm 6.2 (Divided-Difference Algorithm) Given n+1 distinct points (xi, yi),
i = 0, 1, . . . , n, this algorithm computes the coefficients of the interpolating polynomial in
Newton’s form using an 1-d array of size n+ 1..
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for i = 0, 1, . . . , n do

c(i) = y(i) = f(x(i))
end for
for k = 1, . . . , n do

for i = n, n− 1, . . . , k do

c(i) =
c(i)− c(i− 1)

x(i)− x(i− k)
end for

end for

Newton’s interpolatory divided-difference formula can be expressed in a simplified
form when x0, x1, . . . , xn are arranged consecutively with equal spacing. Let

h =
xn − x0

n
= xi+1 − xi, i = 0, 1, . . . , n− 1.

Then each xi = x0 + i ∗ h, i = 0, 1, . . . , n. For any x ∈ [a, b], write

x = x0 + s ∗ h, s ∈ R.

Hence x− xi = (s− i) ∗ h and

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) · · · (x− xk−1)

= f(x0) +
n∑

k=1

f [x0, x1, . . . , xk](s− 0) ∗ h ∗ (s− 1) ∗ h ∗ · · · (s− k + 1) ∗ h

= f(x0) +
n∑

k=1

f [x0, x1, . . . , xk]s(s− 1) · · · (s− k + 1)hk

= f(x0) +
n∑

k=1

f [x0, x1, . . . , xk]k!

(
s

k

)
hk, (6.18)

where the binomial formula (
s

k

)
=
s(s− 1) · · · (s− k + 1)

k!

is used. This formula is called the Newton forward divided-difference formula.
Next we introduce the forward difference notation 4

4f(xi) = f(xi+1)− f(xi) (6.19)

and
4kf(xi) = 4k−1f(xi+1)−4k−1f(xi) = 4

(
4k−1f(xi)

)
, (6.20)

for i = 0, 1, . . . , n− 1. With this notation,

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

=
1

h
4f(x0)

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=
1
h
4f(x1)− 1

h
4f(x0)

2h
=

1

2h2
42f(x0),
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and, in general

f [x0, x1, . . . , xk] =
1

k!hk
4kf(x0). (6.21)

Using the forward difference4 notation, the Newton’s forward divided-difference formula
can be expressed as

Pn(x) = f(x0) +
n∑

k=1

(
s

k

)
4kf(x0). (6.22)

This formula is called the Newton forward-difference formula.
If the interpolation nodes are arranged as xn, xn−1, . . . , x0, a formula for the interpo-

lating polynomial similar to results

Pn(x) = f [xn] +
n∑

k=1

f [xn, xn−1, . . . , xn−k](x− xn)(x− xn−1) · · · (x− xn−k+1). (6.23)

If the nodes are equally spaced with

h =
xn − x0

n
, xi = xn − (n− i) ∗ h, x = xn + s ∗ h,

then

Pn(x) = f [xn] +
n∑

k=1

f [xn, xn−1, . . . , xn−k]s ∗ h ∗ (s+ 1) ∗ h ∗ · · · ∗ (s+ k − 1) ∗ h

= f(xn) +
n∑

k=1

f [xn, xn−1, . . . , xn−k](−1)kk!

(
−s
k

)
hk (6.24)

where the binomial formula is extended to include all real value s(
−s
k

)
=
−s(−s− 1) · · · (−s− k + 1)

k!
= (−1)k s(s+ 1) · · · (s+ k − 1)

k!
.

This form is called the Newton backward divided-difference formula. Similarly, we can
introduce the backward-difference notation

∇kf(xi) = ∇k−1f(xi)−∇k−1f(xi−1) = ∇
(
∇k−1f(xi)

)
, (6.25)

then

f [xn, xn−1] =
1

h
∇f(xn), f [xn, xn−1, xn−2] =

1

2h2
∇2f(xn),

and, in general,

f [xn, xn−1, . . . , xn−k] =
1

k!hk
∇kf(xn). (6.26)

Using this backward-difference ∇ notation, the Newton backward divided-difference for-
mula can be written as

Pn(x) = f(x0) +
n∑

k=1

(−1)k

(
−s
k

)
∇kf(xk). (6.27)

This is called the Newton backward-difference formula.
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6.1.6 Error Analysis for Polynomial Interpolation

Theorem 6.5 Suppose f(x) ∈ Cn+1[a, b], and P (x) is a polynomial of degree ≤ n that
interpolates f at n+1 given distinct points x0, x1 . . . , xn in [a, b]. Then for each x ∈ [a, b],
there exists a point ξx ∈ (a, b) such that

f(x)− P (x) =
1

(n+ 1)!
f (n+1)(ξx)

n∏
k=0

(x− xk). (6.28)

Proof: Note first that if x = xi for some 0 ≤ i ≤ n, then P (x) = f(x), the theorem
holds for any arbitrary ξx ∈ (a, b). Suppose that x ∈ [a, b] but x 6= xi for all i = 0, 1, . . . , n.
Define a new function

g(t) = f(t)− P (t)− [f(x)− P (x)]
n∏

k=0

(t− xk)

(x− xk)
, t ∈ [a, b].

Since f ∈ Cn+1[a, b], P ∈ C∞[a, b], and x 6= xi, ∀ i, it follows that g(t) is well-defined
for all t ∈ [a, b], and g ∈ Cn+1[a, b]. Then

g(xi) = f(xi)− P (xi)− [f(x)− P (x)]
n∏

k=0

(xi − xk)

(x− xk)
= 0, i = 0, 1, . . . , n.

Moreover

g(x) = f(x)− P (x)− [f(x)− P (x)]
n∏

k=0

(x− xk)

(x− xk)
= 0.

Thus g ∈ Cn+1[a, b] and g has n + 2 zeros in [a, b]. By the generalized Rolle’s theorem,
there exists ξx ∈ (a, b) for which g(n+1)(ξx) = 0. Hence

0 = g(n+1)(ξx) = f (n+1)(ξx)− P (n+1)(ξx)− [f(x)− P (x)]

[
dn+1

dtn+1

n∏
k=0

(t− xk)

(x− xk)

] ∣∣∣∣∣
t=ξx

= f (n+1)(ξx)− 0− [f(x)− P (x)] · (n+ 1)!∏
(x− xk)

.

Therefore

f(x)− P (x) =
1

(n+ 1)!
f (n+1)(ξx)

n∏
k=0

(x− xk).

Example 6.5 Suppose f(x) = sinx is approximated by an interpolating polynomial p(x)
of degree 9 in [0, 1]. Estimate |f(x)− p(x)|, for all x ∈ [0, 1].

Sol: With n = 9, and since f(x) = sinx,
∣∣f (10)(ξ)

∣∣ ≤ 1, and x ∈ [0, 1],

|x− xi| ≤ 1, =⇒

∣∣∣∣∣
10∏
i=0

(x− xi)

∣∣∣∣∣ ≤ 1,

we have

|f(x)− p(x)| = 1

10!

∣∣f (10)(ξ)
∣∣ ∣∣∣∣∣

10∏
i=0

(x− xi)

∣∣∣∣∣ ≤ 1

10!
.
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6.2 Hermite Interpolation

If values of a function f and some of its derivatives are to be interpolated by a polynomial,
the topic is known as Birkhoff interpolation. The general problem of this type may have
some intriguing difficulties associated with it because the linear system of equations from
which we expect to compute the coefficients in the polynomial may be singular.

Example 6.6 Find a polynomial p that assumes theses values:

p(0) = 0, p(1) = 1, p′
(

1

2

)
= 2.

Sol: Since there are three conditions, we try a quadratic polynomial

p(x) = a+ bx+ cx2.

Then p′(x) = b+ 2cx. Plug in the given conditions, we have

a = 0

a+ b+ c = 1

b+ c = 2

However the coefficient matrix of this linear system of equations 1 0 0
1 1 1
0 1 1


is singular. There is no solution for coefficients a, b, and c. Thus there is no polynomial
of degree at most 2 that solves this problem.

The problems in a restricted class are the ones generally known as Hermite interpo-
lation. Consider the given n + 1 data points x0 < x1 < · · · < xn, and real numbers y

(k)
i ,

k = 0, 1, . . . ,mi − 1, i = 0, 1, . . . , n, where

y
(0)
0 = f(x0) y

(0)
1 = f(x1) · · · y

(0)
n = f(xn)

y
(1)
0 = f

′
(x0) y

(1)
1 = f

′
(x1) · · · y

(1)
n = f

′
(xn)

...
...

...

y
(m0−1)
0 = f (m0−1)(x0) y

(m1−1)
1 = f (m1−1)(x1) · · · y

(mn−1)
n = f (mn−1)(xn)

↓ ↓ ↓
m0 conditions m1 conditions · · · mn conditions

for some function f . The Hermite interpolation problem for these data consists of deter-
mining a polynomial P of degree at most N , where

N =

(
n∑

i=0

mi

)
− 1. (6.29)
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satisfies the following interpolation conditions

P (k)(xi) = y
(k)
i , j = 0, 1, . . . (mi − 1), i = 0, 1, . . . , n. (6.30)

In a Hermite interpolation problem, it is assumed that whenever a derivative p(j)(xi)
is to be prescribed at a node xi, then p(j−1)(xi), p

(j−2)(xi), . . . p
′(xi), and p(xi) will also

prescribed. The polynomial interpolation of the previous section is the special case where
ni = 1 for all i = 0, 1, . . . , n.

6.2.1 Existence and Uniqueness

Theorem 6.6 For arbitrary numbers x0 < x1 < · · · < xn, and y
(k)
i , k = 0, 1, . . . , (mi−1),

i = 0, 1, . . . , n, there exists a unique polynomial P of degree at most N , where N =
(
∑n

i=0mi)− 1, which solves the Hermite interpolation problem (6.30).

Proof: Since the polynomial P to be sought has degree at most N , write

P (x) = a0 + a1x+ · · ·+ aNx
N ,

There are N + 1 coefficents, a0, a1, . . . , aN , to be determined and there are exactly N + 1
conditions given, thus we have a square system of N + 1 linear equations in N + 1
unknowns to solve, and we wish to show that the coefficient matrix A of this system is
nonsingular.

To prove A is nonsingular, it suffices to prove that the homogeneous system Au = 0
has only the trivial solution u = 0. In the Hermite interpolation problem under discussion,
the homogeneous problem is to find a polynomial P of degree at most N such that

P (k)(xi) = 0, k = 0, 1, . . . ,mi − 1, i = 0, 1, . . . , n.

Such a polynomial has a zero of multiplicity mi at xi and must therefore be a multiple
of the polynomial given by

q(x) =
n∏

i=0

(x− xi)
mi .

However, deg(q) =
∑n

i=0mi = N + 1 whereas P has degree at most N . We therefore
conclude that P (x) = q(x) = 0. That is, A is nonsingular, and the Hermite interpolation
problem has a unique solution.

6.2.2 Lagrange Form for Hermite Interpolation

Hermite interpolating polynomial can be given explicitly in a form analogous to the poly-
nomial interpolation formula in Lagrange form. The Hermite interpolating polynomial
in Lagrange form is given by

P (x) =
n∑

i=0

mi−1∑
k=0

y
(k)
i Lik(x), (6.31)
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where, for i = 0, 1, . . . , n,

Lik(x) =

{
`i,mi−1(x), for k = mi − 1,

`ik(x)−
∑mi−1

j=k+1 `
(j)
ik (xi)Lij(x), for k = mi − 2,mi − 3, . . . , 0,

(6.32)

with the auxiliary polynomial

`ik(x) =
(x− xi)

k

k!

n∏
j=0
j 6=i

(
x− xj

xi − xj

)mj

, 0 ≤ k ≤ mi − 1, 0 ≤ i ≤ n. (6.33)

By induction

L
(s)
ik (xt) =

{
1, if i = t and k = s;

0, otherwise.

Thus P (x) is indeed the desired Hermite interpolating polynomial.

6.2.3 Divided Difference Method for Hermite Interpolation

Next we illustrate how the Newton divided difference method can be extended to solve
Hermite interpolation problems. First we denote the N + 1 conditions pairs

(x0, y
(0)
0 ), (x0, y

(1)
0 ), . . . (x0, y

(m0−1)
0 ), (x1, y

(0)
1 ), (x1, y

(1)
1 ), . . . (x1, y

(m1−1)
1 ), . . . (xn, y

(mn−1)
1 )

by consecutive coordinate pairs

( z0︸︷︷︸
x0

, y
(0)
0 ), ( z1︸︷︷︸

x0

, y
(1)
0 ), · · · , (zm0−1︸ ︷︷ ︸

x0

, y
(m0−1)
0 ), ( zm0︸︷︷︸

x1

, y
(0)
1 ), (zm0+1︸ ︷︷ ︸

x1

, y
(1)
1 ), · · · ( zN︸︷︷︸

xn

, y(mn−1)
n ).

Note that z0 ≤ z1 ≤ · · · ≤ zN . The unique Hermite interpolating polynomial in Newton’s
form can then be written as

P (x) = f [z0] +
N∑

k=1

f [z0, z1, . . . , zk](x− z0)(x− z1) · · · (x− zk−1). (6.34)

The coefficient f [z0, z1, . . . , zk] is again computed by the divided-difference method. If
zi 6= zi+k, then

f [zi, zi+1, . . . , zi+k] =
f [zi+1, zi+2, . . . , zi+k]− f [zi, zi+1, . . . , zi+k−1]

zi+k − zi

. (6.35)

However the divided-difference formula has to be modified because there may be rep-
etitions among zi. The extension of the definition of divided-differences to the case of
repeated arguments involves transition to a limit. When zi = zi+1 = · · · = zi+k, let

ξi < ξi+1 < · · · < ξi+k

be distinct coordinates and ξj → zj, for i ≤ j ≤ i+ k. Then, by applying Theorem 6.4,

f [zi, zi+1, . . . , zi+k] = lim
ξj→zj

i≤j≤i+k

f [ξi, ξi+1, . . . , ξi+k] =
f (k)(zi)

k!
(6.36)

In summary, the following algorithm computes the coefficients of the polynomial which
solves the Hermite interpolation problem.
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Algorithm 6.3 (Divided-Difference Method for Hermite Interpolation) Given ar-

bitrary x0 < x1 < · · · < xn, and y
(k)
i , k = 0, 1, . . . , (mi − 1), i = 0, 1, . . . , n, this

algorithm computes the coefficients of the polynomial P (x) such that P (k)(xi) = y
(k)
i ,

j = 0, 1, . . . (mi − 1), i = 0, 1, . . . , n.

if zi = zi+k then

f [zi, zi+1, . . . , zi+k] =
f (k)(zi)

k!
else

f [zi, zi+1, . . . , zi+k] =
f [zi+1, . . . , zi+k]− f [zi+1, . . . , zi+k−1]

zi+k − zi

end if

Example 6.7 Given
x0 = 0 x1 = 1
f(0) = 1, f(1) = 2,
f ′(0) = 2, f ′(1) = −2,

f ′′(1) = −3.

Find a polynomial of degree 4 which interpolates these data.

Sol: Constructing the divided-difference table with the previous algorithm.

zi f [zi]
0 1

> 2
0 1 > -1

> 1 > -2
1 2 > -3 > 7

2

> -2 > 3
2

1 2 > −3
2

> -2
1 2

The polynomial sought is

p(x) = 1 + 2x+ (−1)x2 − 2x2(x− 1) +
7

2
x2(x− 1)2.

6.2.4 Error Analysis for Hermite Interpolation

The interpolation error which is incurred by Hermite interpolation can be estimated in
the same fashion as for the usual polynomial interpolation.

Theorem 6.7 Suppose x0 < x1 < · · · < xn, xi ∈ [a, b]. If the polynomial P is of degree
at most N , where

N =

(
n∑

i=0

mi

)
− 1,
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and satisfies the interpolation conditions

P (k)(xi) = f (k)(xi), k = 0, 1, . . . ,mi − 1, i = 0, 1, . . . , n,

and f ∈ CN+1[a, b], then for any x ∈ [a, b] there exists ξx ∈ [a, b] such that

f(x)− P (x) =
1

(N + 1)!
f (N+1)(ξx)

n∏
i=0

(x− xi)
mi . (6.37)

6.3 Spline Interpolation

The previous sections concern the approximation of an arbitrary function on a closed
interval by a polynomial. However, the oscillatory nature of high-degree polynomials
restricts their use. An alternative approach is to divide the interval into a collection of
subintervals and construct different approximation on each subinterval. Approximation
of this type is called piecewise polynomial interpolation.

The simplest piecewise polynomial approximation is piecewise linear interpolation
which consists of joining a set of data points by a series of straight line segments. A
disadvantage of linear function approximation is that there is no assurance of differentia-
bility at each of the endpoints of the subintervals, which, in a geometrical context, means
that the interpolating function is not smooth at these points. It is often required that
the approximating function is continuously differentiable.

An alternative procedure is to use a piecewise polynomial of Hermite type. However,
to use Hermite piecewise polynomials for general interpolation, we need to know the
derivatives of the function being approximated, which is frequently not available.

In this section, we consider approximation using spline function that require no deriva-
tive information, except perhaps at the endpoints of the intervals on which the function
is being approximated. A spline function consists of polynomial pieces on subintervals
joined together with certain continuity conditions.

Definition 6.2 Suppose the interval [a, b] is partitioned by a = x0 < x1 < · · · < xn = b.
A spline function S∆ of degree k defined on [a, b] is a function such that

• S∆ is a polynomial of degree at most k on each subinterval [xi, xi+1), namely,

S∆ =


S0(x), x ∈ [x0, x1),

S1(x), x ∈ [x1, x2),
...

...

Sn−1(x), x ∈ [xn−1, xn],

and deg(Si) ≤ k, i = 0, 1, . . . , n− 1;

• S∆ is k − 1 continuous differentiable on [x0, xn], that is, S∆ ∈ Ck−1[x0, xn].

The spline function S∆(x) can be viewed as a collection of n piecewise continuous
polynomials of degree at most k having continuous derivatives of all order up to k − 1.
Spline functions yield smooth interpolating curves which are less likely to exhibit the
large oscillations characteristics of high-degree polynomials.

Given n + 1 distinct points x0 < x1 < · · · < xn and the values, yi = f(xi), i =
0, 1, . . . , n, of function f , we try to find a spline function S∆ to interpolate f(x).
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6.3.1 Cubic Spline

A spline of degree 3 is called a cubic spline.

• S∆ consists of cubic polynomials (k = 3) on each of the subinterval [xi, xi+1) glued
together;

• S∆ is twice continuous differentiable on [x0, xn]. i.e., S∆ ∈ C2[x0, xn].

S∆ =



S0(x), x ∈ [x0, x1],

S1(x), x ∈ [x1, x2],

S2(x), x ∈ [x2, x3],
...

...

Sn−1(x), x ∈ [xn−1, xn].

with
Si−1(xi) = yi = Si(xi), i = 1, 2, . . . , n− 1.

Each Si(x) is a polynomial of degree 3, therefore, there are 4 parameters to be de-
termined for each Si(x). Hence, 4n parameters in total need to be computed. On each
subinterval,

Si(xi) = yi, Si(xi+1) = yi+1, i = 0, 1, 2, . . . , n− 1. (6.38)

These give 2n conditions. The twice conditions differentiable conditions lead to

S ′i−1(xi) = S ′i(xi), S ′′i−1(xi) = S ′′i (xi), i = 1, 2, . . . , n− 1, (6.39)

and give 2n − 2 conditions. Together, we have 4n − 2 conditions and 4n parameters to
be determined. This leaves 2 degree of freedom.

Since Si(x) is a polynomial of degree 3, hence S ′′i (x) is a polynomial of degree 1. We
may write

S ′′i (x) = Aix+Bi.

Assume {
S ′′i (xi) = zi,

S ′′i (xi+1) = zi+1,
i = 0, 1, 2, . . . , n− 1. (6.40)

Then {
Aixi +Bi = zi,

Aixi+1 +Bi = zi+1.
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Let hi = xi+1 − xi. Then

Ai =
zi+1 − zi

xi+1 − xi

=
zi+1 − zi

hi

.

and

Bi = zi − Aixi = zi −
zi+1 − zi

hi

xi.

Hence,

S ′′i (x) =
zi+1 − zi

hi

x+ zi −
zi+1 − zi

hi

xi

=
zi+1

hi

x− zi

hi

x+ zi −
zi

hi

xi +
zi+1

hi

xi

=
zi+1

hi

(x− xi)−
zi

hi

x+ zi +
zi

hi

(xi+1 − hi)

=
zi+1

hi

(x− xi)−
zi

hi

x+ zi +
zi

hi

xi+1 − zi

=
zi+1

hi

(x− xi) +
zi

hi

(xi+1 − x)

=
zi+1

hi

(x− xi)−
zi

hi

(x− xi+1), i = 1, 2, . . . , n− 1,

and

S ′i(x) =
zi+1

hi

∫
(x− xi) dx+

zi

hi

∫
(xi+1 − x) dx

=
1

2

zi+1

hi

(x− xi)
2 − 1

2

zi

hi

(xi+1 − x)2 + Fi,

Therefore

Si(x) =
1

6

zi+1

hi

(x− xi)
3 − 1

6

zi

hi

(x− xi+1)
3 + Fi(x− xi) +Gi,

Using the conditions Si(xi) = yi and Si(xi+1) = yi+1, we can determine Fi and Gi.

yi = −1

6

zi

hi

(xi − xi+1)
3 +Gi, =⇒ Gi = yi −

1

6
zih

2
i .

and

yi+1 =
1

6

zi+1

hi

(xi+1 − xi)
3 + Fi(xi+1 − xi) +Gi =⇒ Fi =

yi+1 − yi

hi

+
1

6
hi(zi − zi+1).

Hence,

Si(x) =
1

6

zi+1

hi

(x− xi)
3 − 1

6

zi

hi

(x− xi+1)
3 +

[
1

hi

(yi+1 − yi) +
1

6
hi(zi − zi+1)

]
(x− xi)

+(yi −
1

6
zih

2
i ), i = 0, 1, 2, . . . n− 1,

and

S ′i(x) =
1

2

zi+1

hi

(x− xi)
2 − 1

2

zi

hi

(x− xi+1)
2 +

1

hi

(yi+1 − yi) +
1

6
hi(zi − zi+1).
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What left is to determine zi = S ′′i (xi), for i = 0, 1, . . . , n− 1. Since S ′i−1(xi) = S ′i(xi), for
i = 1, 2, . . . , n− 1,

1

6
hi−1zi−1 +

1

3
hi−1zi +

1

hi−1

(yi − yi−1) = −1

3
hizi −

1

6
hizi+1 +

1

hi

(yi+1 − yi),

which leads to

hi−1zi−1 + 2(hi−1 + hi)zi + hizi+1 =
6

hi

(yi+1 − yi)−
6

hi−1

(yi − yi−1).

If we define

ci =
6

hi

(yi+1 − yi),

then
6

hi

(yi+1 − yi)−
6

hi−1

(yi − yi−1) = ci − ci−1.

Let bi = ci − ci−1. Then

hi−1zi−1 + 2(hi−1 + hi)zi + hizi+1 = bi, (6.41)

for i = 1, 2, . . . , n − 1. There are n − 1 equations with n + 1 unknowns z0, z1, . . . , zn.
Recall, we have 2 degrees of freedom. The widely used choice is to let z0 = zn = 0, i.e.,

S ′′∆(x0) = S ′′∆(xn) = 0

This is called the natural spline. With this convention, we have n−1 equations and want
to solve n− 1 unknowns z1, z2, . . . , zn−1. equation () leads to a linear system of following
form.

2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . . . . . . . .
. . . . . . hn−2

hn−2 2(hn−2 + hn−1)





z1

z2

z3
...
...

zn−1


=



b1
b2
b3
...
...
bn−1


The coefficient matrix is tridiagonal, symmetric, and diagonally dominant. Hence, Gaus-
sian elimination without pivoting can be used to solve the system for z1, . . . , zn. Once zi

are computed, Si(x) can be determined.
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Chapter 7

Numerical Differentiation and
Integration

7.1 Numerical Differentiation

7.1.1 Finite Difference Method

Suppose a given function f has continuous first derivative and f ′′ exists. From Taylor’s
theorem

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(ξ)h2, , h > 0,

where ξ is between x and x+ h, one has

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(ξ) =

f(x+ h)− f(x)

h
+O(h).

Hence it is reasonable to use the approximation

f ′(x) ≈ f(x+ h)− f(x)

h
(7.1)

difference, and the error involved is

|e| = h

2
|f ′′(ξ)| ≤ max

t∈(x,x+h)
|f ′′(t)|. (7.2)

This kind of error is called the truncation error and is unavoidable when using finite
difference approach because the Taylor series is truncated. A only special case is when f
is a linear function in which e = 0.

Similarly one can derive the backward finite difference approximation

f ′(x) ≈ f(x)− f(x− h)
h

(7.3)

which has the same order of truncation error as the forward finite difference scheme.
In theory, the truncation error e→ 0 as h→ 0. However, the roundoff error will kick

in when h is small. This is because when h is small

x ≈ x+ h =⇒ f(x) ≈ f(x+ h)
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since f is continuous. This results cancellation of significance in evaluating f(x+h)−f(x).
Higher precision operation should be used to prevent such subtractive cancellation.

The forward difference is an O(h) scheme. An O(h2) scheme can also be derived from
the Taylor’s theorem

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(ξ1)h

3

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(ξ2)h

3,

where ξ1 is between x and x+ h and ξ2 is between x and x− h. Hence

f(x+ h)− f(x− h) = 2f ′(x)h+
1

6
[f ′′′(ξ1) + f ′′′(ξ2)]h

3

and

f ′(x) =
f(x+ h)− f(x− h)

2h
− 1

12
[f ′′′(ξ1) + f ′′′(ξ2)]h

2

Let

M = max
z∈[x−h,x+h]

f ′′′(z) and m = min
z∈[x−h,x+h]

f ′′′(z).

If f ′′′ is continuous on [x−h, x+h], then by the intermediate value theorem, there exists
ξ ∈ [x− h, x+ h] such that f(ξ) = 1

2
[f ′′′(ξ1) + f ′′′(ξ2)]. Hence

f ′(x) =
f(x+ h)− f(x− h)

2h
− 1

6
f ′′′(ξ)h2 =

f(x+ h)− f(x− h)
2h

+O(h2). (7.4)

This is called center difference approximation and the truncation error is

|e| = h2

6
f ′′′(ξ)

Similarly, we can derive an O(h2) scheme from Taylor’s theorem for f ′′(x)

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− 1

12
f (4)(ξ)h2, (7.5)

where ξ is between x− h and x+ h.

7.1.2 Polynomial Interpolation Method

A general approach for numerical differentiation is to use polynomial interpolation. For
a given function f (or a set of function values), we find a polynomial p such that p ≈ f
and expect p′ ≈ f ′.

Suppose that n + 1 points, x0, x1, . . . , xn, and values of f , f(x0), f(x1), . . . , f(xn),
have been given or evaluated, we apply the Lagrange polynomial interpolation scheme to
derive

p(x) =
n∑

i=0

f(xi)`i(x), (7.6)
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where

`i(x) =
n∏

j=0,j 6=i

x− xj

xi − xj

. (7.7)

Since f(x) can be written as

f(x) =
n∑

i=0

f(xi)`i(x) +
1

(n+ 1)!
f (n+1)(ξx)w(x), (7.8)

where

w(x) =
n∏

j=0

(x− xj), (7.9)

we have, by taking derivative,

f ′(x) =
∑
i=0

nf(xi)`
′
i(x) +

1

(n+ 1)!
f (n+1)(ξx)w

′(x) +
1

(n+ 1)!
w(x)

d

dx
f (n+1)(ξx). (7.10)

Note that

w′(x) =
n∑

j=0

n∏
i=0,i6=j

(x− xi). (7.11)

Hence a reasonable approximation for the first derivative of f is

f ′(x) ≈
n∑

i=0

f(xi)`
′
i(x). (7.12)

When x = xk for some 0 ≤ k ≤ n,

w(xk) = 0 and w′(xk) =
n∏

i=0,i6=k

(xk − xi).

Hence

f ′(xk) =
n∑

i=0

f(xi)`
′
i(xk) +

1

(n+ 1)!
f (n+1)(ξx)

n∏
i=0,i6=k

(xk − xi). (7.13)

7.1.3 Richardson Extrapolation Method

Again from the Taylor’s theorem

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f (4)(x) +

h5

5!
f (5)(x) +

h6

6!
f (6)(x) + · · ·

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(x) +

h4

4!
f (4)(x)− h5

5!
f (5)(x) +

h6

6!
f (6)(x) + · · ·

we have

f(x+ h)− f(x− h) = 2hf ′(x) +
2h3

3!
f ′′′(x) +

2h5

5!
f (5)(x) + · · · ,
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and, consequently,

f ′(x) =
f(x+ h)− f(x− h)

2h
−
[
h2

3!
f ′′′(x) +

h4

5!
f (5)(x) + · · ·

]
. (7.14)

Denote

L ≡ f ′(x) and φ(h) =
f(x+ h)− f(x− h)

2h
. (7.15)

Then equation () can be expressed as

L = φ(h) + a2h
2 + a4h

4 + a6h
6 + · · · . (7.16)

This yields the O(h2) central difference scheme.
Now replace h with h

2
in the Taylor’s expansion, one has instead

f ′(x) =
f(x+ h

2
)− f(x− h

2
)

h
−

[
1

3!

(
h

2

)2

f ′′′(x) +
1

5!

(
h

2

)4

f (5)(x) + · · ·

]
. (7.17)

This gives

L = φ(
h

2
) +

1

4
a2h

2 +
1

16
a4h

4 +
1

64
a6h

6 + · · · , (7.18)

or, equivalently,

4L = 4φ(
h

2
) + a2h

2 +
1

4
a4h

4 +
1

16
a6h

6 + · · · . (7.19)

Subtract () from ()

3L = 4φ(
h

2
)− φ(h)− 3

4
a4h

4 − 15

16
a6h

6 + · · · .

This yields an O(h4) approximation scheme

f ′(x) = L =
4

3
φ(
h

2
)− 1

3
φ(h)− 1

4
a4h

4 − 5

16
a6h

6 + · · · . (7.20)

We may repeat this idea by letting

ψ(h) =
4

3
φ(
h

2
)− 1

3
φ(h). (7.21)

Then
L = ψ(h) + b4h

4 + b6h6 + · · · (7.22)

and also

16L = 16ψ(
h

2
) + b4h

4 +
1

4
b6h

6 + · · · . (7.23)

Subtract () from () to give

15L = 16ψ(
h

2
)− ψ(h)− 3

4
b6h

6 + · · · .

It leads to an O(h6) approximation

f ′(x) = L =
16

15
ψ(
h

2
)− 1

15
ψ(h)− 1

20
b6h

6 + · · · . (7.24)

The process can be repeated again and again, and is called the Richardson extrapo-
lation. For practical implementation, we denote
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7.2 Numerical Integration

Calculating the definite integral of a given function f(x) over an interval [a, b],∫ b

a

f(x) dx, (7.25)

is a classic problem. By the fundamental theorem of Calculus, this problem is solved by
finding an anti-derivative F of f , that is, F ′(x) = f(x), and then∫ b

a

f(x) dx = F (b)− F (a).

But finding an anti-derivative is not an easy task in general. Many elementary func-
tions do not have simple anti-derivatives. Hence it is certainly not a good approach for
numerical computation.

Numerical integration is the process of producing a numerical value for the definite
integral problem (7.25). As a rule, definite integrals are computed using discretization
methods which approximate the integral by finite sums corresponding to some partition
of the interval of integration [a, b]. One powerful stratagem for computing the integral
(7.25) numerically is to replace f by another function g that approximates f well and is
easy to integrate. Hopefully, when f ≈ g, we can expect∫ b

a

f(x) dx ≈
∫ b

a

g(x) dx.

It should be no surprise that polynomials are good candidates for the function g, and
indeed g can be a polynomial that interpolates f at a certain set of nodes. With this
observation, we would expect that the interpolation techniques play an important role in
numerical integration.

7.2.1 Elements of Numerical Integration

The basic method involved in approximating the integration (7.25) is called numerical
quadrature and uses a sum of the type∫ b

a

f(x) dx ≈
n∑

i=0

cif(xi). (7.26)

The method of quadrature in this section is based on the polynomial interpolation. We
first select a set of distinct nodes {x0, x1, . . . , xn} from the interval [a, b]. Then the
Lagrange polynomial

Pn(x) =
n∑

i=0

f(xi)Li(x) =
n∑

i=0

f(xi)
n∏

j=0

j 6=i

x− xj

xi − xj

is used to approximate f(x). With the error term we have

f(x) = Pn(x) + En(x) =
n∑

i=0

f(xi)Li(x) +
f (n+1)(ζx)

(n+ 1)!

n∏
i=0

(x− xi),
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where ζx ∈ [a, b] and depends on x, and∫ b

a

f(x) dx =

∫ b

a

Pn(x) dx+

∫ b

a

En(x) dx

=
n∑

i=0

f(xi)

∫ b

a

Li(x) dx+
1

(n+ 1)!

∫ b

a

f (n+1)(ζx)
n∏

i=0

(x− xi) dx.(7.27)

The quadrature formula is, therefore,∫ b

a

f(x) dx ≈
∫ b

a

Pn(x) dx =
n∑

i=0

f(xi)

∫ b

a

Li(x) dx ≡
n∑

i=0

cif(xi), (7.28)

where

ci =

∫ b

a

Li(x) dx =

∫ b

a

n∏
j=0

j 6=i

x− xj

xi − xj

dx. (7.29)

Moreover, the error in the quadrature formula is given by

E =
1

(n+ 1)!

∫ b

a

f (n+1)(ζx)
n∏

i=0

(x− xi) dx, (7.30)

for some ζx ∈ [a, b]. If |f (n+1)(x)| ≤M on [a, b], then∣∣∣∣∣
∫ b

a

f(x) dx−
n∑

i=0

cif(xi)

∣∣∣∣∣ ≤ M

(n+ 1)!

∫ b

a

n∏
i=0

(x− xi) dx. (7.31)

The choice of nodes that makes the right-hand side of this error bound as small as possible
is know to be

xi =
a+ b

2
+
b− a

2
cos

[
(i+ 1)π

n+ 2

]
, i = 0, 1, . . . , n. (7.32)

Of course, a polynomial interpolation to f can be obtained in other ways, for example,
polynomial in Newton’s form using divided-difference method,

Pn(x) = f(x0) +
n∑

i=1

f [x0, x1, . . . , xi]
i−1∏
j=0

(x− xj)

where f [x0, x1, . . . , xi] are evaluated with the divided difference algorithm. Then∫ b

a

f(x) dx ≈ f(x0)(b− a) +
n∑

i=1

f [x0, x1, . . . , xi]

∫ b

a

i−1∏
j=0

(x− xj) dx. (7.33)

The standard derivation of quadrature error formulas is based on determining the
class of polynomials for which theses formulas produce exact results. The next definition
is used to facilitate the discussion of this derivation.

Definition 7.1 The degree of accuracy, or precision, of a quadrature formula is the
largest positive integer n such that the formula is exact for xk, when k = 0, 1, . . . , n.

The definition implies that the degree of accuracy of a quadrature formula is n if and
only if the error E = 0 for all polynomials P (x) of degree less than or equal to n, but
E 6= 0 for some polynomials of degree greater than n.
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7.2.2 Newton-Cotes Formulas

A quadrature formula of the form (7.26) is called a Newton-Cotes formula if the nodes
{x0, x1, . . . , xn} are equally spaced. Consider a uniform partition of the closed interval
[a, b] by

xi = a+ ih, i = 0, 1, . . . , n, h =
b− a
n

,

where n is a positive integer and h is called the step length. By introduction a new
variable t such that x = a+ ht, the fundamental Lagrange polynomial becomes

Li(x) =
n∏

j=0

j 6=i

x− xj

xi − xj

=
n∏

j=0

j 6=i

a+ ht− a− jh
a+ ih− a− jh

=
n∏

j=0

j 6=i

t− j
i− j

≡ ϕi(t).

Therefore, the integration (7.29) gives

ci =

∫ b

a

Li(x) dx =

∫ n

0

ϕi(t)h dt = h

∫ n

0

n∏
j=0

j 6=i

t− j
i− j

dt, (7.34)

and the general Newton-Cotes formula has the form∫ b

a

f(x) dx = h
n∑

i=0

f(xi)

∫ n

0

n∏
j=0

j 6=i

t− j
i− j

dt+
1

(n+ 1)!

∫ b

a

f (n+1)(ζx)
n∏

i=0

(x− xi) dx. (7.35)

The simplest case is to choose n = 1, x0 = a, x1 = b, h = b − a, and use the linear
Lagrange polynomial

P1(x) = f(x0)
x− x1

x0 − x1

+ f(x1)
x− x0

x1 − x0

= f(a)
x− b
a− b

+ f(b)
x− a
b− a

.

to interpolate f(x). Then

c0 = h

∫ 1

0

t− 1

0− 1
dt =

h

2
, c1 = h

∫ 1

0

t− 0

1− 0
dt =

h

2
,

and ∫ b

a

P1(x) dx = c0f(x0) + c1f(x1) =
h

2
[f(a) + f(b)] .

Since (x − x0)(x − x1) = (x − a)(x − b) does not change sign on [a, b], by the Weighted
Mean-Value Theorem for integrals, there exists some ξ ∈ (a, b) such that∫ b

a

f ′′(ζx)(x− x0)(x− x1) dx = f ′′(ξ)

∫ b

a

(x− x0)(x− x1) dx

= f ′′(ξ)

∫ b

a

(x− a)(x− b) dx

= f ′′(ξ)

[
1

3
x3 − 1

2
(a+ b)x2 + abx

] ∣∣∣∣∣
b

a

= −1

6
f ′′(ξ)(b− a)3 = −1

6
f ′′(ξ)h3.
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Consequently, ∫ b

a

f(x) dx =
h

2
[f(a) + f(b)]− h3

12
f ′′(ξ).

This gives the so-called Trapezoidal rule.

Trapezoidal Rule:∫ b

a

f(x) dx =
1

2
(b− a) [f(a) + f(b)]− h3

12
f ′′(ξ), (7.36)

where h = b− a and ξ ∈ (a, b).
It is evident that the error term of the Trapezoidal rule is O(h3). Since the rule

involves f ′′, it gives the exact result when applied to any function whose second derivative
is identically zero, e.g., any polynomial of degree 1 or less. Hence the degree of accuracy
of Trapezoidal rule is one.

If we choose n = 2, x0 = a, x1 = 1
2
(a+ b), x2 = b, h = (b− a)/2, and the second order

Lagrange polynomial

P2(x) = f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ f(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

to interpolate f(x), then

c0 = h

∫ 2

0

t− 1

0− 1
· t− 2

0− 2
dt =

h

2

∫ 2

0

(t2 − 3t+ 2) dt =
h

3
,

c1 = h

∫ 2

0

t− 0

1− 0
· t− 2

1− 2
dt = −h

∫ 2

0

(t2 − 2t) dt =
4h

3
,

c2 = h

∫ 2

0

t− 0

2− 0
· t− 1

2− 1
dt =

h

2

∫ 2

0

(t2 − t) dt =
h

3
,

and ∫ b

a

P2(x) dx = c0f(x0) + c1f(x1) + c2f(x2) = h

[
1

3
f(a) +

4

3
f(
a+ b

2
) +

1

3
f(b)

]
gives the so-called Simpson’s rule. Deriving the formulation this way, however, the error
term

1

6

∫ b

a

f (3)(ζx)(x− x0)(x− x1)(x− x2) dx

provides only an O(h4) formulation involving f (3). A higher order error analysis can be
derived by expanding f in the third Taylor’s formula about x1. Then for each x ∈ [a, b],
there exists ζx ∈ (a, b) such that

f(x) = f(x1) + f ′(x1)(x− x1) +
f ′′(x1)

2
(x− x1)

2 +
f ′′′(x1)

6
(x− x1)

3 +
f (4)(ζx)

24
(x− x1)

4.
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Then

∫ b

a

f(x) dx =

[
f(x1)(x− x1) +

f ′(x1)

2
(x− x1)

2 +
f ′′(x1)

6
(x− x1)

3 +
f ′′′(x1)

24
(x− x1)

4

] ∣∣∣∣∣
b

a

+
1

24

∫ b

a

f (4)(ζx)(x− x1)
4 dx.

Note that (b− x1) = h, (a− x1) = −h, and since (x− x1)
4 does not change sign in [a, b],

by the Weighted Mean-Value Theorem for Integral, there exists ξ1 ∈ (a, b) such that∫ b

a

f (4)(ζx)(x− x1)
4 dx = f (4)(ξ1)

∫ b

a

(x− x1)
4 dx =

2f (4)(ξ1)

5
h5.

Consequently, ∫ b

a

f(x) dx = 2f(x1)h+
f ′′(x1)

3
h3 +

f (4)(ξ1)

60
h5.

Finally we replace f ′′(x1) by the central finite difference formulation

f ′′(x1) =
f(x0)− 2f(x1) + f(x2)

h2
− f (4)(ξ2)

12
h2,

for some ξ2 ∈ (a, b), to obtain∫ b

a

f(x) dx = 2hf(x1) +
h

3
(f(x0)− 2f(x1) + f(x2))−

f (4)(ξ2)

36
h5 +

f (4)(ξ1)

60
h5

= h

[
1

3
f(x0) +

4

3
f(x1) +

1

3
f(x2)

]
+

1

90

[
3

2
f (4)(ξ1)−

5

2
f (4)(ξ2)

]
h5.

By letting f(x) = x4, one can show that there exists ξ ∈ (a, b) such that∫ b

a

f(x) dx = h

[
1

3
f(x0) +

4

3
f(x1) +

1

3
f(x2)

]
+
f (4)(ξ)

90
h5.

This gives the Simpson’s rule formulation.

Simpson’s Rule:∫ b

a

f(x) dx =

(
b− a

2

)[
1

3
f(a) +

4

3
f(
a+ b

2
) +

1

3
f(b)

]
+
f (4)(ξ)

90
h5, (7.37)

for some ξ ∈ (a, b). The Simpson’s rule is an O(h5) scheme and the degree of accuracy is
three.

The Trapezoidal and Simpson’s rules are examples of a class of methods known as
closed Newton-Cotes formula. The (n+1)-point closed Newton-Cotes method uses nodes
xi = a + ih, for i = 0, 1, . . . , n, where h = (b − a)/n. Note that both endpoints, a = x0

and b = xn, of the closed interval [a, b] are included as nodes. The following theorem
details the Newton-Cotes formulas and the associated error analysis.
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Theorem 7.1 (Closed Newton-Cotes Formulas) For a given function f(x) and closed
interval [a, b], the (n+ 1)-point closed Newton-Cotes method uses nodes

xi = a+ ih, i = 0, 1, . . . , n, h =
b− a
n

.

If n is even and f ∈ Cn+2[a, b], then∫ b

a

f(x) dx = h

n∑
i=0

αif(xi) +
hn+3f (n+2)(ξ)

(n+ 2)!

∫ n

0

t2(t− 1) · · · (t− n) dt, (7.38)

and if n is odd and f ∈ Cn+1[a, b], then∫ b

a

f(x) dx = h
n∑

i=0

αif(xi) +
hn+2f (n+1)(ξ)

(n+ 1)!

∫ n

0

t(t− 1) · · · (t− n) dt, (7.39)

where ξ ∈ (a, b) and

αi =

∫ n

0

n∏
j=0

j 6=i

t− j
i− j

dt, i = 0, 1, . . . , n. (7.40)

Consequently, the degree of accuracy is n+ 1 when n is an even integer, and n when n is
an odd integer.

The weights αi in the Newton-Cotes formula has the property

n∑
i=0

αi = n. (7.41)

This can be shown by applying the formula to f(x) = 1 with interpolating polynomial
Pn(x) = 1. Let s be the common denominator of αi, that is,

αi =
σi

s
(⇒ σi = sαi)

such that σi are integers, then the formulation for approximating the definite integral can
be expressed as ∫ b

a

f(x) dx ≈ h
n∑

i=0

αif(xi) =
h

s

n∑
i=0

σif(xi). (7.42)

Some of the most common closed Newton-Cotes formulas with their error terms are listed
in the following table.

Name n s σi Error

Trapezoidal rule 1 2 1, 1 − 1
12
f (2)(ξ)h3

Simpson’s rule 2 3 1, 4, 1 − 1
90
f (4)(ξ)h5

3/8-rule 3 8
3

1, 3, 3, 1 − 3
80
f (4)(ξ)h5

Milne’s rule 4 45
2

7, 32, 12, 32, 7 − 8
945
f (6)(ξ)h7

5 288
5

19, 75, 50, 50, 75, 19 − 275
12096

f (6)(ξ)h7

Weddle’s rule 6 140 41, 216, 27, 272, 27, 216, 41 − 9
1400

f (8)(ξ)h9
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Another class of Newton-Cotes formulas is the open Newton-Cotes formulas in which
the nodes

xi = x0 + ih, i = 0, 1, . . . , n, where x0 = a+ h and h =
b− a
n+ 2

,

are used. This implies that xn = b−h, and the endpoints, a and b, are not used. Hence we
label a = x−1 and b = xn+1. The following theorem summarizes the open Newton-Cotes
formulas.

Theorem 7.2 (Open Newton-Cotes Formulas) For a given function f(x) and closed
interval [a, b], the (n+ 1)-point open Newton-Cotes method uses nodes

xi = x0 + ih, i = 0, 1, . . . , n, where x0 = a+ h and h =
b− a
n+ 2

.

If n is even and f ∈ Cn+2[a, b], then∫ b

a

f(x) dx = h

n∑
i=0

αif(xi) +
hn+3f (n+2)(ξ)

(n+ 2)!

∫ n+1

−1

t2(t− 1) · · · (t− n) dt, (7.43)

and if n is odd and f ∈ Cn+1[a, b], then∫ b

a

f(x) dx = h
n∑

i=0

αif(xi) +
hn+2f (n+1)(ξ)

(n+ 1)!

∫ n+1

−1

t(t− 1) · · · (t− n) dt, (7.44)

where ξ ∈ (a, b) and

αi =

∫ n+1

−1

n∏
j=0

j 6=i

t− j
i− j

dt, i = 0, 1, . . . , n. (7.45)

Consequently, the degree of accuracy is n+ 1 when n is an even integer, and n when n is
an odd integer.

The simplest open Newton-Cotes formula is choosing n = 0 and only using the mid-
point x0 = a+b

2
. Then the coefficient and the error term can be computed easily as

α0 =

∫ −1

1

dt = 2, and
h3f ′′(ξ)

2!

∫ 1

−1

t2 dt =
1

3
f ′′(ξ)h3.

These gives the so-called Midpoint rule or Rectangular rule.

Midpoint Rule:∫ b

a

f(x) dx = 2hf(x0) +
1

3
f ′′(ξ)h3 = (b− a)f(

a+ b

2
) +

1

3
f ′′(ξ)h3, (7.46)

for some ξ ∈ (a, b).
Analogous to the closed Newton-Cotes formulas, we list some of the commonly used

open Newton-Cotes formulas in the following table.
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Name n s σi Error

Midpoint rule 0 1 2 1
3
f (2)(ξ)h3

1 2 3, 3 3
4
f (2)(ξ)h3

2 3 8,−4, 8 14
45
f (4)(ξ)h5

3 24 55, 5, 5, 55 95
144
f (4)(ξ)h5

7.2.3 Composite Newton-Cotes Forumlas

It is obvious that the Newton-Cotes formulas are generally not suitable for numerical
integration over large interval. Higher degree formulas would be required, and the coeffi-
cients in these formulas are difficult to obtain. Also the Newton-Cotes formulas which are
based on polynomial interpolation would be inaccurate over a large interval because of
the oscillatory nature of high-degree polynomials. Now we discuss a piecewise approach,
called composite rule, to numerical integration over large interval that uses the low-order
Newton-Cotes formulas.

A composite rule is one obtained by applying an integration formula for a single
interval to each subinterval of a partitioned interval. To illustrate the procedure, we
choose an even integer n and partition the interval [a, b] into n subintervals by nodes
x0 < x1 < · · · < xn = b, and apply Simpson’s rule on each consecutive pair of subintervals.
With

h =
b− a
n

and xj = a+ jh, j = 0, 1, . . . , n,

we have on each interval [x2j−2, x2j],

∫ x2j

x2j−2

f(x) dx =
h

3
[f(x2j−2) + 4f(x2j−1) + f(x2j)]−

h5

90
f (4)(ξj),

for some ξj ∈ (x2j−2, x2j), provided that f ∈ C4[a, b]. The composite rule is obtained by
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summing up over the entire interval, that is,∫ b

a

f(x) dx =

n/2∑
j=1

∫ x2j

x2j−2

f(x) dx

=

n/2∑
j=1

[
h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j))−

h5

90
f (4)(ξj)

]
=

h

3
[f(x0) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + f(x4) + 4f(x5)

+ · · ·+ f(xn−2) + 4f(xn−1) + f(xn)]− h5

90

n/2∑
j=1

f (4)(ξj)

=
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5)

+ · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]− h5

90

n/2∑
j=1

f (4)(ξj)

=
h

3

f(x0) + 4

n/2∑
j=1

f(x2j−1) + 2

(n/2)−1∑
j=1

f(x2j) + f(xn)

− h5

90

n/2∑
j=1

f (4)(ξj).

To estimate the error associated with approximation, since f ∈ C4[a, b], we have, by the
Extreme Value Theorem,

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

for each ξj ∈ (x2j−2, x2j). Hence

n

2
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤
n

2
max
x∈[a,b]

f (4)(x),

and

min
x∈[a,b]

f (4)(x) ≤ 2

n

n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x).

By the Intermediate Value Theorem, there exists µ ∈ (a, b) such that

f (4)(µ) =
2

n

n/2∑
j=1

f (4)(ξj).

Thus, by replacing n = (b− a)/h,

n/2∑
j=1

f (4)(ξj) =
n

2
f (4)(µ) =

b− a
2h

f (4)(µ).

Consequently, the composite Simpson’s rule is derived.
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Composite Simpson’s Rule:

∫ b

a

f(x) dx =
h

3

f(a) + 4

n/2∑
j=1

f(x2j−1) + 2

(n/2)−1∑
j=1

f(x2j) + f(b)

− b− a
180

f (4)(µ)h4,

(7.47)
where n is an even integer, h = (b − a)/n, xj = a + jh, for j = 0, 1, . . . , n, and some
µ ∈ (a, b).

The composite Midpoint rule can be derived in a similar way, except the midpoint
rule is applied on each subinterval [x2j−1, x2j] instead. That is,

∫ x2j

x2j−2

f(x) dx = 2hf(x2j−1) +
h3

3
f ′′(ξj), j = 1, 2, . . . ,

n

2
.

Note that n must again be even. Consequently,

∫ b

a

f(x) dx = 2h

n/2∑
j=1

f(x2j−1) +
h3

3

n/2∑
j=1

f ′′(ξj).

The error term can be written as

n/2∑
j=1

f ′′(ξj) =
n

2
f ′′(µ) =

b− a
2h

f ′′(µ),

for some µ ∈ (a, b). Therefore, the composite Midpoint rule has the following formulation.

Composite Midpoint Rule:

∫ b

a

f(x) dx = 2h

n/2∑
j=1

f(x2j−1)−
b− a

6
f ′′(µ)h2, (7.48)

where n is an even integer, h = (b − a)/n, xj = a + jh, for j = 0, 1, . . . , n, and some
µ ∈ (a, b).

To derive the composite Trapezoidal rule, we partition the interval [a, b] by n equally
spaced nodes a = x0 < x1 < · · · < xn = b, where n can be either odd or even. We then
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apply the trapezoidal rule on each subinterval [xj−1, xj] and sum them up to obtain∫ b

a

f(x) dx =
n∑

j=1

∫ xj

xj−1

f(x) dx

=
n∑

j=1

[
h

2
(f(xj−1) + f(xj))−

h3

12
f ′′(ξj)

]

=
h

2
[f(x0) + f(x1) + f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn)]− h3

12

n∑
j=1

f ′′(ξj)

=
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)]− h3

12

n∑
j=1

f ′′(ξj)

=
h

2

[
f(a) +

n−1∑
j=1

f(xj) + f(b)

]
− h3

12

n∑
j=1

f ′′(ξj)

=
h

2

[
f(a) +

n−1∑
j=1

f(xj) + f(b)

]
− b− a

12
f ′′(µ)h2,

where each ξj ∈ (xj−1, xj) and µ ∈ (a, b).

Composite Trapezoidal Rule∫ b

a

f(x) dx =
h

2

[
f(a) +

n−1∑
j=1

f(xj) + f(b)

]
− b− a

12
f ′′(µ)h2, (7.49)

where n is an integer, h = (b−a)/n, xj = a+jh, for j = 0, 1, . . . , n, and some µ ∈ (a, b).

7.3 Gaussian Quadrature

In the preceding section, the quadrature formulas of the type∫ b

a

f(x) dx ≈
n∑

i=0

cif(xi) (7.50)

are based on polynomial interpolation, where the choice of nodes x0, x1, . . . , xn was made
a priori. All Newton-Cotes formulas use values of the function at equally spaced points.
Once the nodes were fixed, the coefficients were determined, e.g., by integrating the
fundamental Lagrange polynomials of degree n. Furthermore, these formulas are exact
for polynomials of degree ≤ n.

This approach is convenient when the formulas are combined to form the composite
rules, but the restriction may decrease the accuracy of the approximation. It is nature
to ask whether some choices of nodes are better than others in formula (7.50). In this
section, we consider the Gaussian quadrature which chooses the points for evaluation in
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an optimal, rather than pre-fixed or equally-spaced, way. The theory can be formulated
for quadrature rule of a slightly more general form, namely,∫ b

a

f(x)w(x) dx ≈
n∑

i=0

cif(xi), (7.51)

where w(x) is a fixed positive weight function. The case when w(x) ≡ 1 is, naturally,
of special importance. The nodes x0, x1, . . . , xn in the interval [a, b] and the coefficients
c0, c1, . . . , cn are chosen to minimize the expected error obtained in performing the ap-
proximation (7.51), and to produce the exact result for the largest class of polynomials,
that is, the choice which gives the greatest degree of precision.

The coefficients c0, c1, . . . , cn in the approximation formula (7.51) are arbitrary, and
the nodes x0, x1, . . . , xn are restricted only by the specification that they lie in [a, b],
the interval of integration. These give 2n + 2 degrees of freedom. Thus we can expect
that the quadrature formula of the form (7.51) can be discovered that will be exact for
polynomials of degree ≤ 2n+ 1.

7.3.1 Orthogonal Polynomials and Quadrature Rule

Recall that a real inner-product space E is a linear vector space in which an inner product
< ·, · > and a norm ‖ · ‖ have been defined with the following properties:

1. 〈f, g〉 = 〈g, f〉

2. 〈f, αg + βh〉 = α〈f, g〉+ β〈f, h〉

3. 〈f, f〉 > 0 if f 6= 0, and 〈f, f〉 = 0 if and only if f = 0

4. ‖f‖ =
√
〈f, f〉

where f, g, h ∈ E and α, β ∈ R.
In a inner-product space, we say f is orthogonal to g, and write f ⊥ g if 〈f, g〉 = 0.

We write f ⊥ G if f ⊥ g for all g ∈ G. We say that a finite or infinite sequence of
vectors f1, f2, . . . in an inner-product space is orthogonal if 〈fi, fj〉 = 0 for all i 6= j, and
orthonormal if 〈fi, fj〉 = δij.

Lemma 7.1 In an inner-product space, we have

1. 〈
∑n

i=1 aifi, g〉 =
∑n

i=1 ai〈fi, g〉

2. ‖f + g‖2 = ‖f‖2 + 2〈f, g〉+ ‖g‖2

3. If f ⊥ g, then ‖f + g‖2 = ‖f‖2 + ‖g‖2

4. |〈f, g〉| ≤ ‖f‖‖g‖

5. ‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2
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The space of continuous functions on [a, b], C[a, b], with inner-product defined as

〈f, g〉 =

∫ b

a

f(x)g(x)w(x) dx, (7.52)

where w(x) is a fixed continuous positive function called weight function, is an inner-
product space.

Definition 7.2 {φ0, φ1, . . . , φn}, where φi ∈ C[a, b] for all i = 0, 1, . . . , n, is said to be
an orthogonal set of functions for the interval [a, b] with respect to the weight function w
if

〈φi, φj〉 =

∫ b

a

φi(x)φj(x)w(x) dx =

{
0, when i 6= j,

αi > 0, when i = j.

If, in addition, αi = 1 for all i = 0, 1, . . . , n, then the set is said to be orthonormal.

Theorem 7.3 The set of polynomials {p0, p1, . . . , pn} defined inductively as follows is
orthogonal:

pn(x) = (x− an)pn−1(x)− bnpn−2(x) (n ≥ 2)

with p0(x) = 1, p1(x) = x− a1, and

an =
〈xpn−1, pn−1〉
〈pn−1, pn−1〉

, bn =
〈xpn−1, pn−2〉
〈pn−2, pn−2〉

.

Proof: It is clear from the formulation that each pn is a monic polynomial of degree n
and is therefore not zero. Hence, the denominators in an and bn are not zero. Now we
prove the theorem by induction on n that 〈pn, pi〉 = 0 for i = 0, 1, . . . , n− 1.

For n = 1, it can be shown directly from the definition that

〈p1, p0〉 = 〈(x− a1)p0, p0〉 = 〈xp0, p0〉 − a1〈p0, p0〉 = 〈xp0, p0〉 −
〈xp0, p0〉
〈p0, p0〉

〈p0, p0〉 = 0.

Now suppose that the assertion is true for an index n− 1, where n ≥ 2. That is

〈pn−1, pi〉 = 0, i = 0, 1, . . . , n− 2, n ≥ 2.

Now we can verify that

〈pn, pn−1〉 = 〈(x− an)pn−1 − bnpn−2, pn−1〉
= 〈xpn−1, pn−1〉 − an〈pn−1, pn−1〉 − bn〈pn−2, pn−1〉

= 〈xpn−1, pn−1〉 −
〈xpn−1, pn−1〉
〈pn−1, pn−1〉

〈pn−1, pn−1〉

= 0,

〈pn, pn−2〉 = 〈(x− an)pn−1 − bnpn−2, pn−2〉
= 〈xpn−1, pn−2〉 − an〈pn−1, pn−2〉 − bn〈pn−2, pn−2〉

= 〈xpn−1, pn−2〉 −
〈xpn−1, pn−2〉
〈pn−2, pn−2〉

〈pn−2, pn−2〉

= 0,
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and, for i = 1, . . . , n− 3,

〈pn, pi〉 = 〈(x− an)pn−1 − bnpn−2, pi〉
= 〈xpn−1, pi〉 − an〈pn−1, pi〉 − bn〈pn−2, pi〉
= 〈xpn−1, pi〉
= 〈pn−1, xpi〉
= 〈pn−1, xpi − ai+1pi − bi+1pi−1 + ai+1pi + bi+1pi−1〉
= 〈pn−1, pi+1 + ai+1pi + bi+1pi−1〉
= 〈pn−1, pi+1〉+ ai+1〈pn−1, pi〉+ bi+1〈pn−1, pi−1〉
= 0.

Finally, when i = 0,

〈pn, p0〉 = 〈(x− an)pn−1 − bnpn−2, p0〉 = 〈xpn−1, p0〉 = 〈pn−1, xp0〉 = 〈pn−1, p1 + a1p0〉 = 0.

Hence the theorem is proved.

Corollary 7.1 For any n > 0, the set of polynomials {p0, p1, . . . , pn} given in the previ-
ous theorem is linearly independent and

〈q, pn〉 =

∫ b

a

q(x)pn(x)w(x) dx = 0

for any polynomial q(x) with deg(q(x)) < n.

Proof: Suppose α0, α1, . . . , αn are real numbers such that

P (x) = α0p0(x) + α1p1(x) + · · ·+ αnpn(x) = 0.

This means that the coefficients of the terms 1, x, x2, . . . xn are all zero. Since deg(pj) = j
and αnpn is the only term in P (x) which contains the xn term, this implies αn = 0. Hence
P (x) can be reduced to

P (x) =
n−1∑
j=0

αjpj(x) = 0.

Similarly, we have αn−1 = 0, αn−2 = 0, . . . , α0 = 0. Therefore, {p0, p1, . . . , pn} is linearly
independent.

Suppose deg(q) = k < n. Write

q(x) = a0p0(x) + a1p1(x) + · · ·+ akpk(x) =
k∑

j=0

ajpj(x),

for some real numbers a0, a1, . . . , ak. Then

〈q, pn〉 =

∫ b

a

q(x)pn(x)w(x) dx

=

∫ b

a

(
k∑

j=0

ajpj(x)

)
pn(x)w(x) dx =

k∑
j=0

∫ b

a

pj(x)pn(x)w(x) dx = 0.
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Let Πn denote the set of polynomials of degree at most n, that is,

Πn = {p(x) | p(x) is a polynomial and deg(p) ≤ n}.

Definition 7.3 Let w be a positive weight function and f(x) be any nonzero continuous
function. We say f is w-orthogonal to Πn, and denote f ⊥w Πn, if

〈f, p〉 =

∫ b

a

f(x)p(x)w(x) dx = 0,

for any p(x) ∈ Πn.

Theorem 7.4 Let q(x) be any nonzero polynomial of degree n + 1, and q(x) ⊥w Πn. If
x0, x1, . . . , xn are the roots of q(x) in [a, b], and

ci =

∫ b

a

w(x)
n∏

j=0

j 6=i

x− xj

xi − xj

dx,

then ∫ b

a

f(x)w(x) dx =
n∑

i=0

cif(xi),

for any f ∈ Π2n+1. That is, the quadrature rule is exact for any polynomial of degree
≤ 2n+ 1.

Proof: For any polynomial f ∈ Π2n+1, we can write

f(x) = q(x)p(x) + r(x),

where p(x), r(x) ∈ Πn. Since x0, x1, . . . , xn are roots of q(x), we have

f(xi) = q(xi)p(xi) + r(xi) = r(xi), i = 0, 1, . . . , n.

By assumption, q ⊥w Πn, we have

〈q, p〉 =

∫ b

a

q(x)p(x)w(x) dx = 0.

Since r(x) ∈ Πn, it can be expressed exactly in the Lagrange form

r(x) =
n∑

i=0

r(xi)
n∏

j=0

j 6=i

x− xj

xi − xj

.
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Hence∫ b

a

f(x)w(x) dx =

∫ b

a

q(x)p(x)w(x) dx+

∫ b

a

r(x)w(x) dx

=

∫ b

a

r(x)w(x) dx =

∫ b

a

w(x)
n∑

i=0

r(xi)
n∏

j=0

j 6=i

x− xj

xi − xj

dx

=
n∑

i=0

r(xi)

∫ b

a

w(x)
n∏

j=0

j 6=i

x− xj

xi − xj

=
n∑

i=0

f(xi)

∫ b

a

w(x)
n∏

j=0

j 6=i

x− xj

xi − xj

=
n∑

i=0

cif(xi).

Next theorem shows that the roots of q(x) are simple roots and lie in the interior of
the interval [a, b].

Theorem 7.5 Let w ∈ C[a, b] be a positive weight function, and f ∈ C[a, b] be a nonzero
function such that f ⊥w Πn. Then f changes sign at least n+ 1 times on (a, b).

Proof: Since 1 ∈ Πn and f ⊥w Πn, we have∫ b

a

f(x)w(x) dx = 0,

and this shows that f changes sign at least once in [a, b].
Suppose that f only changes sign m times and m ≤ n. Let t0 = a < t1 < · · · < tm <

tm+1 = b such that f remains the same sign in each interval (t0, t1), (t1, t2), . . . , (tm, tm+1).
Define an m-th degree polynomial as follows

p(x) = (x− t1)(x− t2) · · · (x− tm) =
m∏

i=1

(x− ti).

Then p(x) has the same sign property as f . This implies that∫ b

a

f(x)p(x)w(x) dx 6= 0.

However, deg(p) = m ≤ n, hence p ∈ Πn. The above conclusion contradicts to the
assumption that

f ⊥w Πn =⇒
∫ b

a

f(x)p(x)w(x) dx = 0.

Therefore f changes sign at least n+ 1 times in (a, b).
These theorems show that the quadrature rule (7.51) is exact for polynomials of degree

≤ 2n+ 1 if the nodes x0, x1, . . . , xn are chosen to be the distinct roots of a polynomial of
degree n+ 1 which is w-orthogonal to Πn.
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7.3.2 Gaussian Quadrature Rule

If the positive weight function w(x) ≡ 1 and the interval is [−1, 1], then we can use
Theorem with inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x) dx

to obtain a set of orthogonal polynomials called the Lengendre polynomials. The first
few Lengendre polynomials are

p0(x) = 1

p1(x) = x

p2(x) = x2 − 1

3

p3(x) = x3 − 3

5
x

p4(x) = x4 − 6

7
x2 +

3

35

p5(x) = x5 − 10

9
x3 +

5

21
x

For a given integer n, the Lengendre polynomial pn+1 is a monic polynomial of degree
n + 1 and is orthogonal to the set of first n Lengendre polynomials {p0, p1, . . . , pn}. By
theorem, {p0, p1, . . . , pn} is linearly independent, and, hence, is a basis for the vector
space Πn. This implies that pn+1 ⊥ Πn. Thus, by theorem, the quadrature rule∫ 1

−1

f(x) dx ≈
n∑

i=0

cif(xi)

will be exact for f ∈ Π2n+1 if the nodes x0, x1, . . . , xn are chosen to be the roots of pn+1.
That is, we proved the following theorem.

Theorem 7.6 Suppose that x0, x1, . . . , xn are the roots of the (n+ 1)-st Lengendre poly-
nomial pn+1, and that for each i = 0, 1, . . . , n,

ci =

∫ 1

−1

n∏
j=0

j 6=i

x− xj

xi − xj

dx.

If f(x) is any polynomial of degree ≤ 2n+ 1, then∫ 1

−1

f(x) dx =
n∑

i=0

cif(xi).

The discussion above gives the Gaussian quadrature rule.
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Gaussian Quadrature Rule: For a given function f(x) ∈ C[−1, 1] and integer n,∫ 1

−1

f(x) dx ≈
n∑

i=0

cif(xI), (7.53)

where x0, x1, . . . , xn are the roots of the (n+ 1)-st Lengendre polynomial pn+1, and

ci =

∫ 1

−1

n∏
j=0

j 6=i

x− xj

xi − xj

dx. i = 0, 1, . . . , n.

The following table give some frequently used values for xi and ci.

n xi ci

0 x0 = 0 c0 = 2

1 x0 = −0.5773502692 c0 = c1 = 1

x1 = 0.5773502692

2 x0 = −0.7745966692 c0 = 5
9

x1 = 0 c1 = 8
9

x2 = 0.7745966692 c2 = 5
9

3 x0 = −0.8611363116 c0 = 0.3478548451

x1 = −0.3399810436 c1 = 0.6521451549

x2 = 0.3399810436 c2 = 0.6521451549

x3 = 0.8611363116 c3 = 0.3478548451

4 x0 = −0.9061798459 c0 = 0.2369268851

x1 = −0.5384693101 c1 = 0.4786286705

x2 = 0 c2 = 128
225

= 0.568888889

x3 = 0.5384693101 c3 = 0.4786286705

x4 = 0.9061798459 c4 = 0.2369268851

A definite integral over an arbitrary interval [a, b] can be transformed into an integral
over [−1, 1] by using a simple change of variable technique:

t =
2x− a− b
b− a

⇐⇒ x =
1

2
[(b− a)t+ a+ b] . (7.54)

The idea of Gaussian quadrature rule is not restricted to the use of the Lengendre
polynomials. For a given weight function w(x) and interval [a, b], the nodes x0, x1, . . . , xn

can be chosen to be the roots of any monic polynomial qn+1 of degree n + 1 which is
w-orthogonal to Πn in the sense that∫ b

a

qn+1(x)p(x)w(x) dx = 0, for all p ∈ Πn.
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The computation of the coefficients ci in a Gaussian quadrature formula proceeds in
the manner already indicated for non-Gaussian formulas once the nodes xi have been
determined. That is,

ci =

∫ b

a

w(x)
n∏

j=0

j 6=i

x− xj

xi − xj

dx, (7.55)

and ∫ b

a

f(x)w(x) dx ≈
n∑

i=0

cif(xi). (7.56)

An interesting characteristic of the Gaussian quadrature formulas can be verified imme-
diately.

Lemma 7.2 In a Gaussian quadrature formula, the coefficients ci are positive and their
sum is

∫ b

a
w(x) dx.

Proof: For any 0 ≤ k ≤ n, let

p(x) =
qn+1(x)

x− xk

.

Since the polynomial qn+1 is of degree n + 1, the polynomial p2(x) is of degree at most
2n. The Gaussian quadrature rule will be exact, that is,

0 <

∫ b

a

p2(x)w(x) dx =
n∑

i=0

cip
2(xi) = ckp

2(xk).

This shows that ck > 0 for any 0 ≤ k ≤ n. Since the Gaussian quadrature is of course
exact for f(x) = 1,

∫ b

a

f(x)w(x) dx =

∫ b

a

w(x) dx =
n∑

i=0

cif(xi) =
n∑

i=0

ci.

Note that in the Gaussian quadrature formulas the interval [a, b] can be infinite, e.g.,
[0,∞) or (−∞,∞). Some other important cases which lead to Gaussian integration rules
are listed in the following table.

[a, b] w(x) Orthogonal polynomials

[−1, 1] (1− x2)−1/2 Tn(x), Chebyshev polynomials

[0,∞) e−x Ln(x), Laguerre polynomials

(−∞,∞) e−x2
Hn(x), Hermite polynomials
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7.3.3 Error Analysis

Theorem 7.7 Consider a Gaussian quadrature formula with error term∫ b

a

f(x)w(x) dx =
n∑

i=0

cif(xi) + E. (7.57)

For any f ∈ C2n+2[a, b], we have

E =
f (2n+2)(ξ)

(2n+ 2)!

∫ b

a

q2(x)w(x) dx, where ξ ∈ (a, b) and q(x) =
n∏

i=0

(x− xi). (7.58)

Proof: By Hermite interpolation, there is a unique polynomial p(x) of degree at most
2n+ 1 such that

p(xi) = f(xi), p′(xi) = f ′(xi), i = 0, 1, . . . , n.

The error for this interpolation is

f(x)− p(x) =
1

(2n+ 2)!
f (2n+2)(ξx)

n∏
i=0

(x− xi)
2 =

1

(2n+ 2)!
f (2n+2)(ξx)q

2(x),

where ξx ∈ (a, b) depends on x. It follows that∫ b

a

f(x)w(x) dx−
∫ b

a

p(x)w(x) dx =
1

(2n+ 2)!

∫ b

a

f (2n+2)(ξx)q
2(x)w(x) dx.

Since deg(p) ≤ 2n+ 1, the Guassian quadrature formula is exact for p(x),∫ b

a

p(x)w(x) dx =
n∑

i=0

cip(xi) =
n∑

i=0

cif(xi).

Furthermore, f ∈ C2n+2[a, b], and w(x) is a positive weight function, q2(x)w(x) > 0 does
not change sign in [a, b], by the weighted Mean-Value Theorem for integral, there exist
ξ ∈ (a, b) such that∫ b

a

f (2n+2)(ξx)q
2(x)w(x) dx = f (2n+2)(ξ)

∫ b

a

q2(x)w(x) dx.

Therefore, ∫ b

a

f(x)w(x) dx =
n∑

i=0

cif(xi) +
f (2n+2)(ξ)

(2n+ 2)!

∫ b

a

q2(x)w(x) dx.
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7.4 Adaptive Quadrature

7.5 Romberg Integration

Recall the trapezoidal rule integral formulation∫ b

a

f(x) dx ≈ T (n)

=
h

2
[f(a) + 2f(a+ h) + 2f(a+ 2h) + · · ·+ 2f(a+ (n− 1)h) + f(a+ nh)],

where h = b−a
n

. Observe in the following example that the interval [a, b] is partitioned
equally-spaced by x0 = a, x1, x2, x3, and x4 = b. Let n = 2 and h = b−a

2n
. If we only

consider the partitions by x0, x2, and x4, and apply the Trapezoidal rule, we have the
approximation

T (n) =
2h

2
[f(a) + 2f(a+ 2h) + f(a+ 4h)] = h[f(a) + 2f(a+ 2h) + f(a+ 4h)].

On the other hand, if we apply Trapezoidal rule to the partitions by all points x0, x1, x2, x3,
and x4, then we have

T (2n) =
h

2
[f(a) + 2f(a+ h) + 2f(a+ 2h) + 2f(a+ 3h) + f(a+ 4h)]

=
1

2
T (n) + h[f(a+ h) + f(a+ 3h)].

This observation shows that if we have computed T (n) and the step size is halfed,
we don’t have to compute all the function values all over again, but just at those newly
added points. In general, suppose T (n) has been computed and the step size becomes
h = b−a

2n
, then

T (2n) =
1

2
T (n) + h

n∑
i=1

f(a+ (2i− 1)h). (7.59)

With this idea in mind, we can apply the trapezoidal rule recursively, i.e., we partition
the interval [a, b] into 2n subintervals with n = 1, 2, 3, . . ., and the integral formulation
becomes

T (2n) =
1

2
T (2n−1) +

b− a
2n

2n−1∑
i=1

f(a+ (2i− 1)
b− a
2n

) (7.60)

This is called the Romberg algorithm.

Algorithm 7.1 (Romberg Integration Algorithm) Use the Romberg algorithm to

evaluate
∫ b

a
f(x) dx.
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R(0, 0) = 1

2
(b− a)[f(a) + f(b)]

for n = 1, 2, . . . ,M do

R(n, 0) = 1
2
R(n− 1, 0) + b−a

2n

∑2n−1

i=1 f(a+ (2i− 1) b−a
2n )

end for
for k = 1, 2, . . . ,M do

for n = k, k + 1, . . . ,M do
R(n, k) = R(n, k−1)+ 1

4k−1
[R(n, k−1)−R(n−1, k−1)]

end for
end for

Remarks 7.1 1. The Romberg algorithm produces a table looks like the following.

2. M is modest, not too large.

3. No duplicate function evaluations in R(0, 0), R(1, 0), . . . , R(M, 0).

4. No function evaluation is needed im computing R(m, k) when k ≥ 1.

Theorem 7.8 If f ∈ C[a, b], then for each column k,

lim
n→∞

R(n, k) =

∫ b

a

f(x) dx. (7.61)

Moreover, if f ∈ C2m[a, b], then R(n,m) converges to
∫ b

a
f(x) dx with a rate of O(h2m),

where h = b−a
2n .



Chapter 8

Numerical Solutions of Ordinary
Differential Equations

In this chapter, we discuss numerical methods for solving ordinary differential equations
of initial-value problems (IVP) of the form{

y′ = f(x, y), x ∈ R
y(x0) = y0,

(8.1)

where y is a function of x, f is a function of y and x, x0 is called the initial point, and
y0 the initial value. The numerical values of y(x) on an interval containing x0 are to be
determined.

8.1 Existence and Uniqueness of Solutions

Theorem 8.1 If f(x, y) is continuous in a region Ω, where

Ω = {(x, y)| |x− x0| ≤ α, |y − y0| ≤ β} (8.2)

then the IVP (8.1) has a solution y(x) for |x−x0| ≤ min{α, β
M
}, where M = max

(x,y)∈Ω
|f(x, y)|.

Theorem 8.2 If f and ∂f
∂x

are continuous in Ω, then the IVP (8.1) has a unique solution

in the interval |x− x0| ≤ min{α, β
M
}.

Theorem 8.3 If f is continuous in a ≤ x ≤ b, −∞ < y <∞ and

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

for some positive constant L, (that is, f is Lipschitz continuous in y), then IVP (8.1)
has a unique solution in the interval [a, b].
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8.2 Euler’s Method

On of the simplest methods for solving the IVP (8.1) is the Euler’s method. Note that
the slope of the tangent line at x0 is

y′(x0) = y′0 =
y1 − y0

h
,

hence
y1 = y0 + hy′0 = y0 + hf(x0, y0)).

Repeat this idea at (x1, y1) and we get

y2 = y1 + hy′1 = y1 + hf(x1, y1),

and so on. If xi are equally spaced, and h is the increment then we have the formulation
of Euler’s mehtod

xk+1 = xk + h = x0 + (k + 1)h

yk+1 = yk + hf(xk, yk)

Euler’s method is a first-order (O(h)) method.
The Improved Euler’s method

xk+1 = xk + h = x0 + (k + 1)h

y∗k+1 = yk + hf(xk, yk) (8.3)

yk+1 = yk +
h

2

[
f(xk, yk) + f(xk+1, y

∗
k+1)

]
8.3 Runge-Kutta Methods

One of the most important methods for solving the IVP (8.1) is the Runge-Kutta method.
Recall the Taylor’s Theorem

y(x+ h) = y(x) + hy
′
(x) +

h2

2
y
′′

+
h3

2
y
′′′

+ . . .

= y(x) + hy
′
(x) +

h2

2
y
′′

+O(h3)

By differentiating y(x), we have

y
′

= f(x, y) ≡ f

y
′′

=
d

dx
f = fx + fyy

′
= fx + fyf

y
′′′

= fxx + f
d

dx
fy + fy

d

dx
f

= fxx + f(
fy

dy

dy

dx
+ fyx) + fy(fx + fyf)

= fxx + f(fyx + fyyf) + fy(fx + fyf)
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plug in, we get

y(x+ h) = y + hy
′
+
h2

2
y
′′

+O(h3)

= y + hf +
h2

2
(fx + fyf) +O(h3)

= y +
h

2
f +

h

2
f +

h2

2
(fx + fyf) +O(h3)

= y +
h

2
f +

h

2
(f + hfx + hfyf) +O(h3)

Apply Taylor’s Theorem on f

f(x+ h, y + hf) = f(x, y) + hfx + hffy +O(h2)

⇒ f + hfx + hffy ≈ f(x+ h, y + hf)

⇒ y(x+ h) = y +
1

2
hf +

h

2
f(x+ h, y + hf) +O(h3)

Let
F1 = hf(x, y) F2 = hf(x+ h, y + F1)

Then

y(x+ h) = y +
1

2
(F1 + F2)

This is called the second-order Runge-Kutta method. Two function evaluations are re-
quired at each step.

Algorithm for second-order Runge-Kutta mehtod :

for k = 0, 1, 2, . . . do
xk+1 = xk + h = x0 + (k + 1)h
F1 = hf(xk, yk)
F2 = hf(xk+1, yk + F1)
yk+1 = yk + 1

2
(F1 + F2)

end for

General form of second-order Runge-Kutta method :

y(x+ h) = y + ω1hf + ω2hf(x+ αh, y + βhf) +O(h3)

where ω1, ω2, α, β are constants to be defined, and
ω1 + ω2 = 1

ω2α = 1
2

ω2β = 1
2

.

By letting ω1 = 0, ω2 = 1, α = β = 1
2

leads to the modified Euler’s mehtod.
Fourth-Order Runge-kutta method

y(x+ h) = y +
1

6
(F1 + 2F2 + 2F3 + F4) +O(h5)
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where 
F1 = hf(x, y)

F2 = hf(x+ 1
2
h, y + 1

2
F1)

F3 = hf(x+ 1
2
h, y + 1

2
F2)

F4 = hf(x+ h, y + F3)

Algorithm for fourth-order Runge-Kutta mehtod :

for k = 0, 1, 2, . . . do
xk+ 1

2
= xk + 1

2
h

xk+1 = xk + h = x0 + (k + 1)h
F1 = hf(xk, yk)
F2 = hf(xk+ 1

2
, yk + 1

2
F1)

F3 = hf(xk+ 1
2
, yk + 1

2
F2)

F4 = hf(xk+1, yk + F3)
yk+1 = yk + 1

6
(F1 + 2F2 + 2F3 + F4) +O(h5)

end for

Local truncation error in the Runge-Kutta mehtod is the error that arises in each
step simply because of the truncated Taylor series. This error is inevitable. The fourth
Runge-Kutta method involves a local truncation error of O(h5).

The Number of function evaluations in the second order method is two and the fourth
order is four.

8.4 Systems and Higher-Order Ordinary Differential

Equations

Consider a system of first-order ODE’s.
y
′
1 = f1(x, y1, y2, . . . , yn)

y
′
2 = f2(x, y1, y2, . . . , yn)

...

y
′
n = fn(x, y1, y2, . . . , yn)

with initial conditions 
y1(x0) = y0

1

y2(x0) = y0
2

...

yn(x0) = y0
n

Define

Y =


y1

y2
...
yn

 , F =


f1

f2
...
fn

 , Y0 =


y0

1

y0
2

...
y0

n


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and transform the system into vector form{
Y
′

= F (x, Y )

Y (x0) = Y0

The Runge-Kutta methods can be easily extended to vector form.

Example 8.1{
y
′
1 = y1 + 4y2 − ex

y
′
2 = y1 + y2 + 2ex

with initial conditions

{
y1(0) = 4

y2(0) = 5
4

Sol: Transform to

Y ′ =

[
y
′
1

y
′
2

]
=

[
y1 + 4y2 − ex

y1 + y2 + 2ex

]
= F (x, Y )

Y0 =

[
4
5
4

]
, x0 = 0

Higher-Order ODE’s. An higher order ODE can be converted into a system of first-
order equations, hence higher-order ODEs can be solved in vector form.

Example 8.2 
(sinx)y′′′ + cos(xy) + sin(x2 + y′′) + (y′)3 = log x

y(2) = 7

y′(2) = 3

y′′(2) = −4

Sol: Let u1 = y, u2 = y′, and u3 = y′′

(sinx)y′′′ + cos(xy) + sin(x2 + y′′) + (y′)3 = log x

⇒ (sinx)u
′

3 + cos(xu1) + sin(x2 + u3) + (u2)
3 = log x

⇒ u′3 =
[
log x− cos(xu1)− sin(x2 + u3)− (u2)

3
]
/ sin x

system:
u′1 = u2

u′2 = u3

u
′
3 = [log x− cos(xu1)− sin(x2 + u3)− u3

2]/ sin x


u1(2) = 7

u2(2) = 3

u3(2) = −4

let

U =

 u1

u2

u3

 , F =

 u2

u3

[log x− cos(xu1)− sin(x2 + u3)− u3
2] / sin x

 ,
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and

U0 =

 7
3
−4

 , x0 = 2.

The higher-order ODE becomes {
U ′ = F (x, U)

U(x0) = U0

and can be solved by Runge-Kutta methods.



Chapter 9

Boundary-Value Problems for
Ordinary Differential Equations

Physical problems that are position-dependent rather than time dependent are often
modeled in terms of differential equations with boundary conditions imposed at more
than one point. The two-point boundary-value problems (BVP) considered in this chap-
ter involve a second-order differential equation together with boundary condition in the
following form: {

y′′ = f(x, y, y′)

y(a) = α, y(b) = β
(9.1)

The numerical procedures for finding approximate solutions to the initial-value prob-
lems can not be adapted to the solution of this problem since the specification of con-
ditions involve two different points, x = a and x = b. New techniques are introduced
in this chapter for handling problems (9.1) in which the conditions imposed are of a
boundary-value rather than an initial-value type.

9.1 Mathematical Theories

Before considering numerical methods, a few mathematical theories about the two-point
boundary-value problem (9.1), such as the existence and uniqueness of solution, shall
be discussed in this section. Existence theorems for solutions of (9.1) tend to be rather
complicated. The following results give some insight into this aspect.

Theorem 9.1 Suppose that the function f in the two-point boundary-value problem (9.1)
is continuous on the set

D = {(x, y, y′)|a ≤ x ≤ b, −∞ < y <∞, −∞ < y′ <∞} ,

and that
∂f

∂y
and

∂f

∂y′
are also continuous on D. If

1.
∂f

∂y
(x, y, y′) > 0 for all (x, y, y′) ∈ D, and
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2. a constant M exists, with

∣∣∣∣ ∂f∂y′ (x, y, y′)
∣∣∣∣ ≤M , for all (x, y, y′) ∈ D,

then the two-point boundary-value problem (9.1) has a unique solution.

When the function f(x, y, y′) has the special form

f(x, y, y′) = p(x)y′ + q(x)y + r(x), (9.2)

the differential equation become a so-called linear problem. The previous theorem can
be simplified for this case.

Corollary 9.1 If the linear two-point boundary-value problem{
y′′ = p(x)y′ + q(x)y + r(x)

y(a) = α, y(b) = β
(9.3)

satisfies

1. p(x), q(x), and r(x) are continuous on [a, b], and

2. q(x) > 0 on [a, b],

then the problem has a unique solution.

Many theories and application models consider the boundary-value problem in a spe-
cial form as follows. {

y′′ = f(x, y)

y(0) = 0, y(1) = 0
(9.4)

We will show that this simple form can be derived from the original problem by simple
techniques such as changes of variables and linear transformation. To do this, we begin
by changing the variable. Suppose that the original problem is{

y′′ = f(x, y)

y(a) = α, y(b) = β
(9.5)

where y = y(x). Now let λ = b− a and define a new variable

t =
x− a
b− a

=
1

λ
(x− a).

That is, x = a + λt. Notice that t = 0 corresponds to x = a, and t = 1 corresponds to
x = b. Then we define

z(t) = y(a+ λt) = y(x)

with λ = b− a. This gives

z′(t) =
d

dt
z(t) =

d

dt
y(a+ λt) =

[
d

dx
y(x)

] [
d

dt
(a+ λt)

]
= λy′(x)
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and, analogously,

z′′(t) =
d

dt
z′(t) = λ2y′′(x) = λ2f(x, y(x)) = λ2f(a+ λt, z(t)).

Likewise the boundary conditions are changed to

z(0) = y(a) = α and z(1) = y(b) = β.

With all these together, the problem (9.5) is transformed into{
z′′(t) = λ2f(a+ λt, z(t))

z(0) = α, z(1) = β
(9.6)

Thus, if y(x) is a solution for (9.5), then z(t) = y(a+ λt) is a solution for the boundary-
value problem (9.6). Conversely, if z(t) is a solution for (9.6), then y(x) = z( 1

λ
(x− a)) is

a solution for (9.5).

Theorem 9.2 Consider the two-point boundary-value problems{
y′′(x) = f(x, y)

y(a) = α, y(b) = β
(9.7)

and {
z′′(t) = g(t, z)

z(0) = α, z(1) = β
(9.8)

in which
g(p, q) = (b− a)2f(a+ (b− a)p, q).

Then

1. if z(t) is a solution of (9.8), then the function defined by y(x) = z((x− a)/(b− a))
is a solution of (9.7), and

2. if y(x) is a solution of (9.7), then z(t) = y(a+ (b− a)t) is a solution of (9.8).

Example 9.1 Simplify the boundary conditions of the following equation by use of chang-
ing variables. {

y′′ = sin(xy) + y2

y(1) = 3, y(4) = 7

Sol: In this problem a = 1, b = 4, hence λ = 3. Now define the new variable t = 1
3
(x−1),

hence x = 1 + 3t, and let z(t) = y(x) = y(1 + 3t). Then

λ2f(a+ λt, z) = 9
[
sin(1 + 3t)z + z2

]
,

and the original equation is reduced to{
z′′(t) = 9 sin((1 + 3t)z) + 9z2

z(0) = 3, z(1) = 7
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To reduce a two-point boundary-value problem{
z′′(t) = g(t, z)

z(0) = α, z(1) = β

to a homogeneous system, we simply subtract from z a linear function that takes the
values α and β at 0 and 1. That is, let

u(t) = z(t)− [α+ (β − α)t]

then u′′(t) = z′′(t), and

u(0) = z(0)− α = 0 and u(1) = z(1)− β = 0

Moreover,
g(t, z) = g(t, u+ α+ (β − α)t) ≡ h(t, u).

The system is now transformed into{
u′′(t) = h(t, u)

u(0) = 0, u(1) = 0

Here is the theorem.

Theorem 9.3 Consider the two-point boundary-value problems{
z′′(t) = g(t, z)

z(0) = α, z(1) = β
(9.9)

and {
u′′(t) = h(t, u)

u(0) = 0, u(1) = 0
(9.10)

in which
h(p, q) = g(p, q + α+ (β − α)p).

Then

1. if u(t) solves (9.10), then the function z(t) = u(t) + α+ (β − α)t solves (9.9), and

2. if z(t) solves (9.9), then u(t) = z(t)− [α+ (β − α)t] solves (9.10).

Example 9.2 Reduce the system{
z′′ = [5z − 10t+ 35 + sin(3z − 6t+ 21)]et

z(0) = −7, z(1) = −5

to a homogeneous problem by linear transformation technique.
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Sol: Let
u(t) = z(t)− [−7 + (−5 + 7)t] = z(t)− 2t+ 7.

Then z(t) = u(t) + 2t− 7, and

u′′ = z
′′

= [5z − 10t+ 35 + sin(3z − 6t+ 21)]et

= [5(u+ 2t− 7)− 10t+ 35 + sin(3(u+ 2t− 7)− 6t+ 21)]et

= [5u+ sin(3u)]et

The system is transformed to {
u′′(t) = [5u+ sin(3u)]et

u(0) = u(1) = 0

Example 9.3 Reduce the following two-point boundary-value problem{
y′′ = y2 + 3− x2 + xy

y(3) = 7, y(5) = 9

to a homogeneous system.

Sol: In the original system, a = 3, b = 5, α = 7, β = 9. Let λ = b− a = 2 and define a
new variable

t =
1

2
(x− 3) =⇒ x = 2t+ 3.

Let the function z(t) = y(x) = y(2t+ 3). Then

z′′(t) = λ2y′′(2t+ 3) = λ2f(2t+ 3, u)

= 4[z2 + 3− (2t+ 3)2 + (2t+ 3)z]

= 4[z2 + 3z + 2tz − 4t2 − 12t− 6]

The original problem is first transformed into{
z′′(t) = 4[z2 + 3z + 2tz − 4t2 − 12t− 6]

z(0) = 7, z(1) = 9

Next let
u(t) = z(t)− [7 + 2t], or equivalently, z(t) = u(t) + 2t+ 7.

Then

u′′(t) = 4[(z + 2t+ 7)2 + 3(u+ 2t+ 7) + 2t(u+ 2t+ 7)− 4t2 − 12t− 6]

= 4[u2 + 6tu+ 17u+ 4t2 + 36t+ 64].

The original problem is transformed into the following homogeneous system{
u′′(t) = 4[u2 + 6tu+ 17u+ 4t2 + 36t+ 64]

u(0) = u(1) = 0

When a two-point boundary-value problem is expressed in the homogeneous system
from, we have the following elegant results.
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Theorem 9.4 The boundary-value problem{
y′′ = f(x, y)

y(0) = 0, y(1) = 0
(9.11)

has a unique solution if
∂f

∂y
is continuous, non-negative, and bounded in the strip 0 ≤

x ≤ 1 and −∞ < y <∞.

Theorem 9.5 If f is a continuous function of (s, t) in the domain 0 ≤ s ≤ 1 and
−∞ < t <∞ such that

|f(s, t1)− f(s, t2)| ≤ K|t1 − t2|, (K < 8).

Then the boundary-value problem{
y′′ = f(x, y)

y(0) = 0, y(1) = 0

has a unique solution in C[0, 1].

9.2 Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value
problem of the form {

y′′ = p(x)y′ + q(x)y + r(x)

y(a) = α, y(b) = β.
(9.12)

Methods involving finite differences for solving boundary-value problems replace each of
the derivatives in the differential equation by an appropriate difference-quotient approx-
imation. The difference-quotient is chosen to maintain a specified order of truncation
error. The linear second-order problem (9.12) requires that difference-quotient approxi-
mations be used to approximate both y′ and y′′.

9.2.1 The Finite Difference Formulation

First, we select an integer n > 0 and partition the interval [a, b] into n equally-spaced
subintervals by points a = x0 < x1 < . . . < xn < xn = b. Each mesh point xi can be
computed by

xi = a+ i ∗ h, i = 0, 1, . . . , n,

where

h =
b− a
n

is called the mesh size. These mesh points need not be equally spaces. Indeed, if the
points are not uniformly distributed, then more complicated formulations will be involved
in the derivation that follows. For simplicity, they are usually equally spaced in practice.
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At the interior mesh points, xi, for i = 1, 2, . . . , n− 1, the differential equation to be
approximated satisfies

y′′(xi) = p(xi)y
′(xi) + q(xi)y(xi) + r(xi). (9.13)

The central finite difference formulae

y′(xi) =
y(xi+1)− y(xi−1)

2h
− h2

6
y(3)(ηi), (9.14)

for some ηi in the interval (xi−1, xi+1), and

y′′(xi) =
y(xi+1)− 2y(xi) + y(xi−1)

h2
− h2

12
y(4)(ξi), (9.15)

for some ξi in the interval (xi−1, xi+1), can be derived from Taylor’s theorem by expanding
y about xi.

Let ui denote the approximate value of yi = y(xi). If y ∈ C4[a, b], then a finite
difference method with truncation error of order O(h2) can be obtained by using the
approximations

y′(xi) ≈
ui+1 − ui−1

2h
and y′′(xi) ≈

ui+1 − 2ui + ui−1

h2
(9.16)

for y′(xi) and y′′(xi), respectively. Furthermore, let

pi = p(xi), qi = q(xi), ri = r(xi).

The discrete version of equation (9.12) is then

ui+1 − 2ui + ui−1

h2
= pi

ui+1 − ui−1

2h
+ qiui + ri, i = 1, 2, . . . , n− 1, (9.17)

together with boundary conditions u0 = α and un = β. Equation (9.17) can be written
in the form(

1 +
h

2
pi

)
ui−1 −

(
2 + h2qi

)
ui +

(
1− h

2
pi

)
ui+1 = h2ri, i = 1, 2, . . . , n− 1. (9.18)

In equation (9.17), u1, u2, . . . , un−1 are the unknown, and there are n−1 linear equations
to be solved. The resulting system of linear equations can be expressed in the matrix
form

Au = f, (9.19)

where

A =



−2− h2q1 1− h
2
p1

1 + h
2
p2 −2− h2q2 1− h

2
p2

. . . . . . . . .
. . . . . . . . .

1 + h
2
pn−2 −2− h2qn−2 1− h

2
pn−2

1 + h
2
pn−1 −2− h2qn−1


,

(9.20)
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u =


u1

u2
...

un−2

un−1

 , and f =


h2r1 −

(
1 + h

2
p1

)
α

h2r2
...
h2rn−2

h2rn−1 −
(
1− h

2
pn−1

)
β

 (9.21)

Since the matrix A is tridiagonal, this system can be solved by a special Gaussian
elimination in O(n2) flops. Note that if qi > 0 for all i (Corollary 9.1), and h is small so
that

∣∣h
2
pi

∣∣ < 1 for all i, then A is diagonally dominant, since

∣∣−2− h2qi
∣∣ > 2 =

∣∣∣∣1 +
h

2
pi

∣∣∣∣+ ∣∣∣∣1− h

2
pi

∣∣∣∣ , (9.22)

and the linear system (9.19) has a unique solution.

Theorem 9.6 Suppose that p(x), q(x), and r(x) in the linear two-point boundary-value
problem (9.12) are continuous on [a, b], and q(x) > 0 on [a, b]. Then the tridiagonal linear
system (9.19) has a unique solution provided that h < 2/L, where L = maxa≤x≤b |p(x)|.

9.2.2 Convergence Analysis

We shall analyze that when h converges to zero, the solution ui of the discrete problem
(9.17) converges to the solution yi of the original continuous problem (9.13). Note that
ui depends on the mesh size h. We shall estimate |yi − ui| and show that it converges to
zero as h→ 0.

With the aid of formulas (9.14) and (9.15), we see that the exact solution yi satisfies
the following system of equations

yi+1 − 2yi + yi−1

h2
− h2

12
y(4)(ξi) = pi

(
yi+1 − yi−1

2h
− h2

6
y(3)(ηi)

)
+ qiyi + ri, (9.23)

for i = 1, 2, . . . , n− 1. On the other hand, the discrete solution ui satisfies the equations
(9.17). If we subtract (9.17) from (9.23) and let ei = yi − ui, the result is

ei+1 − 2ei + ei−1

h2
= pi

ei+1 − ei−1

2h
+ qiei + h2gi, i = 1, 2, . . . , n− 1,

where

gi =
1

12
y(4)(ξi)−

1

6
piy

(3)(ηi).

After collecting terms and multiplying by h2. We have equations similar to (9.18), namely,(
1 +

h

2
pi

)
ei−1 −

(
2 + h2qi

)
ei +

(
1− h

2
pi

)
ei+1 = h4gi, i = 1, 2, . . . , n− 1. (9.24)

Let e = [e1, e2, . . . , en−1]
T and k be the index such that |ek| = ‖e‖∞. Then from (9.24)

we have (
2 + h2qi

)
ek =

(
1 +

h

2
pi

)
ek−1 +

(
1− h

2
pi

)
ek+1 − h4gk,
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and, hence ∣∣2 + h2qk
∣∣ |ek| ≤

∣∣∣∣1 +
h

2
pk

∣∣∣∣ |ek−1|+
∣∣∣∣1− h

2
pk

∣∣∣∣ |ek+1|+ h4|gk|

≤
∣∣∣∣1 +

h

2
pk

∣∣∣∣ ‖e‖∞ +

∣∣∣∣1− h

2
pk

∣∣∣∣ ‖e‖∞ + h4‖g‖∞

When q(x) > 0 for all x ∈ [a, b] and h is chosen small enough so that |h
2
pi| < 1 for all i,

then the condition (9.24) holds, and the above inequality induces

h2qk‖e‖∞ ≤ h4‖g‖∞.

Therefore, we derive an upper bound for ‖e‖∞

‖e‖∞ ≤ h2

(
‖g‖∞

inf q(x)

)
. (9.25)

By the definition of gi, we have

‖g‖∞ ≤
1

12
‖y(4)(x)‖∞ +

1

6
‖p(x)‖∞‖y(3)(x)‖∞.

Hence ‖g‖∞
inf q(x)

is a bound independent of h. Thus we can conclude that ‖e‖∞ is O(h2) as
h→ 0.

9.2.3 Higher Order Approximations

The finite difference method established in this section ensure that the truncation error
has order O(h2) provided that y ∈ C4[a, b]. To obtain a finite difference method with
greater accuracy, we may proceed in deriving higher order approximations for y′(xi) and
y′′(xi) using high oder of Taylor series. However this requires more mesh points around xi

in the approximation formulas which lead to difficulties at the boundary points. Moreover,
the resulting linear system is no longer in tridiagonal form, and the computational cost
for the solution is much higher.

Instead of attempting to obtain a difference method with a higher-order truncation
error, it is generally more satisfactory to consider a reduction in step size h. In addition,
some extrapolation techniques can be applied effectively for this matter, provided that y
is sufficiently differentiable.

9.3 Finite Difference Method For Nonlinear Prob-

lems

9.4 Shooting Methods

We consider solving the following 2-point boundary-value problem with shooting mehtod:

(1)

{
y
′′

= f(x, y, y
′
)

y(a) = α, y(b) = β
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The idea of shooting method for the BVP (1) is to solve a related initial-value problem
with a guess for y

′
(a), say z. The corresponding IVP

(2)

{
y
′′

= f(x, y, y
′
)

y(a) = α, y
′
(a) = z

can then be solved by, for example, Runge-Kutta method. We denote this approximate
solution yz and hope yz(b) = β. If not, we use another guess for y

′
(a), and try to solve

an altered IVP (2) again. This process is repeated and can be done systematically.
The objective is to select z, so that yz(b) = β.
Let

φ(z) = yz(b)− β.

Now our objective is simply to solve the equation φ(z) = 0. Hence secant method can be
used.
Note: φ(z) is very expensive to compute, since each value of φ(z) is obtained by numeri-
cally solving an IVP.
Suppose we have solutions yz1 , yz2 with guesses z1, z2 and obtain φ(z1) and φ(z2). If these
guesses can not generate satisfactory solutions, we can obtain another guess z3 by the
secant method

z3 = z2 − φ(z2)
z2 − z1

φ(z2)− φ(z1)
.

In general

zk+1 = zk − φ(zk)
zk − zk−1

φ(zk)− φ(zk−1)
.

The shooting method can be quite costly in computational effort. One may solve the
IVP with a large step size in the first few tries, since high precision is essentially wasted
in the first few tries. Only when φ(z) is close to zero should a small step size be used.
When the BVP has the following special form

(3)

{
y
′′

= u(x) + v(x)y + w(x)y
′

y(a) = α, y(b) = β

where u(x), v(x), w(x) are continuous in [a, b]. Then (3) can be solved in at most two
tries (one step).
Suppose we have solved (3) twice with initial guesses z1 and z2, and obtain approximate
solutions y1 and y2, hence {

y
′′
1 = u+ vy1 + wy

′
1

y1(a) = α, y
′
1(b) = z1

and {
y
′′
2 = u+ vy2 + wy

′
2

y2(a) = α, y
′
2(b) = z2

Now let
y(x) = λy1(x) + (1− λ)y2(x)

for some parameter λ, we can show

y
′′

= u+ vy + wy
′
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and
y(a) = λy1(a) + (1− λ)y2(a) = α

We can select λ so that y(b) = β.

β = y(b) = λy1(b) + (1− λ)y2(b)

= λ(y1(b)− y2(b)) + y2(b)

⇒ λ =
β − y2(b)

(y1(b)− y2(b))

In practice, we can solve the following two IVPs (in parallel){
y
′′

= u(x) + v(x)y + w(x)y
′

y(a) = α, y
′
(a) = 0

and {
y
′′

= u(x) + v(x)y + w(x)y
′

y(a) = α, y
′
(a) = 1

to obtain approximate solutions y1 and y2, then compute λ and form the solution y.
Moreover, the problem can be transformed by solving a system of first-order ODE.
Let 

y0(x) = x
y3(x) = y

′
1(x)

y4(x) = y
′
2(x)

Then 
y
′
0 = 1
y
′
1 = y3

y
′
2 = y4

y
′
3 = y

′′
1 = u+ vy1 + wy

′
1 = u+ vy1 + wy3

4
′
4 = u+ vy2 + wy4

with I.C. 
y0(a) = a
y1(a) = α
y2(a) = α
y3(a) = y

′
1(a) = 0

44(a) = y
′
2(a) = 1




