\relax \@writefile{toc}{\contentsline {chapter}{\numberline {1}Mathematical Preliminaries}{1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {1.1}Review of Calculus}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}Limit, Continuity, Derivative, and Integral}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}Taylor's Theorem}{3}} \newlabel{thm-taylor1}{{1.9}{3}} \newlabel{eq11001}{{1.1}{3}} \newlabel{eq11002}{{1.2}{3}} \newlabel{eq11003}{{1.3}{3}} \newlabel{eq11004}{{1.4}{4}} \newlabel{11005}{{1.5}{4}} \newlabel{eq11006}{{1.6}{4}} \newlabel{eq11007}{{1.7}{4}} \@writefile{toc}{\contentsline {section}{\numberline {1.2}Review of Linear Algebra and Matrix Analysis}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Matrices and Vectors}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}Vector Space, Range Space, and Null Space}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.3}Orthogonality}{10}} \@writefile{toc}{\contentsline {section}{\numberline {1.3}Norms}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Vector Norm Definition and Properties}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}Matrix Norm Definition and Properties}{12}} \newlabel{thm131}{{1.14}{13}} \newlabel{thm_pre03003}{{1.15}{14}} \newlabel{thm_pre03004}{{1.16}{15}} \@writefile{toc}{\contentsline {section}{\numberline {1.4}SVD: The Singular Value Decomposition}{16}} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Computer Arithmetic}{19}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {2.1}Floating-Point Number and Roundoff Error}{19}} \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces 32-bit single precision.}}{22}} \newlabel{fig-bit32}{{2.1}{22}} \newlabel{eq201001}{{2.6}{22}} \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces 64-bit double precision.}}{23}} \newlabel{fig-bit64}{{2.2}{23}} \@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces Some characteristics of IEEE standard floating-point numbers}}{23}} \newlabel{table-ieee}{{2.1}{23}} \@writefile{lot}{\contentsline {table}{\numberline {2.2}{\ignorespaces IEEE exception handling.}}{24}} \newlabel{table2102}{{2.2}{24}} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Loss of Significance, Stability, and Conditioning}{24}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Loss of Significance}{24}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Numerical Stability}{30}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Conditioning}{31}} \@writefile{toc}{\contentsline {section}{\numberline {2.3}Floating-Point Error Analysis}{32}} \newlabel{eq0203001}{{2.8}{32}} \@writefile{toc}{\contentsline {section}{\numberline {2.4}Stability and Conditioning}{34}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Numerical Stability}{34}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Conditioning}{35}} \@writefile{toc}{\contentsline {chapter}{\numberline {3}Direct Methods for Solving Systems of Linear Equations}{37}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{eq_dir00001}{{3.1}{37}} \newlabel{eq_dir00002}{{3.2}{37}} \@writefile{toc}{\contentsline {section}{\numberline {3.1}Triangular Systems}{38}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Diagonal System}{38}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Forward Substitution}{38}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}Back Substitution}{40}} \@writefile{toc}{\contentsline {section}{\numberline {3.2}Gaussian Elimination and LU Factorization}{41}} \newlabel{eq_dir02001}{{3.9}{41}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Gaussian Elimination}{41}} \newlabel{eq_dir02005}{{3.10}{41}} \newlabel{eq_dir02008}{{3.11}{42}} \newlabel{eq_dir02009}{{3.12}{42}} \newlabel{alg_dir02001}{{3.5}{42}} \newlabel{ex_dir02001}{{3.1}{43}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Gaussian Transformation and LU Factorization}{44}} \newlabel{eq_dir02012}{{3.13}{44}} \newlabel{eq_dir02014}{{3.14}{44}} \newlabel{eq_dir02019}{{3.15}{45}} \newlabel{eq_dir02021}{{3.16}{46}} \newlabel{eq_dir02022}{{3.17}{46}} \newlabel{eq_dir02026}{{3.20}{47}} \newlabel{eq_dir02027}{{3.21}{48}} \newlabel{eq_dir02028}{{3.22}{48}} \newlabel{alg_dir02002}{{3.6}{48}} \newlabel{alg_dir02003}{{3.7}{49}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Existence and Uniqueness of LU Factorization}{49}} \@writefile{toc}{\contentsline {section}{\numberline {3.3}Pivoting}{50}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}The Need for Pivoting}{51}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Partial Pivoting and Complete Pivoting}{52}} \newlabel{eq_dir03013}{{3.23}{52}} \newlabel{eq0303002}{{3.24}{52}} \newlabel{eq_dir03020}{{3.26}{53}} \newlabel{alg_03001}{{3.8}{53}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Scaled Row Pivoting}{54}} \newlabel{alg_dir03005}{{3.10}{56}} \@writefile{toc}{\contentsline {section}{\numberline {3.4}Some Special Linear Systems}{58}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.1}Symmetric Positive Definite System and Cholesky Factorization}{58}} \newlabel{lemma_dir04001}{{3.1}{58}} \newlabel{lemma_dir04002}{{3.2}{59}} \newlabel{thm_dir04001}{{3.3}{59}} \newlabel{eq_dir04003}{{3.28}{59}} \newlabel{eq_dir04008}{{3.29}{59}} \newlabel{eq_dir04009}{{3.30}{60}} \newlabel{alg_dir04001}{{3.12}{60}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.2}Diagonally Dominant Systems}{61}} \newlabel{thm_dir04002}{{3.4}{61}} \newlabel{thm_dir04003}{{3.5}{62}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.3}Tridiagonal System}{63}} \newlabel{eq_dir04023}{{3.32}{63}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.4}General Banded Systems}{64}} \@writefile{toc}{\contentsline {section}{\numberline {3.5}Perturbation Analysis}{64}} \newlabel{eq_dir05002}{{3.2}{64}} \newlabel{eq_dir05003}{{3.34}{64}} \newlabel{lemma_dir05001}{{3.4}{65}} \@writefile{toc}{\contentsline {chapter}{\numberline {4}Iterative Methods for Solving Systems of Linear Equations}{67}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {4.1}Classic Iterative Methods}{67}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Basic Concept}{67}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Richard's Method}{68}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.3}Jacobi Method}{69}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.4}Gauss-Seidel Method}{70}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.5}Successive Over Relaxation (SOR) Method}{70}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.6}Symmetric Successive Over Relaxation (SSOR) Method}{71}} \@writefile{toc}{\contentsline {section}{\numberline {4.2}Convergence Analysis}{71}} \@writefile{toc}{\contentsline {chapter}{\numberline {5}Solutions of Non-linear Equations}{77}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {5.1}Preliminaries}{77}} \@writefile{toc}{\contentsline {section}{\numberline {5.2}Bisection Method}{79}} \@writefile{toc}{\contentsline {section}{\numberline {5.3}Newton's Method}{81}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3.1}Derivation of Newton's Method}{81}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3.2}Convergence Analysis}{82}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3.3}Examples and Pitfalls}{85}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3.4}System of Nonlinear Equations}{86}} \@writefile{toc}{\contentsline {section}{\numberline {5.4}Quasi-Newton's Method (Secant Method)}{87}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4.1}The Secant Method}{87}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4.2}Error Analysis of Secant Method}{89}} \@writefile{toc}{\contentsline {section}{\numberline {5.5}Fixed Point and Functional Iteration}{93}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.5.1}Functional Iteration}{94}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.5.2}Convergence Analysis}{96}} \@writefile{toc}{\contentsline {chapter}{\numberline {6}Interpolation}{99}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {6.1}Polynomial Interpolation}{99}} \newlabel{eq_ipl01001}{{6.1}{99}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Existence And Uniqueness}{99}} \newlabel{sec_ipl01}{{6.1.1}{99}} \newlabel{eq_ipl01002}{{6.2}{99}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.2}Naive Approach for Polynomial Interpolation}{100}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.3}Lagrange Form and Neville's Method}{101}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.4}Newton's Form of Polynomial Interpolation}{103}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.5}Divided Differences Scheme}{105}} \newlabel{thm_ipl01004}{{6.4}{107}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1.6}Error Analysis for Polynomial Interpolation}{111}} \@writefile{toc}{\contentsline {section}{\numberline {6.2}Hermite Interpolation}{112}} \newlabel{eq_ipl02001}{{6.29}{112}} \newlabel{eq_ipl02002}{{6.30}{113}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Existence and Uniqueness}{113}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}Lagrange Form for Hermite Interpolation}{113}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.3}Divided Difference Method for Hermite Interpolation}{114}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.4}Error Analysis for Hermite Interpolation}{115}} \@writefile{toc}{\contentsline {section}{\numberline {6.3}Spline Interpolation}{116}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3.1}Cubic Spline}{117}} \@writefile{toc}{\contentsline {chapter}{\numberline {7}Numerical Differentiation and Integration}{121}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{chap_int}{{7}{121}} \@writefile{toc}{\contentsline {section}{\numberline {7.1}Numerical Differentiation}{121}} \newlabel{sec_int01}{{7.1}{121}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}Finite Difference Method}{121}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}Polynomial Interpolation Method}{122}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.3}Richardson Extrapolation Method}{123}} \@writefile{toc}{\contentsline {section}{\numberline {7.2}Numerical Integration}{125}} \newlabel{sec_int02}{{7.2}{125}} \newlabel{eq_int02001}{{7.25}{125}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}Elements of Numerical Integration}{125}} \newlabel{eq_int02004}{{7.26}{125}} \newlabel{eq_int02009}{{7.29}{126}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}Newton-Cotes Formulas}{127}} \newlabel{eq_02015}{{7.34}{127}} \newlabel{eq_02016}{{7.35}{127}} \@writefile{toc}{\contentsline {paragraph}{Trapezoidal Rule:}{128}} \@writefile{toc}{\contentsline {paragraph}{Simpson's Rule:}{129}} \@writefile{toc}{\contentsline {paragraph}{Midpoint Rule:}{131}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.3}Composite Newton-Cotes Forumlas}{132}} \@writefile{toc}{\contentsline {paragraph}{Composite Simpson's Rule:}{134}} \@writefile{toc}{\contentsline {paragraph}{Composite Midpoint Rule:}{134}} \@writefile{toc}{\contentsline {paragraph}{Composite Trapezoidal Rule}{135}} \@writefile{toc}{\contentsline {section}{\numberline {7.3}Gaussian Quadrature}{135}} \newlabel{sec_int03}{{7.3}{135}} \newlabel{eq_int03001}{{7.50}{135}} \newlabel{eq_int03002}{{7.51}{136}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}Orthogonal Polynomials and Quadrature Rule}{136}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.2}Gaussian Quadrature Rule}{141}} \@writefile{toc}{\contentsline {paragraph}{Gaussian Quadrature Rule:}{142}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.3}Error Analysis}{144}} \@writefile{toc}{\contentsline {section}{\numberline {7.4}Adaptive Quadrature}{145}} \@writefile{toc}{\contentsline {section}{\numberline {7.5}Romberg Integration}{145}} \@writefile{toc}{\contentsline {chapter}{\numberline {8}Numerical Solutions of Ordinary Differential Equations}{147}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{eq_ode000}{{8.1}{147}} \@writefile{toc}{\contentsline {section}{\numberline {8.1}Existence and Uniqueness of Solutions}{147}} \@writefile{toc}{\contentsline {section}{\numberline {8.2}Euler's Method}{148}} \@writefile{toc}{\contentsline {section}{\numberline {8.3}Runge-Kutta Methods}{148}} \@writefile{toc}{\contentsline {section}{\numberline {8.4}Systems and Higher-Order Ordinary Differential Equations}{150}} \@writefile{toc}{\contentsline {chapter}{\numberline {9}Boundary-Value Problems for Ordinary Differential Equations}{153}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{eq_bvp00001}{{9.1}{153}} \@writefile{toc}{\contentsline {section}{\numberline {9.1}Mathematical Theories}{153}} \newlabel{cor_bvp001}{{9.1}{154}} \newlabel{eq_bvp01001}{{9.5}{154}} \newlabel{eq_bvp01002}{{9.6}{155}} \newlabel{eq_bvp01003}{{9.7}{155}} \newlabel{eq_bvp01004}{{9.8}{155}} \newlabel{eq_bvp01005}{{9.9}{156}} \newlabel{eq_bvp01006}{{9.10}{156}} \@writefile{toc}{\contentsline {section}{\numberline {9.2}Finite Difference Method For Linear Problems}{158}} \newlabel{eq_bvp02001}{{9.12}{158}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.1}The Finite Difference Formulation}{158}} \newlabel{eq_bvp02002}{{9.13}{159}} \newlabel{eq_bvp02003}{{9.14}{159}} \newlabel{eq_bvp02004}{{9.15}{159}} \newlabel{eq_bvp02006}{{9.17}{159}} \newlabel{eq_bvp02007}{{9.18}{159}} \newlabel{eq_bvp02008}{{9.19}{159}} \newlabel{eq_bvp02011}{{9.22}{160}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.2}Convergence Analysis}{160}} \newlabel{eq_bvp02012}{{9.23}{160}} \newlabel{eq_bvp02015}{{9.24}{160}} \newlabel{eq_bvp02016}{{9.25}{161}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.3}Higher Order Approximations}{161}} \@writefile{toc}{\contentsline {section}{\numberline {9.3}Finite Difference Method For Nonlinear Problems}{161}} \@writefile{toc}{\contentsline {section}{\numberline {9.4}Shooting Methods}{161}}