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Outline

© Norms of vectors and matrices

© Eigenvalues and eigenvectors

© Iterative techniques for solving linear systems
@ Error bounds and iterative refinement

© The conjugate gradient method
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Definition
|| -] : R — R is a vector norm if
(i) ||lz|| =0, Vz € R",
(i)
(iii) |az| = |af||z|| V a € R and z € R™,
(V) llz+yll < llzll + llyll ¥ 2,y € R™.

lz|| = 0 if and only if z =0,

Definition

The ¢ and £o, norms for & = [x1, 22, -+ ,2,]7 are defined by

1/2
1/2 _ _ ,
lz|l2 = (= x) { E x; } and  ||z||eo lgiagxnm,\.

The ¢ norm is also called the Euclidean norm.
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Theorem (Cauchy-Bunyakovsky-Schwarz inequality)

For each x = [x1, 22, ,mn]T and y = [y1,y2, ,yn]T in R™,

n n 1/2 ¢ 1/2
ely =73 wwi < {wa} {ny} = [|zl2 - [lyll>-
=1 =1 i=1

Proof: If z =0 or y = 0, the result is immediate.
Suppose x # 0 or y # 0. For each o € R,

n n n n
0< e —ayl3 = (wi—ap)* =Y o —2a ) zyi+a® Yy,
i=1 i=1 i=1

1=1

and

n n n

2 2 2 2 2011112

2« E Ty < E T + o E yi = llzllz2 + o~ |lyll2.
i=1 i=1 =i
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Since ||z]]2 > 0 and ||y||2 > 0, we can let

_ izl
Iyl

to give

[EEAWES o 3, w2 on o

2
i—1 lyll3

Thus

n
2Ty = i < ||zll2llyll2.
=
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For each z,y € R",

[z +yllw = e |zi +yil < max (|zi] + [yil)
< ; | =
= 12ia§xn |5| + 12%)(71 |3/1| 2]l co + [|¥lloo
and
n 2 n n
lz+yl3 = D (@i+y) =) a7 +2> zmyi+ Y v
i=1 i=1 i=1 i=1
< lzl3 + 2llzll2llyll2 + 913 = (lll2 + llyll2)>,
which gives
lz +yll2 < llzll2 + llyll2-
Definition

A sequence {z(¥) € R} is convergent to x with respect to the norm
|| - |l if Ve >0, 3 an integer N(e) such that

|z® —z| <&, ¥V k> N(e).
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Theorem

{2(k) € R"}2 | converges to = with respect to || - ||« if and only if

lim mgk)

=z, Vi=1,2,...,n.
k—o0

Proof: “=" Given any € > 0, 3 an integer N(¢) such that

max |:c£k) — ;| = |2®) — z]|oo < &, ¥V k> N(e).
1<i<n

This result implies that

]azgk)—:ci] <e Vi=1,2,...,n.
Hence
k|l_>l’T;O xl(-k) =x;, V1.
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“<" For a given € > 0, let N;(¢) represent an integer with
(k)
|z;” — x| <e, whenever k> Nj(e).
Define

N(e) = max Nj(e).

1<i<n

If & > N(e), then

(k) — (K
max [z, — zif = |2 — 2o <.
This implies that {(F)} converges to x with respect to || - ||oc. O
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Theorem
For each x € R",

[z]lo0 < [lzll2 < Vnllz]oo-

Proof: Let x; be a coordinate of x such that
n
lzl2, = |z <22 =|l=|3,
i=1
50 [|z][oo < [|z[]2 and

n
lzl3 = af <D af =na? =nllz|Z,

i=1 i=1

50 [[z]l2 < v/nl|z|oo- -
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Definition
A matrix norm || - || on the set of all n x n matrices is a real-valued
function satisfying for all n x n matrices A and B and all real number a:
(i) 1141l = o;
(i) ||A|l =0 if and only if A =0;
(iii) [leAll = |ex||A]};
(iv) |4+ Bl < [[All + IBI;
(v) [|AB]| < [[A[llIBI; )
Theorem
If || - || is a vector norm on R™, then
Al = max [|Az|
flzll=1
is @ matrix norm. )
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For any z # 0, we have x = z/||z|| as a unit vector. Hence

A
JAll = max | Az]| = max A( )H ME
lzl|=1 270 1]l T2 2]
Corollary
[ Az]| < [IA]l - [=]l- |
Theorem

If A = [ai;] is an n x n matrix, then

[A]loo = max ZI%I

1<i<n
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Proof: Let x be an n-dimension vector with

1= |z]loc = max |x;].
1<i<n
Then
n
[Az]|coc = e Zaim
< Z -
< e D lal max el =

Consequently,

n
4l = max, 4ol < o 3 o

On the other hand, let p be an integer with
n n
ap;i| = max aij
> logil = ax >l
J=1 J=1
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and x be the vector with

o 1, ifay >0,
TIT -1, ifay <O.

Then
|zlloo =1 and apjz; = |ay;|, Vj=1,2,...,n,

SO

n n n n
\|A$||o0=1rgia§xn Zaz‘jfﬂj > Zapﬁj = Z|apj| :12%12'““"
j=1 7=1 j=1 j=1

This result implies that

n
[l = max [[Az]loo > max 3 as.
g=i
which gives
n
[Alloo = 12%1; |aijl. O
J:
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Eigenvalues and eigenvectors

Definition (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

p(\) = det(A — D).

Definition (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are
eigenvalues of the matrix A. If X\ is an eigenvalue of A and z # 0 satisfies
(A— AXIl)z =0, then x is an eigenvector of A corresponding to the
eigenvalue .

Definition (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A. The
spectral radius of A is

p(A) = max{|A|; A is an eigenvalue of A}.

v
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Theorem
If A is an n X n matrix, then
(i) lAll2 = /p(AT A);
(i) p(A) < ||A|l for any matrix norm.

Proof: Proof for the second part. Suppose ) is an eigenvalue of A and
x # 0 is a corresponding eigenvector such that Az = Az and ||z| = 1.
Then

Al = Ml = 1Azl = [[Az]] < [ Allll<]l = 1Al

that is, |A\| < ||A||. Since X is arbitrary, this implies that
p(A) = max || < [lA]. s

Theorem

For any A and any = > 0, there exists a matrix norm || - || such that

p(A) <[ Al < p(A) +e.
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Definition
We call an n x n matrix A convergent if

(AF),;=0vVi=1,2,...,n and j=1,2,...,n.

lim
k—o0

Theorem
The following statements are equivalent.

@ A is a convergent matrix;

(2] klim |A¥|| = 0 for some matrix norm;
—00

o klim |A¥|| = 0 for all matrix norm;
—00

Q p(4) <L

© lim AFz =0 for any x.
k—o00
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Iterative techniques for solving linear systems

@ For small dimension of linear systems, it requires for direct techniques.
@ For large systems, iterative techniques are efficient in terms of both
computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A
into

A=M— (M - A),
for some matrix M, which is called the splitting matrix. Here we assume

that A and M are both nonsingular. Then the original problem is
rewritten in the equivalent form

Mx=(M — A)x + 0.
This suggests an iterative process
®) = (I = M~ A)z*=D ¢ M—1p = Tk 4 ¢

where T is usually called the iteration matrix. The initial vector (%) can
be arbitrary or be chosen according to certain conditions.
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Two criteria for choosing the splitting matrix M are

o z(F) is easily computed. More precisely, the system Mz(¥) = y is easy
to solve;
@ the sequence {x("’)} converges rapidly to the exact solution.
Note that one way to achieve the second goal is to choose M so that
M~ approximate A~1,
In the following subsections, we will introduce some of the mostly
commonly used classic iterative methods.
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Jacobi Method

If we decompose the coefficient matrix A as
A=L+D+U,

where D is the diagonal part, L is the strictly lower triangular part, and U
is the strictly upper triangular part, of A, and choose M = D, then we
derive the iterative formulation for Jacobi method:

) = —D YL + U)z*1) + D,
With this method, the iteration matrix 7; = —D (L + U) and
(k)

¢ = D~'b. Each component x;’ can be computed by

i1 n
0= (1= StV 5 e o
=1

j=i+1
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alll,(k) + ain .’L‘gk_l) + a; x(k_l) SR = alnx(k ) = b
azlw(l YVia 296( )t ans x(k Diitagmat™ = b,
anlxg_k_l) ar an2xgk_1) aF an3xgk_1) S ooo0 e annxgtk) - bn

Algorithm (Jacobi Method)
Given x(o), tolerance TOL, maximum number of iteration M.

Set k = 1.

While k < M and ||z — 2|, > TOL
Setk=k+1,20 =z
Fori=1,2,...,n

0 n 0
<b — 34 ayz; o Zj:m%'mg )) /%'

End For
End While
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Example
Consider the linear system Ax = b given by

Ei: 10z7 — Ty + 2x3 = 0,

Er: —x; + 1lap — r3 + 3x4 = 25,

E3: 2z — zp + 1023 — x4 = -—11,

E4 : 3562 — r3 + 8LE4 = 15
which has the unique solution = = [1,2, —1,1]7.
Solving equation E; for x;, for ¢ = 1,2, 3,4, we obtain
1 = 1/10z2 — 1/5x3 +  3/5,
xp = 1/11z + 1/11z3 — 3/11z4 + 25/11,
x3 = —1/5z1 + 1/10z; + 1/10z4 — 11/10,
x4 = — 3/8zx + 1/8z3 + 15/8.
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Then Az = b can be rewritten in the form x = T'z + ¢ with

0 1/10 —1/5 0 3/5

| yn 0 1/11 -3/11 | 2511
T=1_155 1/10 o 1710 | 2™ =] _11/10
0 -3/8 1/8 0 15/8

and the iterative formulation for Jacobi method is
2®) =120 L ¢ for k= 1,2,....

The numerical results of such iteration is list as follows:
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k X1 %) I3 T4

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.2727 -1.1000 1.8750
2 1.0473 1.7159 -0.8052 0.8852
3 0.9326 2.0533 -1.0493 1.1309
4 1.0152 1.9537 -0.9681 0.9738
5 0.9890 2.0114 -1.0103 1.0214
6 1.0032 1.9922 -0.9945 0.9944
7 0.9981 2.0023 -1.0020 1.0036
8 1.0006 1.9987 -0.9990 0.9989
9 0.9997 2.0004 -1.0004 1.0006
10 1.0001 1.9998 -0.9998 0.9998
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Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);
T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2.4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;
c(1,1) = 3/5; ¢(2,1) = 25/11; ¢(3,1) = -11/10; c(4,1) = 15/8;
xnew = T * xold + ¢; k = 0;
fprintf(" k  x1 x2  x3 x4 \n');
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; xnew = T * xold + c; k = k + 1;
fprintf('%3.0f ' k);
for jj = 1:n
fprintf('%5.4f " xold(jj));
end
fprintf("\n');
end
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Gauss-Seidel Method

When computing xl(-k) fori>1, xgk) 2 have already been

g ey 21

computed and are likely to be better approximations to the exact

(k—1) (k—1)
x1,...,%;—1 than yeres T

using these most recently computed values. That is

auxgk) + a1zx§k71) -+ a13x§k71) A
aglxgk) + azgwgk) -+ a23xgk_1) SO agnx%k_l)
G31:L‘gk) + a3290gk) + a3396gk) S 090 = a3n90$1,k_1)
anlxg_k_l) aF anZZL‘gk_l) aF an3xgk_1) + .-+ annxglk)

This improvement induce the Gauss-Seidel method.

The Gauss-Seidel method sets A/ = D + L and defines the iteration as

2®) = (D + L) Uz + (D + L)

—1p,

Spring 2011
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That is, Gauss-Seidel method uses Ty = —(D + L)~ 'U as the iteration
matrix. The formulation above can be rewritten as

) = _p-t (LZE(k) + U1 — b) .

Hence each component wgk) can be computed by

i—1 n
xgk) = | b — Zaijx§k) — Z (Iijx‘gkil) /an—.
j=1

j=i+1

o For Jacobi method, only the components of 2(*~1) are used to
compute z(¥). Hence x(k),i =1,...,n, can be computed in parallel

at each iteration k. '

@ At each iteration of Gauss-Seidel method, since xz(-k) can not be
computed until :rgk), . ,l‘z(lj)l are available, the method is not a
parallel algorithm in nature.
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Algorithm (Gauss-Seidel Method)

Given m(o), tolerance TOL, maximum number of iteration M .
Set k =1.
Fori=1,2,...,n

— (b, U (0) y
Ty = (bz = Dj=1 Gig T = D jmig Gy > /“n

End For

While k < M and ||z — 29|, > TOL
Set k=k+1, 20 =2
Fori=1,2,...,n

— (b, il (0) .
T = (bz = Dj=1 Gig T = D jmig Gy ) /am

End For
End While
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Example
Consider the linear system Ax = b given by

Ey: 10z7 — Ty + 2x3 = 0,
Er: —xp + 1laxp — r3 + 3x4 = 25,
E3z: 211 — zp + 1023 — x4 = -—11,
E4 : 3.%2 — r3 + 8$4 = 15

which has the unique solution z = [1,2, —1,1]7.

Gauss-Seidel method gives the equation

k k—1 k—1
xék; ~ 1.(k) %Oxg | 1%36%’?—1; 3,.(k=1) i 2§’
Ty Ol W oy T
T e L LW T W
Ty = - gl + 573 + 3
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The numerical results of such iteration is list as follows:

k T T 3 T4

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.3273 -0.9873 0.8789
2 1.0302 2.0369 -1.0145 0.9843
3 1.0066 2.0036 -1.0025 0.9984
4 1.0009 2.0003 -1.0003 0.9998
5 1.0001 2.0000 -1.0000 1.0000

@ The results of Example appear to imply that the Gauss-Seidel method

is superior to the Jacobi method.

@ This is almost always true, but there are linear systems for which the

Jacobi method converges and the Gauss-Seidel method does not.

@ See Exercises 17 and 18.
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Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;

n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);

A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3.3)=10; A(3,4)=-1; A(4.2)=3; A(4,3)=1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;

for ii = 1:n

xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);

end
for jj = ii+1:n
xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);
end
k = 0; fprintf(’ k x1 x2 x3 x4 \n');

while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; k = k + 1;
for ii = 1:n
xnew(ii) = b(ii);
for jj = L:ii-1
xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n
xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);

end
fprintf('%3.0f ' k);
for jj = 1in
fprintf('%5.4f ' xold(jj));
end
fprintf(’\n’);
end
diary off
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Lemma (20)

If p(T) < 1, then (I —T)~ ! exists and

(I-T)" ZTZ—I+T+T2
=0

Proof: Let A be an eigenvalue of T', then 1 — X is an eigenvalue of [ — 7.
But [A\| < p(A) <1,s01—A\+#0andO0is not an eigenvalue of I — T,
which means (I — T') is nonsingular.

Next we show that (I —T) ' =T+ T +T?+ ---. Since

_ T) (Z Tz) —J— TTVH-l,
i=0
and p(T') < 1 implies [|T™| — 0 as m — oo, we have
(I—T)(Iim ZTi):(I—T) (ZT’):I. O
=0 =0
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Theorem

For any (©) € R" | the sequence produced by

(k) = 71 4 c, k=1,2,..

*

converges to the unique solution of x = Tx + c if and only if

p(T) < 1.

Proof: Suppose p(T') < 1. The sequence of vectors 2(®) produced by the
iterative formulation are

2V = 720 4
2@ = TaM 4 ¢=1220 4 (T +I)c

2@ = T2® 4 =730 4 (T? + T+ I)c

In general
a®) = Tk 4Tkt L T2 4 T 4 De,
Spring 2011
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Since p(T)) < 1, limp_o T*2(®) = 0 for any 2(®) € R™. By Lemma 20,
(T 4T 24+ . T+ D)e— (I -T), as k— oo.
Therefore
> 3
Jim k) = Jim T*© 4 ;Tﬂ c=(I—-T) e
Conversely, suppose {z(")} — z = (I —T) tc. Since

z—2® = Totc—TeF Y —c=T(@—2* ) = T%(x — 22)
= ... =TFz—zO).

Let 2 = 2 — (9. Then

lim T%z = lim (z —2®) = 0.
k—oo k—oo
It follows from theorem p(7T') < 1. |
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Theorem
If |T|| < 1, then the sequence =*) converges to x for any initial z(°) and
© [z — 2B <|IT|*z - 2|

k
© ||z — 2| < gz — 2O

Proof: Since z = Tx + ¢ and (k) = T2(-1) 4 ¢

z—z® = Tr4ce—TkD _¢
= T(x — l‘(k_l))
= T?*(z - gj(k_z)) = conaoc — Tk(x _ m(o))‘

The first statement can then be derived
|z — ¥ = | Tz — 29| < IT))*lle — 29
For the second result, we first show that
|2 — 20D < 7" H|2™ — 2O for any n > 1.
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Since

M — (1) = gl ()
T?(z("2) — g3y =...... =T (zM — O,
we have

2t — 2D < |77 l2® — 2.
Let m > k,
2(m) _ ()
- (x(m) _ x(m—l)) 4 (x(m—n _ x(m—z)) NI (m(kﬂ) _ x(k))
m—1 (xﬂ) _ x(0)> 4 pm-2 <x(1) _ x(0)> I (xu) _ $(0)>

- (Tm—l Lme2 .Tk) (x(l) _ $<0)> ,
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hence
2™ — o®)]

< (ITIm T2 4 T 2 = 2O

I (T2 + T2 4 4 1) o = 2O,

Since limy—oo 2™ =z,

lz —2®)

= lim_ o™ - o]

< i T)E (TR T 1) o — o)
m—0oQ
= HT”ka(l) _ x(o)” lim (HTHmfkfl + HT||mfk72 bt 1)
m—0o0
1
= |7 —= 2™ — 5.
1— |7
This proves the second result. []
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Theorem

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel
methods converges for any initial vector z(%).

Proof: By assumption, A is strictly diagonal dominant, hence a;; # 0
(otherwise A is singular) and

n

@] = Z laijl, 1=1,2,...,n.
J=1j#i

For Jacobi method, the iteration matrix 7y = —D~Y(L + U) has entries

_Mv Z#]7
[T7)i; = { o

0, i=j.
Hence
W Qi 1 n
T =g == g i

and this implies that the Jacobi method converges.
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For Gauss-Seidel method, the iteration matrix T = —(D + L)~1U. Let A
be any eigenvalue of Tz and v, ||y||lc = 1, is a corresponding eigenvector.
Thus

Tey=Xy =— —-Uy=XD+ L)y.

Hence for i =1,...,n,

- Z QY5 = Aaiiyi + A Z Ai5Ys-

j=i+1

This gives
i—1 n
Mgy = =AY aigy; — Y iy
Jj=1 J=i+1
and
[Allasillyi| < |A Z |aij|ly;] + Z |ass||y;]-
j=i+1

Choose the index k such that \yk] =1 > |y;| (this index can always be
found since ||y|lcc = 1). Then
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k—1 n

Mlakl < MDY largl+ Y lak]

j=1 j=k+1

which gives

Z?:kJrl ’akj’ Z?:kJrl ’akj’ _

Al < — =
lakk] — X027 las| 2k Lokl

Since A is arbitrary, p(T¢z) < 1. This means the Gauss-Seidel method
converges. L]

@ The rate of convergence depends on the spectral radius of the matrix
associated with the method.

@ One way to select a procedure to accelerate convergence is to choose
a method whose associated matrix has minimal spectral radius.
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Successive over-relaxation (SOR) method

Definition
Suppose T € R"” is an approximated solution of Az = b. The residual
vector r for T is r = b — AZ.

Let the approximate solution x(**) produced by Gauss-Seidel method be
defined by

] T
) = [o o) 2D, g

g ooy 217 i sy dp

and
7 .
7’1( b [rglf), Tg];), e ,rgz)} =p— AxF)

(%) e

be the corresponding residual vector. Then the mth component of r;

i—1 n
(%) (k=1)
=D amjay” =) amjay
g T 30757



or, equivalently,

i—1 n
k k k—1 k—1
rgm) =by, — Zamj:vg. ) _ Z amjxg- ) _ amimg ),
j=1 Jj=i+1

for eachm=1,2,...,n.

(%)

3 IS

i—1 n
(k) _ 4. (k) (k1) (k1)
Ty —bz—g aijT; — E aije; — aiT; ,

In particular, the ith component of r

SO

i—1 n

agel Ve = b=y e = 37 ayel T
j=1 j=i+1

(k)

= 04T
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Consequently, the Gauss-Seidel method can be characterized as choosing

xgk) to satisfy

(k) (k=1) ok
z, = +L

/L .o
A4

Relaxation method is modified the Gauss-Seidel procedure to

(k) (k=1) Tz(f)
p = T +w——
@i
i—1 n
= :E,Ekil) I % b — Zaijxgk) - Z aijxgkfl) - aiixgkfl)
© j=1 j=i+1

= (1- w)xl(-k_l) 4 i b — Zaww Z aljx (k=1) (1)

j=1 j=i+1

for certain choices of positive w such that the norm of the residual vector
is reduced and the convergence is significantly faster.
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These methods are called for

w < 1: under relaxation,

w = 1: Gauss-Seidel method,

w > 1: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation). To
determine the matrix of the SOR method, we rewrite (1) as

aiia:gk) +w ZZ% aij:cg-k) =(1- w)aii:cgk_l) —w Zn: aij$§k_1) + wb;,
j=1 j=i+1
so that if A= L + D + U, then we have
(D + wL)z® = [(1 — w)D — wU] 2%~ 4+ wb
or

® = (D+wL) (1 =w)D - wU]z* D £ (D +wL)
( ) ( ) ] ( )
= wa(kfl) + c,.
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Example

The linear system Az = b given by

4581
3z

= 3.’E2
+ 4z

has the solution [3,4, —5]7.

- 3 =
+ 4z3 =

24
30,
24,

o Numerical results of Gauss-Seidel method with (9 = [1,1,1]”:

k il o I3

0 1.0000000 1.0000000 1.0000000
1 5.2500000 3.8125000 -5.0468750
2 3.1406250 3.8828125 -5.0292969
3 3.0878906 3.9267578 -5.0183105
4 3.0549316 3.9542236 -5.0114441
5 3.0343323 3.9713898 -5.0071526
6 3.0214577 3.9821186 -5.0044703
7 3.0134110 3.9888241 -5.0027940
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o Numerical results of SOR method with w = 1.25 and z(® =[1,1,1]":

k I T2 I3

0 1.0000000 1.0000000 1.0000000
1 6.3125000 3.5195313 -6.6501465
2 26223145 3.9585266 -4.6004238
3 3.1333027 4.0102646 -5.0966863
4 29570512 4.0074838 -4.9734897
5 3.0037211 4.0029250 -5.0057135
6 29963276 4.0009262 -4.9982822
7 3.0000498 4.0002586 -5.0003486
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o Numerical results of SOR method with w = 1.6 and z(®) =[1,1,1]""

k X1 4] I3

0 1.0000000 1.0000000 1.0000000
1 7.8000000 2.4400000 -9.2240000
2 1.9920000 4.4560000 -2.2832000
3 3.0576000 4.7440000 -6.3324800
4 2.0726400 4.1334400 -4.1471360
5 3.3962880 3.7855360 -5.5975040
6 3.0195840 3.8661760 -4.6950272
7 3.1488384 4.0236774 -5.1735127
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Matlab code of SOR

clear all; delete rslt.dat; diary rslt.dat; diary on;

n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;

b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;

DL(iijj) = omega * A(iij);

end
DU(ii i) = (1-omega)*A(iiii);
for jj +1:n

i) = - omega * A(iij);

end
end
c = omega * (DL \ b); xnew = DL \ ( DU * xold ) + c;
k = 0; fprintf(’ k x1 x2 x3 \n');

while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; k = k + 1; xnew = DL \ ( DU * xold ) + ¢;
fprintf(’%3.0f ' k);
for jj = 1in
fprintf(’%5.4f ', xold(jj));
end
fprintf("\n");
end
diary off
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Theorem (Kahan)

If a;; #0, foreachi=1,2,...,n, then p(T,) > |w — 1|. This implies that

the SOR method can converge on/y if0<w < 2.

v

Theorem (Ostrowski-Reich)

If A is positive definite and the relaxation parameter w satisfying

0 < w < 2, then the SOR iteration converges for any initial vector (%),

Theorem

If A is positive definite and tridiagonal, then p(T¢) = [p(T7)]° < 1 and

the optimal choice of w for the SOR iteration is
2
1+44/1 = [p(T))

w =

With this choice of w, p(T,,) = w — 1.

v
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Example
The matrix

given in previous example, is positive definite and tridiagonal.

Since
oo 0 -30
T, = -DY(L+U)=|0 % 0 -3 01
00 % 0 10
0 -075 0
= | -0.75 0 025 |,
0 025 0
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we have

-\ 075 0
Ty—X=| —075 —X\ 025 |,

0 025 -\

SO
det(Ty — AI) = —\(A\? — 0.625).

Thus,

p(Ty) = 0.625
and

2 2
— ~1.2
1—[p(T)]? 1++1-0.625

This explains the rapid convergence obtained in previous example when
using w = 0.125 [
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Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and A =D + L + LT. The idea is in fact to
implement the SOR formulation twice, one forward and one backward, at
each iteration. That is, SSOR method defines
(D+wL)z®=2) = [(1-w)D- wLT] (k=1) 4 b, (2)
(D +wLT)z® = [(1-w)D —wL]z®"2) + wb. (3)

Define
M,: =D+ wL,
N,: =(1 —w)D —wLT.

Then from the iterations (2) and (3), it follows that

®) = (MZTNIMGIN,) «®7D + 0w (MZTNIMG + M;T) b
T(w)z* =D + M(w)~ .
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But

(1—w)D—wL)(D+wL)™ 141
=(~wL—-D —wD+2D)(D +wL) ™ +1
= JI+Q-w)D(D+wL) ™t +1

= (2-w)D(D +wL)™.

Thus
M(w)™? =w (D +wL”) ™ (2 - w)D(D +wL)™,

then the splitting matrix is

M(w) = w(21_w)(D +wL)D™ (D +wL™).

The iteration matrix is

T(w)= (D +wL")™[(1-w)D - wL] (D +wL) ™ [(1-w)D—wL"];
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Error bounds and iterative refinement

Example
The linear system Az = b given by

1 2 T1 | 3
1.0001 2 x> | | 3.0001

has the unique solution = = [1,1]7.

The poor approximation # = [3,0]” has the residual vector

s az— ] 3 1_[ r 2][3]_[ o
- ~ | 3.0001 1.0001 2 || 0]~ | —0.0002 |’

so ||7]|ec = 0.0002. Although the norm of the residual vector is small, the
approximation & = [3,0]” is obviously quite poor; in fact,
[ — &lloo = 2. &
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The solution of above example represents the intersection of the lines
l1: x1+2x,=3 and /{p: 1.0001z; + 2xo = 3.0001.

{1 and ¢ are nearly parallel. The point (3,0) lies on ¢; which implies
that (3, 0) also lies close to /5, even though it differs significantly from the

intersection point (1,1).
X2 4

1__

(1,1

(3,0

L@ —0.00& LY
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Theorem

Suppose that & is an approximate solution of Ax = b, A is nonsingular
matrix and r = b — A%. Then

lz = 2 < fIr[l - 1A
and ifx # 0 and b # 0,

[l = 2|

T r
fe=d g ay el

611"

Proof: Since

r=b— A% = Az — A% = A(z — &)
and A is nonsingular, we have

. -1 -1

|z =&l =A™ < AT - (|7l

Moreover, since b = Az, we have
ol < Al - [J=|]-
Spring 2011
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It implies that

1 _ [lAl
m < W (5)

Combining Equations (4) and (5), we have

lz = 2] _ [lA] - 1A~ 1”||r||.
[/ (]

Definition (Condition number)

The condition number of nonsingular matrix A is

k(A) = [|A] - A7

For any nonsingular matrix A,
1= |I] = [|A- A7 < [IA] - [ A7H) = K(A)-
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Definition
A matrix A is well-conditioned if x(A) is close to 1, and is ill-conditioned
when k(A) is significantly greater than 1.

In previous example,

A:[ ! 2]

1.0001 2
Since
A1 [ —10000 10000 ]
5000.5 —5000 |’
we have

K(A) = || Allso - |A™ Yoo = 3.0001 x 20000 = 60002 > 1.
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How to estimate the effective condition number in ¢-digit arithmetic
without having to invert the matrix A?

o If the approximate solution Z of Az = b is being determined using
t-digit arithmetic and Gaussian elimination, then

Irll = llb — Azl ~ 107 A] - |1 Z].

@ All the arithmetic operations in Gaussian elimination technique are
performed using t-digit arithmetic, but the residual vector r are done
in double-precision (i.e., 2¢-digit) arithmetic.

@ Use the Gaussian elimination method which has already been
calculated to solve

Ay =r.
Let §j be the approximate solution. Then
JrATlr =AY b- AF) =2 — %

and
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Moreover,

1%

gl lz — & = |A7'7|
AT - llrll = AT IALL - |2]]) = 107 |12l (A).

IN

It implies that

)
O

[terative refinement

In general, & + ¢ is a more accurate approximation to the solution of
Az = b than Z.
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Algorithm (Iterative refinement)

Given tolerance T'OL, maximum number of iteration M, number of digits
of precision t.
Solve Ax = b by using Gaussian elimination in ¢-digit arithmetic.
Set k=1
while (k< M )
Compute 7 = b — Az in 2t-digit arithmetic.
Solve Ay = r by using Gaussian elimination in ¢-digit arithmetic.
If [|y]|lcoc < TOL, then stop.
Setk=k+1land x =z +y.
End while
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Example
The linear system given by

3.3330 15920 —10.333 T1
2.2220 16.710 9.6120 T2
1.5611 5.1791 1.6852 z3

has the exact solution z = [1,1,1]%.

15913
28.544
8.4254

Using Gaussian elimination and five-digit rounding arithmetic leads

successively to the augmented matrices

[ 3.3330 15920 —10.333
0 —10596  16.501
0 —7451.4 6.5250
and
[ 3.3330 15920 —10.333
0 —10596 16.501
| O 0 —5.0790

Wei-Cheng Wang (NTHU)
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—10580
—7444.9

15913
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—4.7000
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The approximate solution is
#(1) = [1.2001,0.99991, 0.92538] .

The residual vector corresponding to & is computed in double precision to
be

A 2 Az

[ 15013 ] [ 3.3330 15920 —10.333 1.2001
— | 28544 | — | 22220 16.710 9.6120 0.99991
| 8.4254 | | 1.5611 5.1791 1.6852 0.92538
[ 15013 ] [ 15913.00518 —0.00518
— | 28544 | — | 28.26987086 | — | 0.27412914
| 84254 | | 8611560367 —0.186160367

Hence the solution of Ay = (1) to be

1) = [~0.20008, 8.9987 x 10~°,0.074607]"

and the new approximate solution z(?) is

2@ = 2™ 4 1) = [1.0000, 1.0000, 0.99999]"".
Spring 2011 62 / 87



Using the suggested stopping technique for the algorithm, we compute
72 = p — A7® and solve the system Ay = (@) which gives

§®) = [1.5002 x 107°,2.0951 x 107*°,1.0000 x 107°]7"
Since
15 ]l < 1073,
we conclude that
73 = 73 + 53 = [1.0000, 1.0000, 1.0000]”

is sufficiently accurate. Ol
In the linear system

Az = b,

A and b can be represented exactly. Realistically, the matrix A and vector
b will be perturbed by §A and db, respectively, causing the linear system

(A+0A)z = b+ 6b

to be solved in place of Ax = b.

Wei-Cheng Wang (NTHU) Spring 2011 63 / 87



Theorem
Suppose A is nonsingular and

1

SA| <
loAl < =y

Then the solution & of (A + dA)Z = b+ 0b approximates the solution x of
Ax = b with the error estimate

= — & K(A) 10l |, [[6Al
[el = 1= n(A)([SAT/IAT) ( IR > '

o If A is well-conditioned, then small changes in A and b produce
correspondingly small changes in the solution x.

o If A is ill-conditioned, then small changes in A and b may produce
large changes in x.
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The conjugate gradient method

Consider the linear systems
Ax =10

where A is large sparse and symmetric positive definite. Define the inner
product notation

<z,y>=zxly forany z,yeR™

Theorem

Let A be symmetric positive definite. Then x* is the solution of Ax = b if
and only if x* minimizes

g(z) =<z, Az > -2 <z,b>.
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Proof: (" =") Rewrite g(x) as

g(z) = <z—a2"Alz—2")>+ <z, Az" >+ <z*, Az >
— <z Ax* > -2<ux,b>
= <z—a2"A(lx—2%) > — <" Az* >
2 <x, Ax* > -2 <x,b>
= <z—-a2A(z—2") > - <z Az" > 2 <z, Az —b>.

Suppose that x* is the solution of Az = b, i.e., Ax* = b. Then
g(z) =<z —2"A(x —2*) > — < z*, Az" >

which minimum occurs at © = x*.
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("«<") Fixed vectors = and v, for any a € R,
fla) = g(z + av)
= <z+av,Ar+aAv > -2<x+av,b>

= <z, Az >+a<v, Az > +a <z, Av > +a® < v, Av >
—2<z,b>2a<v,b>

<z Ar > -2<z,b> 420 <v, Az > —2a <v,b>+a® < v, Av >
= g(z)+2a<v,Az —b>+a? <v,Av > .

Because f is a quadratic function of a and < v, Av > is positive, f has a
minimal value when f’(a) = 0. Since

fl(@)=2<v,Ax — b > +2a < v, Av >,
the minimum occurs at

<v,Ar—b> <wv,b— Az >
<v,Av> = <wv Av>

a =

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra
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and

<v,b— Ax >
A = A) = — 2,— —_ A
g(z + aw) f(a) = g(z) e <w,b x>
<< v,b— Az >>2
+|———— | <v,Av>
<w,Av >
_ (x)_<v,b—A5L‘>2
- ¢ <wv,Av>
So, for any nonzero vector v, we have
g(x + av) < g(z) if <v,b—Ax >#0 (6)
and
g(z + av) = g(x) if <v,b— Az >=0. (7)
Suppose that x* is a vector that minimizes g. Then
g(z* + av) > g(x*) for any wv. (8)
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From (6), (7) and (8), we have
<v,b— Ax* >=0 for any v,

which implies that Az* = b. Ol
Let

r=>b— Ax.

Then

_<v,b—Ax>  <wv,r>
o <v,Av> <, Av>]

If  # 0 and if v and r are not orthogonal, then
g9(z + av) < g(x)

which implies that z 4+ awv is closer to z* than is z.
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Let 2(9) be an initial approximation to z* and v(1) % 0 be an initial search
direction. For k =1,2,3,..., we compute

_ <ok p— Agk-1) >
e O O

and choose a new search direction v(k*1),
Question: How to choose {v(*)} such that {(¥)} converges rapidly to z*?
Let & : R® — R be a differential function on z. Then it holds

O(z + ep) — 9(2)

5 = Vo(x)Tp + O(e).
The right hand side takes minimum at
Vo(x) :
p=—-———— (i.e, the largest descent)
IVe(2)]

for all p with [[p|| = 1 (neglect O(¢)).
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Denote = = [21,%2,...,2,]7. Then
g(z) =<z, Az > -2 < x,b >= ZZ(LU@“Z% 22:51 -
=1 j=1
It follows that

dg -
— :22 x; — 2bg, for k=1,2,... n.
oxy, :I;) o QAfi Ty k, TOr ) ) y T

Therefore, the gradient of g is

T
Vy(z) = [88—51(33), 5—52, e ,88—51(37)] =2(Az —b) = —
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Steepest descent method (gradient method)

Given an initial zg # 0.
For k=1,2,...
Th—1=b— Az
If rp,_1 =0, then stop;
T
_ Tk—1Tk-1
else ap = T Ay

End for

T = Tp—1 + QgTEp—1-

Theorem

If xp, x1_1 are two approximations of the steepest descent method for
solving Ax =b and \y > Ao > --- > A\, > 0 are the eigenvalues of A,
then it holds:

A1 — A\

zp— 2|4 < | ——
T e

) leros — ",

where ||z||a4 = VaT Ax. Thus the gradient method is convergent.

v
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o If the condition number of A (= A1/\,) is large, then i;iz ~ 1.

The gradient method converges very slowly. Hence this method is not
recommendable.

e It is favorable to choose that the search directions {v(V} as mutually
A-conjugate, where A is symmetric positive definite.

Definition
Two vectors p and q are called A-conjugate (A-orthogonal), if p” Aq = 0. J
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Lemma

Let vq,...,v, # 0 be pairwisely A-conjugate. Then they are linearly
independent.

Proof: From

n
0= E ijj
Jj=1

follows that
0= (vp)’A Z cjv; cj(vk)T Av; = cx(vi)T Avg,
j=1 j=1
soc, =0, fork=1,...,n. £
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Theorem

Let A be symm. positive definite and vy, ...,v, € R™\{0} be pairwisely
A-orthogonal. Give xq and let ro =b— Axg. Fork=1,...,n, let

< Vg, b— Aa:k_l >
Q. —
< vk,Avk >

and xp = xp_1 + QpUE.

Then Ax,, = b and

<b— Axy,v; >=0, foreach j=1,2,...,k—1.

Proof: Since, for each kK =1,2,...,n,
T = Th—1 + ALV,
we have

Az, = Azp_1+ anAv, = (Azp—2 + an_14v,-1) + an Ao,

= Axg+ a1Avi + asAvy + - - - + a Avy,.
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It implies that

< Az, — b, v >
= < Axg—bvp > +ay < Avy,vp >+ + oy < Avy, v >

< Axg —byvg > +ay <wi, Avg >+ + oy < vy, Avg, >
= < Axg—b,vp > oy < v, Avg >
< v, b— Axp_q1 >

<vk,Avk>
= < Axg-—bup >+ <vp,b— Axp_ 1 >
= < Axg— b, >

+ < vg,b— Axg + Axg — Ax1+ - — Axp_o + Axp_o — Az 1 >
= < Axg—b,vp >+ <wvp,b— Axg > + < vy, Axg — Az >

4+ < g, Avp_p — Axp_q1 >
= <, Axg— Axy >+ -+ < v, Axp_o — Axp_1 > .

= < Axg-—bup >+ < v, Avg >
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For any i
T = X1 +ov; and  Ax; = Az + o Av;,
we have
Az, — Azx; = —o; Av;.
Thus, fork=1,...,n,

< Az, — b, v, >
= —op <, Avy > — - — a1 < v, Avg_1 >=0

which implies that Az,, = b.
Suppose that

<rp-1,v; >=0 for j=1,2,..., k-1 (9)
By the result
r,=b—Axp =b— A(l‘k_l -+ akvk) =rp_1 — apAvg
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it follows that

< TRV > = < Tp_1,Uk > —ap < Avg, v >
< v, b— Axp_q >
= < Tkg_1,Vp > — < Awvg, v >
’ < Uk,AUk > ’
= 0.

From assumption (9) and A-orthogonality, for j =1,...,k —1
< T,V >=<Tk_1,V; > —af < Avk,vj >=0

which is completed the proof by the mathematic induction. []
Method of conjugate directions:

Let A be symmetric positive definite, b, g € R™. Given

v1,...,0, € R"\{0} pairwisely A-orthogonal.

ro = b — Axo,

Fork=1,...,n,
_ <k, Tkp—1> _
Ak = 2 Avps Th = Th—1 T QUk,

Tk =Tg—1 — akAvk =b— Aa:k.
End For
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Practical Implementation

@ In k-th step a direction v; which is A-orthogonal to v1,...,vp_1
must be determined.

@ It allows for orthogonalization of 7 against vy, ..., vg.

o Let 1, # 0, g(x) decreases strictly in the direction —rj. For e > 0
small, we have g(zp —erg) < g(xg).

If r._1 =b— Axy_1 # 0, then we use r;_1 to generate vy by
Vg = Tk—1 + Br—1Vk—1. (10)
Choose (3;,_1 such that

0 = <wp_1,Avg >=< vp_1,Arg_1 + Br—14vk_1 >
= < Up_1,Ark_1 > +Bk-1 < vp_1, Avg_1 > .
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That is
< V-1, Argp_1 >

1=— : 11
Pt < V-1, Avg_1 > (11)
Theorem
Let v, and By_1 be defined in (10) and (11), respectively. Then
ro,...,Tk—1 are mutually orthogonal and
< vk, Av; >=0, for i=1,2,... k—1.
That is {v1,...,v;} is an A-orthogonal set.
Having chosen v, we compute
 <wgyrp-1> < Tp1+ Br_1Vk—1,Tk—1 >
ap = =
< vg, Avg, > < vy, Avg, >
< Tk-1,Tk—1 > < Ug—1,Tk—1 >
= ————— + 1
< Uk,Avk > < Uk,AUk >
< Th—1,Tk—1 >
< vg, Avg >
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Since
Tk = Tp—1 — QpAvg,
we have
<, Tk >=< TE_1,Tk > —0y < Avg,rp >= —ap < 1k, Avg > .
Further, from (12),

< Tpo1,Th—1 >= o < Vg, Avg >,

SO
B, = < vy, Arp > < T, Avg >
F < v, Avg > < v, Avg >
(l/ak)<rk,rk> . < Tk, Tk >

(L)) < The1,Th1 > < The1,Th—1 >
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Algorithm (Conjugate Gradient method (CG-method))

Let A be s.p.d., b € R™, choose xg € R™, rg = b — Axg = vp.

If ro = 0, then NV = 0 stop, otherwise for k = 0,1, ...
(a). ax = <<vzk£§k>>

(b). i1 = xk + vy,
(C). Tk+1 =Tk — OzkAUk,
(d). If rg41 =0, let N =k + 1, stop.

(0 = =

Vg1 = Th+1 + Brk-

@ Theoretically, the exact solution is obtained in n steps.

o If A is well-conditioned, then approximate solution is obtained in
about /n steps.

o If A is ill-conditioned, then the number of iterations may be greater
than n.
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Select a nonsingular matrix C' so that

A=ctac™
is better conditioned.
Consider the linear system
Ai = b,
where
i=CTz and b=C71
Then
iz = (CACT)(CTx) = C 1 Ax.

Thus,

Ar=b & Az =b and z=C"T7.
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Since

& = CTxy,
we have
i = b—Af,=C"1b— (C71AC™T) CTxy,
= C7Yb— Azxp) =C1ry.
Let
Vg = CTUk and  wg = C_lrk.
Then
B . < Tg, P > . < C’flrk,C'*l?"]c >
g <1, Tk—1> < C7lrp_q,C7lr_y >
< Wk, W, >

< Wg—1, Wg—1 >
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Thus,

B = < fk—lafk—l > _ < CilTk_l,CflTk_l >
< Oy, Ay, > < CTyy, C~TAC-TCTyy, >
_ < Wg—1, Wg—1 >
< CTvk,C_lAvk >
and, since
< CTu,, C7YAu, > = ()" CC7LAuy, = ()T Auy,
= <, Avg >,
we have
G — < Wk—1,Wk—1 >.
< ’Uk,A’Uk >
Further,

Tk = Tp—1 + QxO, SO C'Txk = C’ka_l 4= dkCTvk
and
Tp = Tp_1 + OpUE.
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Continuing,

P = Fr—1 — O Ady,

SO
C iy =Clr_1 — a,CTAC T C Ty,
and
T =Tk—1 — &kAvk.

Finally,

Okte1 = 7 + Brop and CT =c! 3,CT

Og+1 = T + Brlr an Vg1 = Tk + BC™ g,
SO

ver1 = C~TC ry + Bror = C Twy + Brug.
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Algorithm (Preconditioned CG-method (PCG-method))

Choose C and xq. Set 79 = b — Axg, solve Cwy = ro and CTvy = wy.
If ro =0, then N = 0 stop, otherwise for k =1,2,...
(). ap =< wg_1,wi_1 >/ < vk, Avg >,
(b). T = Tp—1 + g,
(¢). Tk = rp—1 — g Avg,
(d). If rp, =0, let N =Fk+ 1, stop.
Otherwise, solve C'wy, = 1, and C'T 2, = wy,
(e). Br =< Wk, Wi > / < Wg—1, Wg—1 >,
(f). vky1 = 21 + Brvg.
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