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15. A bound is n > 14, and p14 = 1.32477.

10 10
1 ()] = (%) < (é) = <107,

1
lp — pn| = ~ < 1072 < 1000 < n.

16. Forn > 1,

80

17. Since limy,— 00 (Pn—Pn-1) = lim,—.o0 1/n = 0, the difference in the terms goes to zero. However,
pn is the nth term of the divergent harmonic series, so lim,—, pr = 00.

18. Since ~1 <a<0and2<b< 3, wehavel <a+b<3orl/2<1/2(a+b) < 3/2in all cases.
Further,

fz)<0, for —1<z<0 and 1<z<2
f(x)>0, for 0<z<1l and 2<z<3.

Thus, a; = a, f(a1) <0, by =b, and f(by) > 0.

(a) Since a + b < 2, we have p; = —“%9 and 1/2 < p; < 1. Thus, f(p1) > 0. Hence,
as = a; = a and by = p;. The only zero of f in [az, bs] is p = 0, so the convergence will
be to 0.

(b) Since a + b > 2, we have p; = 93259 and 1 < p; < 3/2. Thus, f(p1) < 0. Hence, az = p1
and by = by = b. The only zero of f in [ag,bs] is p = 2, so the convergence will be to 2.

(¢c) Since a + b = 2, we have p; = gg—b =1 and f(p1) = 0. Thus, a zero of f has been found
on the first iteration. The convergence is to p = 1.

19. The depth of the water is 0.838 ft.

20. The angle € changes at the approximate rate w = —0.317059.

Exercise Set 2.2, page 61
1. For the value of z under consideration we have

(a) 2=0B4+z -2 o2t =3+2-222 < f(z)=0

43— x4\ /2
(b)mz(HTI) 2’ =cr+3-2"< f(z)=0

1/2
(¢) z= (;ii) S +2)=2+3s f(z)=0

3x* + 222+ 3

(d) 2= 43 + 42 — 1

Sdrt+42? —r=32" +20° +3 & f(2) =0
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2. (a) ps=1.10782; (b) py=0.987506; (c)ps=1.12364; (d) py = 1.12412;
(b) Part (d) gives the best answer since |ps — ps| is the smallest for (d).

3. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does
not converge.

4. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.

5. With g(z) = (322 + 3)/* and py = 1, pg = 1.94332 is accurate to within 0.01.

6. With g(z) =4/1+ % and po = 1, we have py = 1.324.

7. Since ¢'(z) = %cos %, g is continuous and g’ exists on [0,27]. Further, ¢’'(z) = 0 only when
¢ = m, so that g(0) = g(27) = 7 < g(z) =< g(r) = 7+ % and |¢'(z)| < 7, for 0 < z < 2m.
Theorem 2.2 implies that a unique fixed point p exists in [0, 27]. With k = % and pg = 7, we

have p; = 7 + % Corollary 2.4 implies that

o=l < Lol —pol =2 (1)
Pn P_l_kpl Po——3 1]

For the bound to be less than 0.1, we need n > 4. However, ps = 3.626996 is accurate to
within 0.01.

8. Using po = 1 gives p1» = 0.6412053. Since |¢’(z)| = 27%In2 < 0.551 on [$,1] with k = 0.551,
Corollary 2.4 gives a bound of 16 iterations.

9. For po = 1.0 and g(z) = 0.5(z + 2), we have v/3 ~ p;y = 1.73205.
10. For g(z) = 5//x and py = 2.5, we have p14 = 2.92399.
11.

Jed

(a) With [0,1] and py = 0, we have pg = 0.257531.

(b) With [2.5,3.0] and py = 2.5, we have p;7 = 2.690650.

(c¢) With [0.25,1] and py = 0.25, we have p14 = 0.909999.

(d) With [0.3,0.7] and pp = 0.3, we have p3g = 0.469625.

(e) With [0.3,0.6] and pp = 0.3, we have psg = 0.448059.

(f) With [0,1] and pg = 0, we have pg = 0.704812.

12. The inequalities in Corollary 2.4 give |p, — p| < k™ max(py — a,b — po). We want
In(1075) — In(max(py — a, b — po))

> Ink '

(a) Using g(z) = 2 + sinz we have £ = 0.9899924966 so that with pp = 2 we have n >
In(0.00001)/In k = 1144.663221. However, our tolerance is met with pgs = 2.5541998.

(b) Using g(z) = v/2z +5 we have k = 0.1540802832 so that with pg = 2 we have n >
In(0.00001)/In k = 6.155718005. However, our tolerance is met with ps = 2.0945503.

k™ max(py — a,b —pg) < 107° so we need n

(c) Using g(z) = /% and the interval [0, 1] we have k = 0.4759448347 so that with pg =1

we have n > In(0.00001)/In k£ = 15.50659829. However, our tolerance is met with p12 =
0.91001496.
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(d) Using g(x) = cosz and the interval [0, 1] we have k = 0.8414709848 so that with po =0
we have n > In(0.00001)/Ink > 66.70148074. However, our tolerance is met with psp =
0.73908230.

13. For g(z) = (22? — 10cos z)/(3z), we have the following:
Do =3 = ps = 3.16193; pp = —3 = ps = —3.16193.
For g(x) = arccos(—0.1z?), we have the following:

po=1=p = 1.96882; pg=—-1=p1 = —1.96882.

14. For g(z) = 1/tanz — (1/x) + x and po = 4, we have py = 4.493409.
15. With g(z) = % arcsin (—£) + 2, we have ps = 1.683855.
16. (a) If fixed-point iteration converges to the limit p, then
p= lim p, = lim 2p, 1 — Ap;, , =2p — Ap”.

Solving for p gives p = +.

A
(b) Any subinterval [¢,d] of (55, ) containing % suffices.
Since
g(z) =2z — Az?, ¢'(z) =2 — 2Az,

s0 g(z) is continuous, and g'(x) exists. Further, ¢’'(z) = 0 only if z = %.

1y _ 1 AN_ (3\_3
INA) A 9\sa)79\24) T 1A

Since

and we have

3 1
— < < —.
M s9o =7
For z in (ﬁ, %), we have
i 1 < 1
A 2A

S0
lg'(z)] = 24

1 1

17. One of many examples is g(z) = v/2z —1 on [3,1].

18. (a) The proof of existence is unchanged. For uniqueness, suppose p and ¢ are fixed points in
[a,b] with p # q. By the Mean Value Theorem, a number § in (a, b) exists with

p—q=9gp)—9(@=9EP—-q9 <klp—q9 <p—yq,

giving the same contradiction as in Theorem 2.2.
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(b) Consider g(z) = 1 — z* on [0,1]. The function ¢ has the unique fixed point p =
1 (=14 +/5) . With py = 0.7, the sequence eventually alternates between 0 and 1.

19. Let g(z) = z/2+1/x. Forx # 0,¢'(x) = 1/2—1/z% If z > /2, then 1/z% < 1/2, so ¢'(z) > 0.
Also, g(v2) = V2.

(a) Suppose that o > v/2. Then
1= V2= g(a0) — 9 (V2) = ¢'(§) (w0 — v2),
where v2 < £ < z. Thus, £; —v/2 > 0 and @; > v/2. Further,

T 1 T 1 o+ V2
S N _ Tt V2
L0

2 R R
and V2 < z1 < 0. By an inductive argument,

V2 < Ty < T < ... < Zo.

Thus, {z,,} is a decreasing sequence which has a lower bound and must converge.
Suppose p = lim,, o0 Zm. Then

Loy — 1 1
p= lim Jml—i— zg—l-—.
mooo\ 2 Zma) 2 p

Thus,

_r 1

which implies that p = ++v/2. Since z,, > v/2 for all m,

lim z,, = V2.

m—0o0

(b) We have
2
0< (117() — \/5) = ’E(z) - 256()\/5‘{“2,
80 2x0\/§<x%+2and V2 < %114—% = .
(c) Case 1: 0 < xg < /2, which implies that v/2 < z; by part (b). Thus,

O<mo<\/§<wm+1<xm<...<m1 and li mm:\/i
o0

m—

Case 2: 2o = v/2, which implies that z,, = V2 for all m and lim,,—co Zm = V2.
Case 3: 2o > v/2, which by part (a) implies that limy, 0o Tm = V2.

20. (a) Let g(z) = /2 + A/(2z). Note that g (\/Z) = VA. Also, ¢'(x) = 1/2 — A/ (22?) if
x#0and ¢'(z) > 0 if z > VA.
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21.

22.

23.

If g = \/Z, then z,, = VA for all m and lim,,—c0 Tm = VA.
If zg > A, then

z1 —VA=glx))—g (\/Z) = ¢'(£) (:co - \/Z) > 0.

Further,
Io A Zo A

T =5

<_ PUR—
2 "o 2 Tova

Thus, VA < 21 < zo. Inductively,

(Jr:g + \/74) .

1
2

\/Z<wm+1<mn7,<...<$0

and limy,— 0 Zm = VA by an argument similar to that in Exercise 19(a).
If 0 < &g < VA, then

2

0< (.1‘0—\/2) =$g—2$0\/Z+A
and
2woVA < 22 + A,

which leads to

Thus,
0<xg < VA< Zpy1 < <...< 21,

and by the preceding argument, lim,,—_, o0 Zm = VA.
(b) If 2o < 0, then lim,, 00 T = —VA.

Replace the second sentence in the proof with: “Since g satisfies a Lipschitz condition on [a, ]
with a Lipschitz constant L < 1, we have, for each n,

IPn — Pl = 19(Pn-1) = 9(p)| < L|pn-1 —p|.”
The rest of the proof is the same, with & replaced by L.
Let € = (1 — |¢’(p)|)/2. Since ¢’ is continuous at p, there exists a number § > 0 such that for

x € [p—d,p+4], we have |¢'(z) — ¢’ (p)| < €. Thus, |¢'(z)| < |¢'(p)|+& < 1forz € [p—46,p+5].
By the Mean Value Theorem

l9(z) = g(p)| = lg' ()|l — p| < |z —p,
for x € [p — d,p + 4]. Applying the Fixed-Point Theorem completes the problem.

With g(t) = 501.0625 — 201.0625¢ =% and po = 5.0, ps = 6.0028 is within 0.01 s of the actual
time.
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24. Since ¢’ is continuous at p and |¢’(p)| > 1, by letting € = |g’(p)| — 1 there exists a number § > 0
such that |¢'(z) — ¢’(p)| < |¢'(p)] — 1 whenever 0 < |z — p| < 6. Hence, for any z satisfying
0 < |z —p| <6, we have

lg' ()] = 1g' (p)| = |9’ (x) — ' ()| > |g'(0)| = (Ig' ()| = 1) = 1.

If pp is chosen so that 0 < |p — po| < 8, we have by the Mean Value Theorem that

lp1 — p| = l9(po) — 9(p)| = |g"(€)llpo — pl,

for some £ between py and p. Thus, 0 < |p —&| < § so |p1 — p| = |¢'(€)||po — | > |Po — p|-

Exercise Set 2.3, page 71

1. py = 2.60714
2. po = —0.865684; If pg = 0, f'(po) = 0 and p; cannot be computed.

3. (a) 2.45454 (b) 2.44444 (c) Part (a) is better.

4. (a) —1.25208 (b) —0.841355

9]

(a) For pg = 2, we have ps = 2.69065.
(b) For pg = —3, we have p3 = —2.87939.
(¢) For pg = 0, we have ps = 0.73909.
(d) For pg = 0, we have p3 = 0.96434.

6. (a) For pp = 1, we have ps = 1.829384.
(b) For pp = 1.5, we have py = 1.397748.
(c) For pg = 2, we have ps = 2.370687; and for py = 4, we have ps = 3.722113.
(d) For pp =1, we have ps = 1.412391; and for pp = 4, we have ps = 3.057104.
(e) For pg =1, we have py = 0.910008; and for py = 3, we have pg = 3.733079.
(f) For pg = 0, we have py = 0.588533; for pg = 3, we have p; = 3.096364; and for pg = 6,
we have p3 = 6.285049.

7. Using the endpoints of the intervals as pg and p;, we have:

(a) pip =2.69065  (b) pr = —2.87939  (c) pe =0.73909  (d) ps = 0.96433

8. Using the endpoints of the intervals as py and p;, we have:

(a) pr = 1.829384 (b) pe = 1.397749



