Numerical Analysis I Iterative techniques in matrix algebra

Instructor: Wei-Cheng Wang ¹

Department of Mathematics National TsingHua University

Fall 2011

Outline

- 1 Norms of vectors and matrices (Reference only)
- 2 Eigenvalues and eigenvectors (Reference only)
- 3 Iterative techniques for solving linear systems
- 4 Error bounds and iterative refinement
- 5 The conjugate gradient method (SKIP)

Definition

 $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is a vector norm if

- (i) ||x|| > 0, $\forall x \in \mathbb{R}^n$,
- (ii) ||x|| = 0 if and only if x = 0,
- (iii) $\|\alpha x\| = |\alpha| \|x\| \ \forall \ \alpha \in \mathbb{R} \text{ and } x \in \mathbb{R}^n$,
- (iv) $||x + y|| < ||x|| + ||y|| \ \forall \ x, y \in \mathbb{R}^n$.

Definition

The ℓ_2 and ℓ_∞ norms for $x=[x_1,x_2,\cdots,x_n]^T$ are defined by

$$||x||_2 = (x^T x)^{1/2} = \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2} \quad \text{and} \quad ||x||_\infty = \max_{1 \le i \le n} |x_i|.$$

The ℓ_2 norm is also called the Euclidean norm.

Theorem (Cauchy-Bunyakovsky-Schwarz inequality)

For each $x=[x_1,x_2,\cdots,x_n]^T$ and $y=[y_1,y_2,\cdots,y_n]^T$ in \mathbb{R}^n ,

$$x^{T}y = \sum_{i=1}^{n} x_{i}y_{i} \le \left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1/2} \left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1/2} = \|x\|_{2} \cdot \|y\|_{2}.$$

Proof: If x=0 or y=0, the result is immediate. Suppose $x\neq 0$ or $y\neq 0$. For each $\alpha\in\mathbb{R}$,

$$0 \le ||x - \alpha y||_2^2 = \sum_{i=1}^n (x_i - \alpha y_i)^2 = \sum_{i=1}^n x_i^2 - 2\alpha \sum_{i=1}^n x_i y_i + \alpha^2 \sum_{i=1}^n y_i^2,$$

and

$$2\alpha \sum_{i=1}^{n} x_i y_i \le \sum_{i=1}^{n} x_i^2 + \alpha^2 \sum_{i=1}^{n} y_i^2 = ||x||_2^2 + \alpha^2 ||y||_2^2.$$

Since $||x||_2 > 0$ and $||y||_2 > 0$, we can let

$$\alpha = \frac{\|x\|_2}{\|y\|_2}$$

to give

$$\left(2\frac{\|x\|_2}{\|y\|_2}\right)\left(\sum_{i=1}^n x_i y_i\right) \le \|x\|_2^2 + \frac{\|x\|_2^2}{\|y\|_2^2} \|y\|_2^2 = 2\|x\|_2^2.$$

Thus

$$x^T y = \sum_{i=1}^n x_i y_i \le ||x||_2 ||y||_2.$$

For each $x, y \in \mathbb{R}^n$,

$$\begin{split} \|x+y\|_{\infty} &= \max_{1\leq i\leq n}|x_i+y_i| \leq \max_{1\leq i\leq n}(|x_i|+|y_i|)\\ &\leq \max_{1\leq i\leq n}|x_i| + \max_{1\leq i\leq n}|y_i| = \|x\|_{\infty} + \|y\|_{\infty} \end{split}$$

and

$$||x + y||_{2}^{2} = \sum_{i=1}^{n} (x_{i} + y_{i})^{2} = \sum_{i=1}^{2} x_{i}^{2} + 2 \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$\leq ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2},$$

which gives

$$||x+y||_2 \le ||x||_2 + ||y||_2.$$

Definition

A sequence $\{x^{(k)} \in \mathbb{R}^n\}_{k=1}^{\infty}$ is convergent to x with respect to the norm $\|\cdot\|$ if $\forall \ \varepsilon > 0$, \exists an integer $N(\varepsilon)$ such that

$$||x^{(k)} - x|| < \varepsilon, \ \forall \ k \ge N(\varepsilon).$$

Theorem

 $\{x^{(k)} \in \mathbb{R}^n\}_{k=1}^\infty$ converges to x with respect to $\|\cdot\|_\infty$ if and only if

$$\lim_{k \to \infty} x_i^{(k)} = x_i, \ \forall \ i = 1, 2, \dots, n.$$

Proof: " \Rightarrow " Given any $\varepsilon > 0$, \exists an integer $N(\varepsilon)$ such that

$$\max_{1 \le i \le n} |x_i^{(k)} - x_i| = ||x^{(k)} - x||_{\infty} < \varepsilon, \ \forall \ k \ge N(\varepsilon).$$

This result implies that

$$|x_i^{(k)} - x_i| < \varepsilon, \ \forall \ i = 1, 2, \dots, n.$$

Hence

$$\lim_{k \to \infty} x_i^{(k)} = x_i, \ \forall \ i.$$

" \Leftarrow " For a given $\varepsilon > 0$, let $N_i(\varepsilon)$ represent an integer with

$$|x_i^{(k)} - x_i| < \varepsilon$$
, whenever $k \ge N_i(\varepsilon)$.

Define

$$N(\varepsilon) = \max_{1 \le i \le n} N_i(\varepsilon).$$

If $k \geq N(\varepsilon)$, then

$$\max_{1 \le i \le n} |x_i^{(k)} - x_i| = ||x^{(k)} - x||_{\infty} < \varepsilon.$$

This implies that $\{x^{(k)}\}$ converges to x with respect to $\|\cdot\|_{\infty}$.

Theorem

For each $x \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}.$$

Proof: Let x_i be a coordinate of x such that

$$||x||_{\infty}^2 = |x_j|^2 \le \sum_{i=1}^n x_i^2 = ||x||_2^2,$$

so $||x||_{\infty} \leq ||x||_2$ and

$$||x||_2^2 = \sum_{i=1}^n x_i^2 \le \sum_{i=1}^n x_j^2 = nx_j^2 = n||x||_{\infty}^2,$$

so
$$||x||_2 \le \sqrt{n} ||x||_{\infty}$$
.

Definition

A matrix norm $\|\cdot\|$ on the set of all $n\times n$ matrices is a real-valued function satisfying for all $n\times n$ matrices A and B and all real number α :

- (i) $||A|| \ge 0$;
- (ii) ||A|| = 0 if and only if A = 0;
- (iii) $\|\alpha A\| = |\alpha| \|A\|$;
- (iv) $||A + B|| \le ||A|| + ||B||$;
- (v) $||AB|| \le ||A|| ||B||$;

Theorem

If $\|\cdot\|$ is a vector norm on \mathbb{R}^n , then

$$||A|| = \max_{||x||=1} ||Ax||$$

is a matrix norm.

For any $z \neq 0$, we have $x = z/\|z\|$ as a unit vector. Hence

$$\|A\| = \max_{\|x\|=1} \|Ax\| = \max_{z \neq 0} \left\| A\left(\frac{z}{\|z\|}\right) \right\| = \max_{z \neq 0} \frac{\|Az\|}{\|z\|}.$$

Corollary

$$||Az|| \le ||A|| \cdot ||z||.$$

Theorem

If $A = [a_{ij}]$ is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|.$$

Fall 2011

11 / 87

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra

Proof: Let x be an n-dimension vector with

$$1 = ||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Then

$$\begin{split} \|Ax\|_{\infty} &= \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \\ &\leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \max_{1 \leq j \leq n} |x_{j}| = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|. \end{split}$$

Consequently,

$$||A||_{\infty} = \max_{||x||_{\infty} = 1} ||Ax||_{\infty} \le \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|.$$

On the other hand, let p be an integer with

$$\sum_{j=1}^{n} |a_{pj}| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|,$$

and x be the vector with

$$x_j = \left\{ \begin{array}{ll} 1, & \text{if } a_{pj} \ge 0, \\ -1, & \text{if } a_{pj} < 0. \end{array} \right.$$

Then

$$||x||_{\infty} = 1$$
 and $a_{pj}x_j = |a_{pj}|, \ \forall \ j = 1, 2, \dots, n,$

so

$$||Ax||_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right| \ge \left| \sum_{j=1}^{n} a_{pj} x_j \right| = \left| \sum_{j=1}^{n} |a_{pj}| \right| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

This result implies that

$$||A||_{\infty} = \max_{||x||_{\infty} = 1} ||Ax||_{\infty} \ge \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

which gives

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|.$$

Eigenvalues and eigenvectors

Definition (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

$$p(\lambda) = \det(A - \lambda I).$$

Definition (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues of the matrix A. If λ is an eigenvalue of A and $x \neq 0$ satisfies $(A - \lambda I)x = 0$, then x is an eigenvector of A corresponding to the eigenvalue λ .

Definition (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix ${\cal A}$ is called the spectrum of ${\cal A}.$ The spectral radius of ${\cal A}$ is

$$\rho(A) = \max\{|\lambda|; \lambda \text{ is an eigenvalue of } A\}.$$

Theorem

If A is an $n \times n$ matrix, then

- (i) $||A||_2 = \sqrt{\rho(A^T A)};$
- (ii) $\rho(A) \leq ||A||$ for any matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and $\|x\| = 1$. Then

$$|\lambda| = |\lambda| ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| ||x|| = ||A||,$$

that is, $|\lambda| \leq \|A\|$. Since λ is arbitrary, this implies that $\rho(A) = \max |\lambda| \leq \|A\|$.

Theorem

For any A and any $\varepsilon > 0$, there exists a matrix norm $\|\cdot\|$ such that

$$\rho(A) < ||A|| < \rho(A) + \varepsilon.$$

◆□▶ ◆鄙≯ ◆選≯ ◆選≯ → 選

Definition

We call an $n \times n$ matrix A convergent if

$$\lim_{k\to\infty} (A^k)_{ij} = 0 \,\,\forall \,\, i=1,2,\ldots,n \quad \text{and} \quad j=1,2,\ldots,n.$$

Theorem

The following statements are equivalent.

- A is a convergent matrix;
- $\lim_{k\to\infty} ||A^k|| = 0 \text{ for some matrix norm;}$
- **4** $\rho(A) < 1$;
- $\lim_{k \to \infty} A^k x = 0 \text{ for any } x.$

Iterative techniques for solving linear systems

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix \boldsymbol{A} into

$$A = M - (M - A),$$

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

$$Mx = (M - A)x + b.$$

This suggests an iterative process

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c,$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.

Two criteria for choosing the splitting matrix ${\cal M}$ are

- $x^{(k)}$ is easily computed. More precisely, the system $Mx^{(k)}=y$ is easy to solve;
- the sequence $\{x^{(k)}\}$ converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose M so that M^{-1} approximate A^{-1} ,

In the following subsections, we will introduce some of the mostly commonly used classic iterative methods.

Jacobi Method

If we decompose the coefficient matrix A as

$$A = D - L - U,$$

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose M=D, then we derive the iterative formulation for Jacobi method:

$$x^{(k)} = D^{-1}(L+U)x^{(k-1)} + D^{-1}b.$$

With this method, the iteration matrix $T_J = D^{-1}(L+U)$ and $c = D^{-1}b$. Each component $x_i^{(k)}$ can be computed by

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}\right) / a_{ii}.$$

$$\begin{array}{lll} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} & = & b_1 \\ a_{21}x_1^{(k-1)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} & = & b_2 \\ & & & \vdots \\ a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} & = & b_n. \end{array}$$

Algorithm (Jacobi Method)

Given $x^{(0)}$, tolerance TOL, maximum number of iteration M.

Set
$$k = 1$$
.

While
$$k \leq M$$
 and $||x - x^{(0)}||_2 \geq TOL$

Set
$$k = k + 1$$
, $x^{(0)} = x$.

For
$$i = 1, 2, ..., n$$

$$x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(0)} - \sum_{j=i+1}^n a_{ij} x_j^{(0)}\right) / a_{ii}$$

End For

End While

Example

Consider the linear system Ax = b given by

which has the unique solution $x = [1, 2, -1, 1]^T$.

Solving equation E_i for x_i , for i = 1, 2, 3, 4, we obtain

Then Ax = b can be rewritten in the form x = Tx + c with

$$T = \begin{bmatrix} 0 & 1/10 & -1/5 & 0 \\ 1/11 & 0 & 1/11 & -3/11 \\ -1/5 & 1/10 & 0 & 1/10 \\ 0 & -3/8 & 1/8 & 0 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3/5 \\ 25/11 \\ -11/10 \\ 15/8 \end{bmatrix}$$

and the iterative formulation for Jacobi method is

$$x^{(k)} = Tx^{(k-1)} + c$$
 for $k = 1, 2, \dots$

The numerical results of such iteration is list as follows:

22 / 87

k	x_1	x_2	x_3	x_4
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.2727	-1.1000	1.8750
2	1.0473	1.7159	-0.8052	0.8852
3	0.9326	2.0533	-1.0493	1.1309
4	1.0152	1.9537	-0.9681	0.9738
5	0.9890	2.0114	-1.0103	1.0214
6	1.0032	1.9922	-0.9945	0.9944
7	0.9981	2.0023	-1.0020	1.0036
8	1.0006	1.9987	-0.9990	0.9989
9	0.9997	2.0004	-1.0004	1.0006
10	1.0001	1.9998	-0.9998	0.9998

Matlab code of Example

```
clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);
T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2,4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;
c(1,1) = 3/5; c(2,1) = 25/11; c(3,1) = -11/10; c(4,1) = 15/8;
xnew = T * xold + c; k = 0:
fprintf(' k \times 1 \times 2 \times 3 \times 4 \n');
while ( k \le 100 \& norm(xnew-xold) > 1.0d-14 )
  xold = xnew; xnew = T * xold + c; k = k + 1;
  fprintf('%3.0f',k);
  for ii = 1:n
    fprintf('%5.4f',xold(jj));
  end
  fprintf(' \ n');
end
```

Gauss-Seidel Method

When computing $x_i^{(k)}$ for i>1, $x_1^{(k)},\ldots,x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1,\ldots,x_{i-1} than $x_1^{(k-1)},\ldots,x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values. That is

$$\begin{array}{rcl} a_{11}x_{1}^{(k)} + a_{12}x_{2}^{(k-1)} + a_{13}x_{3}^{(k-1)} + \cdots + a_{1n}x_{n}^{(k-1)} & = & b_{1} \\ a_{21}x_{1}^{(k)} + a_{22}x_{2}^{(k)} + a_{23}x_{3}^{(k-1)} + \cdots + a_{2n}x_{n}^{(k-1)} & = & b_{2} \\ a_{31}x_{1}^{(k)} + a_{32}x_{2}^{(k)} + a_{33}x_{3}^{(k)} + \cdots + a_{3n}x_{n}^{(k-1)} & = & b_{3} \\ & & \vdots \\ a_{n1}x_{1}^{(k-1)} + a_{n2}x_{2}^{(k-1)} + a_{n3}x_{3}^{(k-1)} + \cdots + a_{nn}x_{n}^{(k)} & = & b_{n}. \end{array}$$

This improvement induce the Gauss-Seidel method.

The Gauss-Seidel method sets M = D - L and defines the iteration as

$$x^{(k)} = (D-L)^{-1}Ux^{(k-1)} + (D-L)^{-1}b.$$

That is, Gauss-Seidel method uses $T_G = (D - L)^{-1}U$ as the iteration matrix. The formulation above can be rewritten as

$$x^{(k)} = D^{-1} \left(Lx^{(k)} + Ux^{(k-1)} + b \right).$$

Hence each component $x_i^{(k)}$ can be computed by

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}\right) / a_{ii}.$$

- For Jacobi method, only the components of $x^{(k-1)}$ are used to compute $x^{(k)}$. Hence $x_i^{(k)}, i=1,\ldots,n$, can be computed in parallel at each iteration k.
- At each iteration of Gauss-Seidel method, since $x_i^{(k)}$ can not be computed until $x_1^{(k)},\ldots,x_{i-1}^{(k)}$ are available, the method is not a parallel algorithm in nature.

Fall 2011

Algorithm (Gauss-Seidel Method)

Given $x^{(0)}$, tolerance TOL, maximum number of iteration M.

Set k = 1.

For i = 1, 2, ..., n

$$x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^{n} a_{ij} x_j^{(0)}\right) / a_{ii}$$

End For

While
$$k \leq M$$
 and $||x - x^{(0)}||_2 \geq TOL$

Set
$$k = k + 1$$
, $x^{(0)} = x$.

For
$$i = 1, 2, ..., n$$

$$x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} x_j^{(0)}\right) / a_{ii}$$

End For

End While

Example

Consider the linear system Ax = b given by

$$E_1: 10x_1 - x_2 + 2x_3 = 6,$$

$$E_2: -x_1 + 11x_2 - x_3 + 3x_4 = 25,$$

$$E_3: 2x_1 - x_2 + 10x_3 - x_4 = -11,$$

$$E_4: 3x_2 - x_3 + 8x_4 = 15$$

which has the unique solution $x = [1, 2, -1, 1]^T$.

Gauss-Seidel method gives the equation

The numerical results of such iteration is list as follows:

k	x_1	x_2	x_3	x_4
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.3273	-0.9873	0.8789
2	1.0302	2.0369	-1.0145	0.9843
3	1.0066	2.0036	-1.0025	0.9984
4	1.0009	2.0003	-1.0003	0.9998
5	1.0001	2.0000	-1.0000	1.0000

- The results of Example appear to imply that the Gauss-Seidel method is superior to the Jacobi method.
- This is almost always true, but there are linear systems for which the Jacobi method converges and the Gauss-Seidel method does not.
- See Exercises 17 and 18.

Matlab code of Example

```
clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);
A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3,3)=10; A(3,4)=-1; A(4,2)=3; A(4,3)=-1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;
for ii = 1:n
    xnew(ii) = b(ii):
    for jj = 1:ii-1
        xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
    end
    for jj = ii+1:n
        xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
    end
    xnew(ii) = xnew(ii) / A(ii.ii):
end
                                                             \n');
k = 0; fprintf(' k
                       x1
                                 x2
                                          x3
while ( k \le 100 \& norm(xnew-xold) > 1.0d-14 )
    xold = xnew: k = k + 1:
    for ii = 1:n
        xnew(ii) = b(ii):
        for jj = 1:ii-1
             xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
         end
        for ii = ii+1:n
             xnew(ii) = xnew(ii) - A(ii,ij) * xold(ij);
        end
        xnew(ii) = xnew(ii) / A(ii,ii);
    end
    fprintf('%3.0f',k);
    for jj = 1:n
         fprintf('%5.4f '.xold(ii)):
    end
    fprintf('\n');
end
diary off
```

Lemma (20)

If $\rho(T) < 1$, then $(I - T)^{-1}$ exists and

$$(I-T)^{-1} = \sum_{i=0}^{\infty} T^i = I + T + T^2 + \cdots$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of I-T. But $|\lambda| \leq \rho(A) < 1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of I-T, which means (I-T) is nonsingular.

Next we show that $(I-T)^{-1} = I + T + T^2 + \cdots$. Since

$$(I-T)\left(\sum_{i=0}^{m} T^{i}\right) = I - T^{m+1},$$

and ho(T) < 1 implies $\|T^m\| o 0$ as $m o \infty$, we have

$$(I-T)\left(\lim_{m\to\infty}\sum_{i=0}^mT^i
ight)=(I-T)\left(\sum_{i=0}^\infty T^i
ight)=I.$$

Theorem

For any $x^{(0)} \in \mathbb{R}^n$, the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots,$$

converges to the unique solution of x = Tx + c if and only if

$$\rho(T) < 1.$$

Proof: Suppose $\rho(T) < 1$. The sequence of vectors $x^{(k)}$ produced by the iterative formulation are

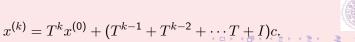
$$x^{(1)} = Tx^{(0)} + c$$

$$x^{(2)} = Tx^{(1)} + c = T^2x^{(0)} + (T+I)c$$

$$x^{(3)} = Tx^{(2)} + c = T^3x^{(0)} + (T^2 + T + I)c$$

$$\vdots$$

In general



Since $\rho(T) < 1$, $\lim_{k \to \infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 20,

$$(T^{k-1} + T^{k-2} + \dots + T + I)c \to (I - T)^{-1}c$$
, as $k \to \infty$.

Therefore

$$\lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} T^k x^{(0)} + \left(\sum_{j=0}^{\infty} T^j\right) c = (I - T)^{-1} c.$$

Conversely, suppose $\{x^{(k)}\} \to x = (I-T)^{-1}c$. Since

$$x - x^{(k)} = Tx + c - Tx^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)})$$

= $\cdots = T^k(x - x^{(0)}).$

Let $z = x - x^{(0)}$. Then

$$\lim_{k \to \infty} T^k z = \lim_{k \to \infty} (x - x^{(k)}) = 0.$$

It follows from theorem $\rho(T) < 1$.

Theorem

If ||T|| < 1, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

$$||x - x^{(k)}|| \le \frac{||T||^k}{1 - ||T||} ||x^{(1)} - x^{(0)}||.$$

Proof: Since x = Tx + c and $x^{(k)} = Tx^{(k-1)} + c$,

$$x - x^{(k)} = Tx + c - Tx^{(k-1)} - c$$

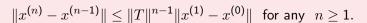
$$= T(x - x^{(k-1)})$$

$$= T^{2}(x - x^{(k-2)}) = \dots = T^{k}(x - x^{(0)}).$$

The first statement can then be derived

$$||x - x^{(k)}|| = ||T^k(x - x^{(0)})|| \le ||T||^k ||x - x^{(0)}||.$$

For the second result, we first show that





Since

$$x^{(n)} - x^{(n-1)} = Tx^{(n-1)} + c - Tx^{(n-2)} - c$$

$$= T(x^{(n-1)} - x^{(n-2)})$$

$$= T^{2}(x^{(n-2)} - x^{(n-3)}) = \cdots = T^{n-1}(x^{(1)} - x^{(0)}),$$

we have

$$||x^{(n)} - x^{(n-1)}|| \le ||T||^{n-1} ||x^{(1)} - x^{(0)}||.$$

Let $m \geq k$,

$$x^{(m)} - x^{(k)}$$

$$= \left(x^{(m)} - x^{(m-1)}\right) + \left(x^{(m-1)} - x^{(m-2)}\right) + \dots + \left(x^{(k+1)} - x^{(k)}\right)$$

$$= T^{m-1} \left(x^{(1)} - x^{(0)}\right) + T^{m-2} \left(x^{(1)} - x^{(0)}\right) + \dots + T^{k} \left(x^{(1)} - x^{(0)}\right)$$

$$= \left(T^{m-1} + T^{m-2} + \dots + T^{k}\right) \left(x^{(1)} - x^{(0)}\right),$$

hence

$$||x^{(m)} - x^{(k)}||$$

$$\leq \left(||T||^{m-1} + ||T||^{m-2} + \dots + ||T||^k\right) ||x^{(1)} - x^{(0)}||$$

$$= ||T||^k \left(||T||^{m-k-1} + ||T||^{m-k-2} + \dots + 1\right) ||x^{(1)} - x^{(0)}||.$$

Since $\lim_{m\to\infty} x^{(m)} = x$,

$$||x - x^{(k)}||$$

$$= \lim_{m \to \infty} ||x^{(m)} - x^{(k)}||$$

$$\leq \lim_{m \to \infty} ||T||^k \left(||T||^{m-k-1} + ||T||^{m-k-2} + \dots + 1 \right) ||x^{(1)} - x^{(0)}||$$

$$= ||T||^k ||x^{(1)} - x^{(0)}|| \lim_{m \to \infty} \left(||T||^{m-k-1} + ||T||^{m-k-2} + \dots + 1 \right)$$

$$= ||T||^k \frac{1}{1 - ||T||} ||x^{(1)} - x^{(0)}||.$$

This proves the second result.

Theorem

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{ii} \neq 0$ (otherwise A is singular) and

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

For Jacobi method, the iteration matrix $T_J = D^{-1}(L+U)$ has entries

$$[T_J]_{ij} = \begin{cases} \frac{-a_{ij}}{a_{ii}}, & i \neq j, \\ 0, & i = j. \end{cases}$$

Hence

$$||T_J||_{\infty} = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^n \left| \frac{a_{ij}}{a_{ii}} \right| = \max_{1 \le i \le n} \frac{1}{|a_{ii}|} \sum_{j=1, j \ne i}^n |a_{ij}| < 1,$$

and this implies that the Jacobi method converges,

(Reference only) For Gauss-Seidel method, the iteration matrix $T_G=(D-L)^{-1}U.$ Let λ be any eigenvalue of T_G and $y, \ \|y\|_{\infty}=1$, is a corresponding eigenvector. Thus

$$T_G y = \lambda y \implies U y = \lambda (D - L) y.$$

Hence for $i = 1, \ldots, n$,

$$-\sum_{j=i+1}^{n} a_{ij} y_{j} = \lambda a_{ii} y_{i} + \lambda \sum_{j=1}^{i-1} a_{ij} y_{j}.$$

This gives

$$\lambda a_{ii} y_i = -\lambda \sum_{j=1}^{i-1} a_{ij} y_j - \sum_{j=i+1}^{n} a_{ij} y_j$$

and

$$|\lambda||a_{ii}||y_i| \le |\lambda| \sum_{j=1}^{i-1} |a_{ij}||y_j| + \sum_{j=i+1}^n |a_{ij}||y_j|.$$

Choose the index k such that $|y_k|=1 \ge |y_j|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$|\lambda||a_{kk}| \le |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|$$

which gives

$$|\lambda| \le \frac{\sum_{j=k+1}^{n} |a_{kj}|}{|a_{kk}| - \sum_{j=1}^{k-1} |a_{kj}|} < \frac{\sum_{j=k+1}^{n} |a_{kj}|}{\sum_{j=k+1}^{n} |a_{kj}|} = 1$$

Since λ is arbitrary, $\rho(T_G) < 1$. This means the Gauss-Seidel method converges.

- The rate of convergence depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose
 method whose associated matrix has minimal spectral radius.
 - a method whose associated matrix has minimal spectral radius.

Successive over-relaxation (SOR) method

Definition

Suppose $\tilde{x} \in \mathbb{R}^n$ is an approximated solution of Ax = b. The residual vector r for \tilde{x} is $r = b - A\tilde{x}$.

Let the approximate solution $\mathbf{x}^{(k,i)}$ produced by Gauss-Seidel method be defined by

$$\mathbf{x}^{(k,i)} = \left[x_1^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)}\right]^T$$

and

$$r_i^{(k)} = \left[r_{1i}^{(k)}, r_{2i}^{(k)}, \dots, r_{ni}^{(k)}\right]^T = b - A\mathbf{x}^{(k,i)}$$

be the corresponding residual vector. Then the mth component of $r_i^{(k)}$ is

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^n a_{mj} x_j^{(k-1)},$$

or, equivalently,

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^n a_{mj} x_j^{(k-1)} - a_{mi} x_i^{(k-1)},$$

for each $m = 1, 2, \ldots, n$.

In particular, the *i*th component of $r_i^{(k)}$ is

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)},$$

SO

$$a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)}$$
$$= a_{ii}x_i^{(k)}.$$

Consequently, the Gauss-Seidel method can be characterized as choosing $\boldsymbol{x}_i^{(k)}$ to satisfy

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}.$$

Relaxation method is modified the Gauss-Seidel procedure to

$$x_{i}^{(k)} = x_{i}^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$

$$= x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} - a_{ii} x_{i}^{(k-1)} \right]$$

$$= (1 - \omega) x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right]$$
(1)

for certain choices of positive ω such that the norm of the residual vector is reduced and the convergence is significantly faster.

These methods are called for

 $\omega < 1$: under relaxation,

 $\omega = 1$: Gauss-Seidel method,

 $\omega > 1$: over relaxation.

Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method, we rewrite (1) as

$$a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1 - \omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + \omega b_i,$$

so that if A = D - L - U, then we have

$$(D - \omega L)x^{(k)} = [(1 - \omega)D + \omega U]x^{(k-1)} + \omega b$$

or

$$x^{(k)} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U] x^{(k-1)} + \omega (D - \omega L)^{-1} b$$

$$\equiv T_{\omega} x^{(k-1)} + c_{\omega}.$$

Example

The linear system $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ given by

$$4x_1 + 3x_2 = 24,$$

 $3x_1 + 4x_2 - x_3 = 30,$
 $- x_2 + 4x_3 = -24,$

has the solution $[3, 4, -5]^T$.

• Numerical results of Gauss-Seidel method with $x^{(0)} = [1, 1, 1]^T$:

k	x_1	x_2	x_3
0	1.0000000	1.0000000	1.0000000
1	5.2500000	3.8125000	-5.0468750
2	3.1406250	3.8828125	-5.0292969
3	3.0878906	3.9267578	-5.0183105
4	3.0549316	3.9542236	-5.0114441
5	3.0343323	3.9713898	-5.0071526
6	3.0214577	3.9821186	-5.0044703
7	3.0134110	3.9888241	-5.0027940

• Numerical results of SOR method with $\omega = 1.25$ and $x^{(0)} = [1, 1, 1]^T$:

k	x_1	x_2	x_3
0	1.0000000	1.0000000	1.0000000
1	6.3125000	3.5195313	-6.6501465
2	2.6223145	3.9585266	-4.6004238
3	3.1333027	4.0102646	-5.0966863
4	2.9570512	4.0074838	-4.9734897
5	3.0037211	4.0029250	-5.0057135
6	2.9963276	4.0009262	-4.9982822
7	3.0000498	4.0002586	-5.0003486

• Numerical results of SOR method with $\omega = 1.6$ and $x^{(0)} = [1, 1, 1]^T$:

k	x_1	x_2	x_3
0	1.0000000	1.0000000	1.0000000
1	7.8000000	2.4400000	-9.2240000
2	1.9920000	4.4560000	-2.2832000
3	3.0576000	4.7440000	-6.3324800
4	2.0726400	4.1334400	-4.1471360
5	3.3962880	3.7855360	-5.5975040
6	3.0195840	3.8661760	-4.6950272
7	3.1488384	4.0236774	-5.1735127

Matlab code of SOR

```
clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;
b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;
for ii = 1:n
    DL(ii,ii) = A(ii,ii);
    for ii = 1:ii-1
         DL(ii,ij) = omega * A(ii,ij);
    end
    DU(ii,ii) = (1-omega)*A(ii,ii);
    for ii = ii+1:n
         DU(ii,jj) = - \text{ omega * } A(ii,jj);
    end
end
c = omega * (DL \setminus b); xnew = DL \setminus (DU * xold) + c;
k = 0: fprintf(' k
                        ×1
                                  x2
                                           x3
                                                     \n');
while ( k \le 100 \& norm(xnew-xold) > 1.0d-14 )
    xold = xnew; k = k + 1; xnew = DL \setminus (DU * xold) + c;
    fprintf('%3.0f',k);
    for ii = 1:n
         fprintf('%5.4f',xold(jj));
    end
    fprintf('\n');
end
diary off
```


Theorem (Kahan (SKIP))

If $a_{ii} \neq 0$, for each i = 1, 2, ..., n, then $\rho(T_{\omega}) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich (SKIP))

If A is positive definite and the relaxation parameter ω satisfying $0 < \omega < 2$, then the SOR iteration converges for any initial vector $x^{(0)}$.

Theorem

If A is positive definite and tridiagonal, then $\rho(T_G) = [\rho(T_J)]^2 < 1$ and the optimal choice of ω for the SOR iteration is

$$\omega = \frac{2}{1 + \sqrt{1 - \left[\rho(T_J)\right]^2}}.$$

With this choice of ω , $\rho(T_{\omega}) = \omega - 1$.

◆ロ → ◆ 個 → ◆ き → ◆ き → り へ

Example

The matrix

$$A = \left[\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{array} \right],$$

given in previous example, is positive definite and tridiagonal.

Since

$$T_{J} = -D^{-1}(L+U) = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -0.75 & 0 \\ -0.75 & 0 & 0.25 \\ 0 & 0.25 & 0 \end{bmatrix},$$

we have

$$T_J - \lambda I = \left[egin{array}{ccc} -\lambda & -0.75 & 0 \ -0.75 & -\lambda & 0.25 \ 0 & 0.25 & -\lambda \end{array}
ight],$$

SO

$$\det(T_J - \lambda I) = -\lambda(\lambda^2 - 0.625).$$

Thus,

$$\rho(T_J) = \sqrt{0.625}$$

and

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24.$$

This explains the rapid convergence obtained in previous example when using $\omega=0.125$

Symmetric Successive Over Relaxation (SSOR) Method (SKIP)

Let A be symmetric and $A=D+L+L^T$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$(D + \omega L)x^{(k-\frac{1}{2})} = [(1 - \omega)D - \omega L^T]x^{(k-1)} + \omega b,$$
 (2)

$$(D + \omega L^T)x^{(k)} = [(1 - \omega)D - \omega L]x^{(k - \frac{1}{2})} + \omega b.$$
 (3)

Define

$$\begin{cases} M_{\omega} : = D + \omega L, \\ N_{\omega} : = (1 - \omega)D - \omega L^{T}. \end{cases}$$

Then from the iterations (2) and (3), it follows that

$$x^{(k)} = (M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} N_{\omega}) x^{(k-1)} + \omega (M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} + M_{\omega}^{-T}) b$$

$$\equiv T(\omega) x^{(k-1)} + M(\omega)^{-1} b.$$

But

$$((1 - \omega)D - \omega L) (D + \omega L)^{-1} + I$$

= $(-\omega L - D - \omega D + 2D)(D + \omega L)^{-1} + I$
= $-I + (2 - \omega)D(D + \omega L)^{-1} + I$
= $(2 - \omega)D(D + \omega L)^{-1}$.

Thus

$$M(\omega)^{-1} = \omega \left(D + \omega L^T \right)^{-1} (2 - \omega) D(D + \omega L)^{-1},$$

then the splitting matrix is

$$M(\omega) = \frac{1}{\omega(2-\omega)}(D+\omega L)D^{-1}(D+\omega L^{T}).$$

The iteration matrix is

$$T(\omega) = (D + \omega L^T)^{-1} \left[(1 - \omega)D - \omega L \right] (D + \omega L)^{-1} \left[(1 - \omega)D - \omega L^T \right].$$

Error bounds and iterative refinement

Example

The linear system Ax = b given by

$$\left[\begin{array}{cc} 1 & 2 \\ 1.0001 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 3 \\ 3.0001 \end{array}\right]$$

has the unique solution $x = [1, 1]^T$.

The poor approximation $\tilde{x} = [3,0]^T$ has the residual vector

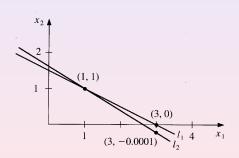
$$r = b - A\tilde{x} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.0002 \end{bmatrix},$$

so $\|r\|_{\infty}=0.0002$. Although the norm of the residual vector is small, the approximation $\tilde{x}=[3,0]^T$ is obviously quite poor; in fact, $\|x-\tilde{x}\|_{\infty}=2$.

The solution of above example represents the intersection of the lines

$$\ell_1: \quad x_1 + 2x_2 = 3 \quad \text{ and } \quad \ell_2: \quad 1.0001x_1 + 2x_2 = 3.0001.$$

 ℓ_1 and ℓ_2 are nearly parallel. The point (3,0) lies on ℓ_1 which implies that (3,0) also lies close to ℓ_2 , even though it differs significantly from the intersection point (1,1).



Theorem

Suppose that \tilde{x} is an approximate solution of Ax=b, A is nonsingular matrix and $r=b-A\tilde{x}$. Then

$$||x - \tilde{x}|| \le ||r|| \cdot ||A^{-1}||$$

and if $x \neq 0$ and $b \neq 0$,

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \frac{\|r\|}{\|b\|}.$$

Proof: Since

$$r = b - A\tilde{x} = Ax - A\tilde{x} = A(x - \tilde{x})$$

and A is nonsingular, we have

$$||x - \tilde{x}|| = ||A^{-1}r|| \le ||A^{-1}|| \cdot ||r||.$$
(4)

Moreover, since b = Ax, we have

$$||b|| \le ||A|| \cdot ||x||.$$

It implies that

$$\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|}.\tag{5}$$

Combining Equations (4) and (5), we have

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \frac{\|A\| \cdot \|A^{-1}\|}{\|b\|} \|r\|.$$

Definition (Condition number)

The condition number of nonsingular matrix A is

$$\kappa(A) = ||A|| \cdot ||A^{-1}||.$$

For any nonsingular matrix A,

$$1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}|| = \kappa(A).$$

Definition

A matrix A is well-conditioned if $\kappa(A)$ is close to 1, and is ill-conditioned when $\kappa(A)$ is significantly greater than 1.

In previous example,

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1.0001 & 2 \end{array} \right].$$

Since

$$A^{-1} = \left[\begin{array}{cc} -10000 & 10000 \\ 5000.5 & -5000 \end{array} \right],$$

we have

$$\kappa(A) = ||A||_{\infty} \cdot ||A^{-1}||_{\infty} = 3.0001 \times 20000 = 60002 \gg 1.$$

(SKIP) How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A?

• If the approximate solution \tilde{x} of Ax=b is being determined using t-digit arithmetic and Gaussian elimination, then

$$||r|| = ||b - A\tilde{x}|| \approx 10^{-t} ||A|| \cdot ||\tilde{x}||.$$

- All the arithmetic operations in Gaussian elimination technique are performed using t-digit arithmetic, but the residual vector r are done in double-precision (i.e., 2t-digit) arithmetic.
- Use the Gaussian elimination method which has already been calculated to solve

$$Ay = r$$
.

Let \tilde{y} be the approximate solution. Then

$$\tilde{y} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = x - \tilde{x}$$

and

Moreover,

$$\|\tilde{y}\| \approx \|x - \tilde{x}\| = \|A^{-1}r\|$$

$$\leq \|A^{-1}\| \cdot \|r\| \approx \|A^{-1}\| (10^{-t}\|A\| \cdot \|\tilde{x}\|) = 10^{-t}\|\tilde{x}\|\kappa(A).$$

It implies that

$$\kappa(A) pprox rac{\|\widetilde{y}\|}{\|\widetilde{x}\|} 10^t.$$

(END OF SKIP)

Iterative refinement

Let $r = b - A\tilde{x}$, and \tilde{y} an approximate solution of Ay = r.

Then
$$\tilde{y} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = x - \tilde{x}$$
, and $x \approx \tilde{x} + \tilde{y}$.

In general, $\tilde{x}+\tilde{y}$ is a more accurate approximation to the solution of Ax=b than \tilde{x} . One can apply this procedure repeatedly to get more and more accurate approximate solution.

Note however, that the residual $r=b-A\tilde{x}$ has to be computed in twice the precision in order to calculate the correction \tilde{y} accurately.

Algorithm (Iterative refinement)

Given tolerance TOL, maximum number of iteration M, number of digits of precision t.

Solve Ax = b in t-digit arithmetic.

Set k=1

while ($k \leq M$)

Compute r = b - Ax in 2t-digit arithmetic.

Solve Ay = r in t-digit arithmetic.

If $||y||_{\infty} < TOL$, then stop.

Set k = k + 1 and x = x + y.

End while

Example

The linear system given by

$$\begin{bmatrix} 3.3330 & 15920 & -10.333 \\ 2.2220 & 16.710 & 9.6120 \\ 1.5611 & 5.1791 & 1.6852 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15913 \\ 28.544 \\ 8.4254 \end{bmatrix}$$

has the exact solution $x = [1, 1, 1]^T$.

Using Gaussian elimination and five-digit rounding arithmetic leads successively to the augmented matrices

$$\left[\begin{array}{c|ccc} 3.3330 & 15920 & -10.333 & 15913 \\ 0 & -10596 & 16.501 & -10580 \\ 0 & -7451.4 & 6.5250 & -7444.9 \end{array}\right]$$

and

$$\left[\begin{array}{cccc} 3.3330 & 15920 & -10.333 & 15913 \\ 0 & -10596 & 16.501 & -10580 \\ 0 & 0 & -5.0790 & -4.7000 \end{array}\right].$$

The approximate solution is

$$\tilde{x}^{(1)} = [1.2001, 0.99991, 0.92538]^T.$$

The residual vector corresponding to $\tilde{\boldsymbol{x}}$ is computed in double precision to be

$$r^{(1)} = b - A\tilde{x}^{(1)}$$

$$= \begin{bmatrix} 15913 \\ 28.544 \\ 8.4254 \end{bmatrix} - \begin{bmatrix} 3.3330 & 15920 & -10.333 \\ 2.2220 & 16.710 & 9.6120 \\ 1.5611 & 5.1791 & 1.6852 \end{bmatrix} \begin{bmatrix} 1.2001 \\ 0.99991 \\ 0.92538 \end{bmatrix}$$

$$= \begin{bmatrix} 15913 \\ 28.544 \\ 8.4254 \end{bmatrix} - \begin{bmatrix} 15913.00518 \\ 28.26987086 \\ 8.611560367 \end{bmatrix} = \begin{bmatrix} -0.00518 \\ 0.27412914 \\ -0.186160367 \end{bmatrix}.$$

Hence the solution of $Ay = r^{(1)}$ to be

$$\tilde{y}^{(1)} = [-0.20008, 8.9987 \times 10^{-5}, 0.074607]^T$$

and the new approximate solution $x^{(2)}$ is

$$x^{(2)} = x^{(1)} + \tilde{y}^{(1)} = [1.0000, 1.0000, 0.99999]^T.$$

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A\tilde{x}^{(2)}$ and solve the system $Ay^{(2)}=r^{(2)}$, which gives

$$\tilde{y}^{(2)} = [1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}]^T.$$

Since

$$\|\tilde{y}^{(2)}\|_{\infty} \le 10^{-5},$$

we conclude that

$$\tilde{x}^{(3)} = \tilde{x}^{(2)} + \tilde{y}^{(2)} = [1.0000, 1.0000, 1.0000]^T$$

is sufficiently accurate.

In the linear system

$$Ax = b$$
,

A and b can be represented exactly. Realistically, the matrix A and vector b will be perturbed by δA and δb , respectively, causing the linear system

$$(A + \delta A)x = b + \delta b$$

to be solved in place of Ax = b.

Theorem (reference only)

Suppose A is nonsingular and

$$\|\delta A\| < \frac{1}{\|A^{-1}\|}.$$

Then the solution \tilde{x} of $(A + \delta A)\tilde{x} = b + \delta b$ approximates the solution x of Ax = b with the error estimate

$$\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|\delta A\|/\|A\|)} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right).$$

- If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution x.
- If A is ill-conditioned, then small changes in A and b may produce large changes in x.

The conjugate gradient method (SKIP)

Consider the linear systems

$$Ax = b$$

where \boldsymbol{A} is large sparse and symmetric positive definite. Define the inner product notation

$$\langle x, y \rangle = x^T y$$
 for any $x, y \in \mathbb{R}^n$.

Theorem

Let A be symmetric positive definite. Then x^* is the solution of Ax=b if and only if x^* minimizes

$$g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle$$
.

Proof: (" \Rightarrow ") Rewrite g(x) as

$$g(x) = \langle x - x^*, A(x - x^*) \rangle + \langle x, Ax^* \rangle + \langle x^*, Ax \rangle$$

$$- \langle x^*, Ax^* \rangle - 2 \langle x, b \rangle$$

$$= \langle x - x^*, A(x - x^*) \rangle - \langle x^*, Ax^* \rangle$$

$$+ 2 \langle x, Ax^* \rangle - 2 \langle x, b \rangle$$

$$= \langle x - x^*, A(x - x^*) \rangle - \langle x^*, Ax^* \rangle + 2 \langle x, Ax^* - b \rangle.$$

Suppose that x^* is the solution of Ax = b, i.e., $Ax^* = b$. Then

$$g(x) = \langle x - x^*, A(x - x^*) \rangle - \langle x^*, Ax^* \rangle$$

which minimum occurs at $x = x^*$.

(" \Leftarrow ") Fixed vectors x and v, for any $\alpha \in \mathbb{R}$,

$$f(\alpha) \equiv g(x + \alpha v)$$
= $\langle x + \alpha v, Ax + \alpha Av \rangle - 2 \langle x + \alpha v, b \rangle$
= $\langle x, Ax \rangle + \alpha \langle v, Ax \rangle + \alpha \langle x, Av \rangle + \alpha^2 \langle v, Av \rangle$
 $-2 \langle x, b \rangle - 2\alpha \langle v, b \rangle$
= $\langle x, Ax \rangle - 2 \langle x, b \rangle + 2\alpha \langle v, Ax \rangle - 2\alpha \langle v, b \rangle + \alpha^2 \langle v, Av \rangle$
= $g(x) + 2\alpha \langle v, Ax - b \rangle + \alpha^2 \langle v, Av \rangle$.

Because f is a quadratic function of α and < v, Av > is positive, f has a minimal value when $f'(\alpha) = 0$. Since

$$f'(\alpha) = 2 < v, Ax - b > +2\alpha < v, Av >,$$

the minimum occurs at

$$\hat{\alpha} = -\frac{\langle v, Ax - b \rangle}{\langle v, Av \rangle} = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}.$$

◆ロ > ◆母 > ◆ き > ◆き > き の の

and

$$g(x+\hat{\alpha}v) = f(\hat{\alpha}) = g(x) - 2\frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} \langle v, b - Ax \rangle$$
$$+ \left(\frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}\right)^2 \langle v, Av \rangle$$
$$= g(x) - \frac{\langle v, b - Ax \rangle^2}{\langle v, Av \rangle}.$$

So, for any nonzero vector v, we have

$$g(x + \hat{\alpha}v) < g(x) \quad \text{if} \quad \langle v, b - Ax \rangle \neq 0 \tag{6}$$

and

$$g(x + \hat{\alpha}v) = g(x)$$
 if $\langle v, b - Ax \rangle = 0.$ (7)

Suppose that x^* is a vector that minimizes g. Then

$$g(x^* + \hat{\alpha}v) \ge g(x^*)$$
 for any v .

(8)

From (6), (7) and (8), we have

$$\langle v, b - Ax^* \rangle = 0$$
 for any v ,

which implies that $Ax^* = b$. Let

$$r = b - Ax$$
.

Then

$$\alpha = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} = \frac{\langle v, r \rangle}{\langle v, Av \rangle}.$$

If $r \neq 0$ and if v and r are not orthogonal, then

$$g(x + \alpha v) < g(x)$$

which implies that $x + \alpha v$ is closer to x^* than is x.

Let $x^{(0)}$ be an initial approximation to x^* and $v^{(1)} \neq 0$ be an initial search direction. For $k=1,2,3,\ldots$, we compute

$$\alpha_k = \frac{\langle v^{(k)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle},$$

$$x^{(k)} = x^{(k-1)} + \alpha_k v^{(k)}$$

and choose a new search direction $v^{(k+1)}$.

Question: How to choose $\{v^{(k)}\}$ such that $\{x^{(k)}\}$ converges rapidly to x^* ? Let $\Phi: \mathbb{R}^n \to \mathbb{R}$ be a differential function on x. Then it holds

$$\frac{\Phi(x+\varepsilon p)-\Phi(x)}{\varepsilon}=\nabla\Phi(x)^Tp+O(\varepsilon).$$

The right hand side takes minimum at

$$p = -\frac{\nabla \Phi(x)}{\|\nabla \Phi(x)\|}$$
 (i.e., the largest descent)

for all p with ||p|| = 1 (neglect $O(\varepsilon)$).

Denote $x = [x_1, x_2, \dots, x_n]^T$. Then

$$g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j - 2 \sum_{i=1}^{n} x_i b_i.$$

It follows that

$$\frac{\partial g}{\partial x_k}(x) = 2\sum_{i=1}^n a_{ki}x_i - 2b_k, \text{ for } k = 1, 2, \dots, n.$$

Therefore, the gradient of g is

$$\nabla g(x) = \left[\frac{\partial g}{\partial x_1}(x), \frac{\partial g}{\partial x_2}, \cdots, \frac{\partial g}{\partial x_n}(x)\right]^T = 2(Ax - b) = -2r.$$

Steepest descent method (gradient method)

Given an initial
$$x_0 \neq 0$$
. For $k=1,2,\ldots$
$$r_{k-1}=b-Ax_{k-1}$$
 If $r_{k-1}=0$, then stop; else $\alpha_k=\frac{r_{k-1}^Tr_{k-1}}{r_{k-1}^TAr_{k-1}},\;x_k=x_{k-1}+\alpha_kr_{k-1}.$ End for

Theorem

If x_k , x_{k-1} are two approximations of the steepest descent method for solving Ax=b and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ are the eigenvalues of A, then it holds:

$$||x_k - x^*||_A \le \left(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\right) ||x_{k-1} - x^*||_A,$$

where $||x||_A = \sqrt{x^T A x}$. Thus the gradient method is convergent.

- If the condition number of A (= λ_1/λ_n) is large, then $\frac{\lambda_1-\lambda_n}{\lambda_1+\lambda_n}\approx 1$. The gradient method converges very slowly. Hence this method is not recommendable.
- ullet It is favorable to choose that the search directions $\{v^{(i)}\}$ as mutually A-conjugate, where A is symmetric positive definite.

Definition

Two vectors p and q are called A-conjugate (A-orthogonal), if $p^TAq=0$.

Lemma

Let $v_1, \ldots, v_n \neq 0$ be pairwisely A-conjugate. Then they are linearly independent.

Proof: From

$$0 = \sum_{j=1}^{n} c_j v_j$$

follows that

$$0 = (v_k)^T A \left(\sum_{j=1}^n c_j v_j \right) = \sum_{j=1}^n c_j (v_k)^T A v_j = c_k (v_k)^T A v_k,$$

so $c_k = 0$, for k = 1, ..., n.

Theorem

Let A be symm. positive definite and $v_1, \ldots, v_n \in \mathbb{R}^n \setminus \{0\}$ be pairwisely A-orthogonal. Give x_0 and let $r_0 = b - Ax_0$. For $k = 1, \ldots, n$, let

$$\alpha_k = \frac{\langle v_k, b - Ax_{k-1} \rangle}{\langle v_k, Av_k \rangle} \quad \text{and} \quad x_k = x_{k-1} + \alpha_k v_k.$$

Then $Ax_n = b$ and

$$< b - Ax_k, v_j >= 0$$
, for each $j = 1, 2, \dots, k-1$.

Proof: Since, for each $k = 1, 2, \dots, n$,

$$x_k = x_{k-1} + \alpha_k v_k,$$

we have

$$Ax_n = Ax_{n-1} + \alpha_n Av_n = (Ax_{n-2} + \alpha_{n-1}Av_{n-1}) + \alpha_n Av_n$$

$$\vdots$$

$$= Ax_0 + \alpha_1 Av_1 + \alpha_2 Av_2 + \dots + \alpha_n Av_n.$$

It implies that

$$< Ax_{n} - b, v_{k} >$$

$$= < Ax_{0} - b, v_{k} > +\alpha_{1} < Av_{1}, v_{k} > + \dots + \alpha_{n} < Av_{n}, v_{k} >$$

$$= < Ax_{0} - b, v_{k} > +\alpha_{1} < v_{1}, Av_{k} > + \dots + \alpha_{n} < v_{n}, Av_{k} >$$

$$= < Ax_{0} - b, v_{k} > +\alpha_{k} < v_{k}, Av_{k} >$$

$$= < Ax_{0} - b, v_{k} > + \frac{< v_{k}, b - Ax_{k-1} >}{< v_{k}, Av_{k} >} < v_{k}, Av_{k} >$$

$$= < Ax_{0} - b, v_{k} > + < v_{k}, b - Ax_{k-1} >$$

$$= < Ax_{0} - b, v_{k} > + < v_{k}, b - Ax_{k-1} >$$

$$= < Ax_{0} - b, v_{k} > + < v_{k}, b - Ax_{1} + \dots - Ax_{k-2} + Ax_{k-2} - Ax_{k-1} >$$

$$= < Ax_{0} - b, v_{k} > + < v_{k}, b - Ax_{0} > + < v_{k}, Ax_{0} - Ax_{1} >$$

$$+ \dots + < v_{k}, Ax_{k-2} - Ax_{k-1} >$$

$$= < v_{k}, Ax_{0} - Ax_{1} > + \dots + < v_{k}, Ax_{k-2} - Ax_{k-1} > .$$

For any i

$$x_i = x_{i-1} + \alpha_i v_i$$
 and $Ax_i = Ax_{i-1} + \alpha_i Av_i$,

we have

$$Ax_{i-1} - Ax_i = -\alpha_i Av_i.$$

Thus, for $k = 1, \ldots, n$,

$$< Ax_n - b, v_k >$$

= $-\alpha_1 < v_k, Av_1 > - \dots - \alpha_{k-1} < v_k, Av_{k-1} >= 0$

which implies that $Ax_n = b$.

Suppose that

$$\langle r_{k-1}, v_j \rangle = 0 \text{ for } j = 1, 2, \dots, k-1.$$
 (9)

By the result

$$r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k v_k) = r_{k-1} - \alpha_k Av_k$$

it follows that

$$\begin{array}{rcl} < r_k, v_k > & = & < r_{k-1}, v_k > -\alpha_k < Av_k, v_k > \\ & = & < r_{k-1}, v_k > -\frac{< v_k, b - Ax_{k-1} >}{< v_k, Av_k >} < Av_k, v_k > \\ & = & 0. \end{array}$$

From assumption (9) and A-orthogonality, for $j=1,\ldots,k-1$

$$< r_k, v_j > = < r_{k-1}, v_j > -\alpha_k < Av_k, v_j > = 0$$

which is completed the proof by the mathematical induction.

Method of conjugate directions:

Let A be symmetric positive definite, $b, x_0 \in \mathbb{R}^n$. Given $v_1, \ldots, v_n \in \mathbb{R}^n \setminus \{0\}$ pairwisely A-orthogonal.

$$\begin{aligned} r_0 &= b - Ax_0, \\ \text{For } k &= 1, \dots, n, \\ \alpha_k &= \frac{\langle v_k, r_{k-1} \rangle}{\langle v_k, Av_k \rangle}, \ x_k = x_{k-1} + \alpha_k v_k, \\ r_k &= r_{k-1} - \alpha_k Av_k = b - Ax_k. \end{aligned}$$

End For

Practical Implementation

- In k-th step a direction v_k which is A-orthogonal to v_1, \ldots, v_{k-1} must be determined.
- It allows for orthogonalization of r_k against v_1, \ldots, v_k .
- Let $r_k \neq 0$, g(x) decreases strictly in the direction $-r_k$. For $\varepsilon > 0$ small, we have $q(x_k - \varepsilon r_k) < q(x_k)$.

If $r_{k-1} = b - Ax_{k-1} \neq 0$, then we use r_{k-1} to generate v_k by

$$v_k = r_{k-1} + \beta_{k-1} v_{k-1}. (10)$$

Choose β_{k-1} such that

$$0 = \langle v_{k-1}, Av_k \rangle = \langle v_{k-1}, Ar_{k-1} + \beta_{k-1}Av_{k-1} \rangle$$

= $\langle v_{k-1}, Ar_{k-1} \rangle + \beta_{k-1} \langle v_{k-1}, Av_{k-1} \rangle .$

That is

$$\beta_{k-1} = -\frac{\langle v_{k-1}, Ar_{k-1} \rangle}{\langle v_{k-1}, Av_{k-1} \rangle}.$$
(11)

Theorem

Let v_k and β_{k-1} be defined in (10) and (11), respectively. Then r_0, \ldots, r_{k-1} are mutually orthogonal and

$$< v_k, Av_i > = 0, \text{ for } i = 1, 2, \dots, k - 1.$$

That is $\{v_1, \ldots, v_k\}$ is an A-orthogonal set.

Having chosen v_k , we compute

$$\begin{split} \alpha_k &= \frac{\langle v_k, r_{k-1} \rangle}{\langle v_k, A v_k \rangle} = \frac{\langle r_{k-1} + \beta_{k-1} v_{k-1}, r_{k-1} \rangle}{\langle v_k, A v_k \rangle} \\ &= \frac{\langle r_{k-1}, r_{k-1} \rangle}{\langle v_k, A v_k \rangle} + \beta_{k-1} \frac{\langle v_{k-1}, r_{k-1} \rangle}{\langle v_k, A v_k \rangle} \\ &= \frac{\langle r_{k-1}, r_{k-1} \rangle}{\langle v_k, A v_k \rangle}. \end{split}$$

(12)

Since

$$r_k = r_{k-1} - \alpha_k A v_k,$$

we have

$$< r_k, r_k > = < r_{k-1}, r_k > -\alpha_k < Av_k, r_k > = -\alpha_k < r_k, Av_k > .$$

Further, from (12),

$$< r_{k-1}, r_{k-1} > = \alpha_k < v_k, Av_k >,$$

SO

$$\begin{split} \beta_k &= -\frac{< v_k, A r_k >}{< v_k, A v_k >} = -\frac{< r_k, A v_k >}{< v_k, A v_k >} \\ &= \frac{(1/\alpha_k) < r_k, r_k >}{(1/\alpha_k) < r_{k-1}, r_{k-1} >} = \frac{< r_k, r_k >}{< r_{k-1}, r_{k-1} >}. \end{split}$$

Algorithm (Conjugate Gradient method (CG-method))

Let A be s.p.d., $b \in \mathbb{R}^n$, choose $x_0 \in \mathbb{R}^n$, $r_0 = b - Ax_0 = v_0$. If $r_0 = 0$, then N = 0 stop, otherwise for k = 0, 1, ...

- (a). $\alpha_k = \frac{\langle r_k, r_k \rangle}{\langle v_k, Av_k \rangle}$,
- (b). $x_{k+1} = x_k + \alpha_k v_k$,
- (c). $r_{k+1} = r_k \alpha_k A v_k$,
- (d). If $r_{k+1} = 0$, let N = k + 1, stop.
- (e). $\beta_k = \frac{\langle r_{k+1}, r_{k+1} \rangle}{\langle r_k, r_k \rangle}$,
- (f). $v_{k+1} = r_{k+1} + \beta_k v_k$.
- Theoretically, the exact solution is obtained in n steps.
- If A is well-conditioned, then approximate solution is obtained in about \sqrt{n} steps.
- If A is ill-conditioned, then the number of iterations may be greater. than n.

Select a nonsingular matrix C so that

$$\tilde{A} = C^{-1}AC^{-T}$$

is better conditioned. Consider the linear system

$$\tilde{A}\tilde{x} = \tilde{b},$$

where

$$\tilde{x} = C^T x$$
 and $\tilde{b} = C^{-1} b$.

Then

$$\tilde{A}\tilde{x} = (C^{-1}AC^{-T})(C^Tx) = C^{-1}Ax.$$

Thus,

$$Ax = b \; \Leftrightarrow \; \tilde{A}\tilde{x} = \tilde{b} \; \text{ and } \; x = C^{-T}\tilde{x}.$$

83 / 87

Since

$$\tilde{x}_k = C^T x_k,$$

we have

$$\tilde{r}_k = \tilde{b} - \tilde{A}\tilde{x}_k = C^{-1}b - (C^{-1}AC^{-T})C^Tx_k
= C^{-1}(b - Ax_k) = C^{-1}r_k.$$

Let

$$\tilde{v}_k = C^T v_k \quad \text{ and } \quad w_k = C^{-1} r_k.$$

Then

$$\begin{split} \tilde{\beta}_k &= \frac{<\tilde{r}_k, \tilde{r}_k>}{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>} = \frac{< C^{-1}r_k, C^{-1}r_k>}{< C^{-1}r_{k-1}, C^{-1}r_{k-1}>} \\ &= \frac{< w_k, w_k>}{< w_{k-1}, w_{k-1}>}. \end{split}$$

Thus,

$$\begin{split} \tilde{\alpha}_k & = & \frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_k, \tilde{A}\tilde{v}_k>} = \frac{< C^{-1}r_{k-1}, C^{-1}r_{k-1}>}{< C^Tv_k, C^{-1}AC^{-T}C^Tv_k>} \\ & = & \frac{< w_{k-1}, w_{k-1}>}{< C^Tv_k, C^{-1}Av_k>} \end{split}$$

and, since

$$< C^{T} v_{k}, C^{-1} A v_{k} > = (v_{k})^{T} C C^{-1} A v_{k} = (v_{k})^{T} A v_{k}$$

= $< v_{k}, A v_{k} >$,

we have

$$\tilde{\alpha}_k = \frac{\langle w_{k-1}, w_{k-1} \rangle}{\langle v_k, Av_k \rangle}.$$

Further,

$$\tilde{x}_k = \tilde{x}_{k-1} + \tilde{\alpha}_k \tilde{v}_k$$
, so $C^T x_k = C^T x_{k-1} + \tilde{\alpha}_k C^T v_k$

and

$$x_k = x_{k-1} + \tilde{\alpha}_k v_k.$$

Continuing,

$$\tilde{r}_k = \tilde{r}_{k-1} - \tilde{\alpha}_k \tilde{A} \tilde{v}_k,$$

SO

$$C^{-1}r_k = C^{-1}r_{k-1} - \tilde{\alpha}_k C^{-1}AC^{-T}C^T v_k$$

and

$$r_k = r_{k-1} - \tilde{\alpha}_k A v_k.$$

Finally,

$$\tilde{v}_{k+1} = \tilde{r}_k + \tilde{\beta}_k \tilde{v}_k \quad \text{and} \quad C^T v_{k+1} = C^{-1} r_k + \tilde{\beta}_k C^T v_k,$$

SO

$$v_{k+1} = C^{-T}C^{-1}r_k + \tilde{\beta}_k v_k = C^{-T}w_k + \tilde{\beta}_k v_k.$$

Algorithm (Preconditioned CG-method (PCG-method))

Choose C and x_0 . Set $r_0 = b - Ax_0$, solve $Cw_0 = r_0$ and $C^Tv_1 = w_0$. If $r_0 = 0$, then N = 0 stop, otherwise for k = 1, 2, ...

- (a). $\alpha_k = \langle w_{k-1}, w_{k-1} \rangle / \langle v_k, Av_k \rangle$,
- (b). $x_k = x_{k-1} + \alpha_k v_k$,
- (c). $r_k = r_{k-1} \alpha_k A v_k$,
- (d). If $r_k=0$, let N=k+1, stop. Otherwise, solve $Cw_k=r_k$ and $C^Tz_k=w_k$,
- (e). $\beta_k = \langle w_k, w_k \rangle / \langle w_{k-1}, w_{k-1} \rangle$,
- (f). $v_{k+1} = z_k + \beta_k v_k$.

