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Linear systems of equations

Three operations to simplify the linear system:

1 (λEi) → (Ei): Equation Ei can be multiplied by λ 6= 0 with the
resulting equation used in place of Ei.

2 (Ei + λEj) → (Ei): Equation Ej can be multiplied by λ 6= 0 and
added to equation Ei with the resulting equation used in place of Ei.

3 (Ei) ↔ (Ej): Equation Ei and Ej can be transposed in order.

Example

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.
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Solution:

(E2 − 2E1) → (E2), (E3 − 3E1) → (E3) and (E4 + E1) → (E4):

E1 : x1 + x2 + 3x4 = 4,
E2 : − x2 − x3 − 5x4 = −7,
E3 : − 4x2 − x3 − 7x4 = −15,
E4 : 3x2 + 3x3 + 2x4 = 8.

(E3 − 4E2) → (E3) and (E4 + 3E2) → (E4):

E1 : x1 + x2 + 3x4 = 4,
E2 : − x2 − x3 − 5x4 = −7,
E3 : 3x3 + 13x4 = 13,
E4 : − 13x4 = −13.
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Backward-substitution process:
1 E4 ⇒ x4 = 1
2 Solve E3 for x3:

x3 =
1

3
(13− 13x4) =

1

3
(13− 13) = 0.

3 E2 gives

x2 = −(−7 + 5x4 + x3) = −(−7 + 5 + 0) = 2.

4 E1 gives

x1 = 4− 3x4 − x2 = 4− 3− 2 = −1.
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Solve linear systems of equations
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

Rewrite in the matrix form
Ax = b, (1)

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , b =


b1

b2
...

bn

 , x =


x1

x2
...

xn


and [A, b] is called the augmented matrix.
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Gaussian elimination with backward substitution
The augmented matrix in previous example is

1 1 0 3 4
2 1 −1 1 1
3 −1 −1 2 −3

−1 2 3 −1 4

 .

(E2 − 2E1) → (E2), (E3 − 3E1) → (E3) and (E4 + E1) → (E4):
1 1 0 3 4
0 −1 −1 −5 −7
0 −4 −1 −7 −15
0 3 3 2 8

 .

(E3 − 4E2) → (E3) and (E4 + 3E2) → (E4):
1 1 0 3 4
0 −1 −1 −5 −7
0 0 3 13 13
0 0 0 −13 −13

 .
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The general Gaussian elimination procedure

Provided a11 6= 0, for each i = 2, 3, . . . , n,(
Ei −

ai1

a11
E1

)
→ (Ei).

Transform all the entries in the first column below the diagonal are
zero. Denote the new entry in the ith row and jth column by aij .
For i = 2, 3 . . . , n− 1, provided aii 6= 0,(

Ej −
aji

aii
Ei

)
→ (Ej), ∀ j = i + 1, i + 2, . . . , n.

Transform all the entries in the ith column below the diagonal are
zero.
Result an upper triangular matrix:

a11 a12 · · · a1n b1

0 a22 · · · a2n b2
...

. . .
. . .

...
...

0 · · · 0 ann bn

 .
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The process of Gaussian elimination result in a sequence of matrices as
follows:

A = A(1) → A(2) → · · · → A(n) = upper triangular matrix,

The matrix A(k) has the following form:

A(k) =



a
(1)
11 · · · a

(1)
1,k−1 a

(1)
1k · · · a

(1)
1j · · · a

(1)
1n

...
. . .

...
...

...
...

0 · · · a
(k−1)
k−1,k−1 a

(k−1)
k−1,k · · · a

(k−1)
k−1,j · · · a

(k−1)
k−1,n

0 · · · 0 a
(k)
kk · · · a

(k)
kj · · · a

(k)
kn

...
...

...
...

...

0 · · · 0 a
(k)
ik · · · a

(k)
ij · · · a

(k)
in

...
...

...
...

...

0 · · · 0 a
(k)
nk · · · a

(k)
nj · · · a

(k)
nn
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The entries of A(k) are produced by the formula

a
(k)
ij =


a

(k−1)
ij , for i = 1, . . . , k − 1, j = 1, . . . , n;

0, for i = k, . . . , n, j = 1, . . . , k − 1;

a
(k−1)
ij − a

(k−1)
i,k−1

a
(k−1)
k−1,k−1

× a
(k−1)
k−1,j , for i = k, . . . , n, j = k, . . . , n.

The procedure will fail if one of the elements a
(1)
11 , a

(2)
22 , . . . , a

(n)
nn is

zero.

a
(i)
ii is called the pivot element.
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Backward substitution
The new linear system is triangular:

a11x1 + a12x2 + · · · + a1nxn = b1,
a22x2 + · · · + a2nxn = b2,

...
annxn = bn

Solving the nth equation for xn gives

xn =
bn

ann
.

Solving the (n− 1)th equation for xn−1 and using the value for xn

yields

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
.

In general,

xi =
bi −

∑n
j=i+1 aijxj

aii
, ∀ i = n− 1, n− 2, . . . , 1.
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Algorithm (Backward Substitution)

Suppose that U ∈ Rn×n is nonsingular upper triangular and b ∈ Rn. This
algorithm computes the solution of Ux = b.

For i = n, . . . , 1
tmp = 0
For j = i + 1, . . . , n

tmp = tmp + U(i, j) ∗ x(j)
End for
x(i) = (b(i)− tmp)/U(i, i)

End for
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Example

Solve system of linear equations.
6 −2 2 4

12 −8 6 10
3 −13 9 3

−6 4 1 −18




x1

x2

x3

x4

 =


12
34
27

−38


Solution:

1st step Use 6 as pivot element, the first row as pivot row, and
multipliers 2, 1

2 ,−1 are produced to reduce the system to
6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14




x1

x2

x3

x4

 =


12
10
21

−26
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2nd step Use −4 as pivot element, the second row as pivot row, and
multipliers 3,−1

2 are computed to reduce the system to
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13




x1

x2

x3

x4

 =


12
10
−9
−21


3rd step Use 2 as pivot element, the third row as pivot row, and

multipliers 2 is found to reduce the system to
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3




x1

x2

x3

x4

 =


12
10
−9
−3
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4th step The backward substitution is applied:

x4 =
−3

−3
= 1,

x3 =
−9 + 5x4

2
=
−9 + 5

2
= −2,

x2 =
10− 2x4 − 2x3

−4
=

10− 2 + 4

−4
= −3,

x1 =
12− 4x4 − 2x3 + 2x2

6
=

12− 4 + 4− 6

6
= 1.

This example is done since a
(k)
kk 6= 0 for all k = 1, 2, 3, 4.

How to do if a
(k)
kk = 0 for some k?
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Example

Solve system of linear equations.
1 −1 2 −1
2 −2 3 −3
1 1 1 0
1 −1 4 3




x1

x2

x3

x4

 =


−8
−20
−2

4


Solution:

1st step Use 1 as pivot element, the first row as pivot row, and
multipliers 2, 1, 1 are produced to reduce the system to

1 −1 2 −1
0 0 −1 −1
0 2 −1 1
0 0 2 4




x1

x2

x3

x4

 =


−8
−4

6
12
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2nd step Since a
(2)
22 = 0 and a

(2)
32 6= 0, the operation (E2) ↔ (E3) is

performed to obtain a new system
1 −1 2 −1
0 2 −1 1
0 0 −1 −1
0 0 2 4




x1

x2

x3

x4

 =


−8

6
−4
12


3rd step Use −1 as pivot element, the third row as pivot row, and

multipliers −2 is found to reduce the system to
1 −1 2 −1
0 2 −1 1
0 0 −1 −1
0 0 0 2




x1

x2

x3

x4

 =


−8

6
−4

4
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4th step The backward substitution is applied:

x4 =
4

2
= 2,

x3 =
−4 + x4

−1
= 2,

x2 =
6− x4 + x3

2
= 3,

x1 =
−8 + x4 − 2x3 + x2

1
= −7.

This example illustrates what is done if a
(k)
kk = 0 for some k.

If a
(k)
pk 6= 0 for some p with k + 1 ≤ p ≤ n, then the operation

(Ek) ↔ (Ep) is performed to obtain new matrix.

If a
(k)
pk = 0 for each p, then the linear system does not have a unique

solution and the procedure stops.
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Algorithm (Gaussian elimination)

Given A ∈ Rn×n and b ∈ Rn, this algorithm implements the Gaussian
elimination procedure to reduce A to upper triangular and modify the
entries of b accordingly.

For k = 1, . . . , n− 1
Let p be the smallest integer with k ≤ p ≤ n and apk 6= 0.
If @ p, then stop.
If p 6= k, then perform (Ep) ↔ (Ek).
For i = k + 1, . . . , n

t = A(i, k)/A(k, k)
A(i, k) = 0
b(i) = b(i)− t× b(k)
For j = k + 1, . . . , n

A(i, j) = A(i, j)− t×A(k, j)
End for

End for
End for
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Number of floating-point arithmetic operations

Eliminate kth column

For i = k + 1, . . . , n
t = A(i, k)/A(k, k); b(i) = b(i)− t× b(k).
For j = k + 1, . . . , n

A(i, j) = A(i, j)− t×A(k, j)
End for

End for

Multiplications/divisions

(n− k) + (n− k) + (n− k)(n− k) = (n− k)(n− k + 2)

Additions/subtractions

(n− k) + (n− k)(n− k) = (n− k)(n− k + 1)
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Total number of operations for multiplications/divisions

n−1∑
k=1

(n− k)(n− k + 2) =
n−1∑
k=1

(n2 − 2nk + k2 + 2n− 2k)

= (n2 + 2n)
n−1∑
k=1

1− 2(n + 1)
n−1∑
k=1

k +
n−1∑
k=1

k2

= (n2 + 2n)(n− 1)− 2(n + 1)
(n− 1)n

2
+

(n− 1)n(2n− 1)

6

=
2n3 + 3n2 − 5n

6
.

Total number of operations for additions/subtractions

n−1∑
k=1

(n− k)(n− k + 1) =
n−1∑
k=1

(n2 − 2nk + k2 + n− k)

= (n2 + n)
n−1∑
k=1

1− (2n + 1)
n−1∑
k=1

k +
n−1∑
k=1

k2 =
n3 − n

3
.
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Backward substitution

x(n) = b(n)/U(n, n).
For i = n− 1, . . . , 1

tmp = U(i, i + 1)× x(i + 1)
For j = i + 2, . . . , n

tmp = tmp + U(i, j)× x(j)
End for
x(i) = (b(i)− tmp)/U(i, i)

End for

Multiplications/divisions

1 +
n−1∑
i=1

[(n− i) + 1] =
n2 + n

2

Additions/subtractions

n−1∑
i=1

[(n− i− 1) + 1] =
n2 − n

2
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The total number of arithmetic operations in Gaussian elimination with
backward substitution is:

Multiplications/divisions

2n3 + 3n2 − 5n

6
+

n2 + n

2
=

n3

3
+ n2 − n

3
≈ n3

3

Additions/subtractions

n3 − n

3
+

n2 − n

2
=

n3

3
+

n2

2
− 5n

6
≈ n3

3
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Pivoting Strategies

If a
(k)
kk is small in magnitude compared to a

(k)
jk , then

|mjk| =

∣∣∣∣∣∣a
(k)
jk

a
(k)
kk

∣∣∣∣∣∣ > 1.

Round-off error introduced in the computation of

a
(k+1)
j` = a

(k)
j` −mjka

(k)
k` , for ` = k + 1, . . . , n.

Error can be increased when performing the backward substitution for

xk =
bk −

∑n
j=k+1 a

(k)
kj xj

a
(k)
kk

with a small value of a
(k)
kk .
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Example

The linear system

E1 : 0.003000x1 + 59.14x2 = 59.17,
E2 : 5.291x1 − 6.130x2 = 46.78,

has the exact solution x1 = 10.00 and x2 = 1.000. Suppose Gaussian
elimination is performed on this system using four-digit arithmetic with
rounding.

a11 = 0.0030 is small and

m21 =
5.291

0.0030
= 1763.66̄ ≈ 1764.

Perform (E2 −m21E1) → (E2):

0.0030x1 + 59.14x2 = 59.17
− 104309.376̄x2 = −104309.376̄.
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Rounding with four-digit arithmetic:
Coefficient of x2:

−6.130− 1764× 59.14 = −6.130− 104322.96

≈ −6.130− 104300 = −104306.13

≈ −104300.

Right hand side:

46.78− 1764× 59.17 = 46.78− 104375.88

≈ 46.78− 104400 = −104353.22

≈ −104400.

New linear system:

0.0030x1 + 59.14x2 = 59.17
− 104300x2 ≈ −104400.
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Approximated solution:

x2 =
104400

104300
≈ 1.001,

x1 =
59.17− 59.14× 1.001

0.0030
=

59.17− 59.19914

0.0030

≈ 59.17− 59.20

0.0030
= −10.00.

This ruins the approximation to the actual value x1 = 10.00.
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Partial pivoting

To avoid the pivot element small relative to other entries, pivoting is

performed by selecting an element a
(k)
pq with a larger magnitude as the

pivot.

Specifically, select pivoting a
(k)
pk with

|a(k)
pk | = max

k≤i≤n
|a(k)

ik |

and perform (Ek) ↔ (Ep).

This row interchange strategy is called partial pivoting.
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Example

Reconsider the linear system

E1 : 0.003000x1 + 59.14x2 = 59.17,
E2 : 5.291x1 − 6.130x2 = 46.78.

Find pivoting with

max{|a11|, |a21|} = 5.291 = |a21|.

Perform (E2) ↔ (E1):

E1 : 5.291x1 − 6.130x2 = 46.78,
E2 : 0.003000x1 + 59.14x2 = 59.17.

The multiplier for new system is

m21 =
a21

a11
= 0.0005670.
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The operation (E2 −m21E1) → (E2) reduces the system to

5.291x1 − 6.130x2 = 46.78,
59.14x2 ≈ 59.14.

The four-digit answers resulting from the backward substitution are
the correct values x1 = 10.00 and x2 = 1.000.
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Example

The linear system

E1 : 30.00x1 + 591400x2 = 591700,
E2 : 5.291x1 − 6.130x2 = 46.78,

is the same as that in previous example except that all the entries in the
first equation have been multiplied by 104.

The pivoting is a11 = 30.00 and the multiplier

m21 =
5.291

30.00
= 0.1764

leads to the system

30.00x1 + 591400x2 = 591700
− 104300x2 ≈ −104400,

which has inaccurate solution x2 ≈ 1.001 and x1 ≈ −10.00.
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Scaled partial pivoting

Define a scale factor si as

si = max
1≤j≤n

|aij |, for i = 1, . . . , n.

If si = 0 for some i, then the system has no unique solution.

In the ith column, choose the least integer p ≥ i with

|api|
sp

= max
i≤k≤n

|aki|
sk

and perform (Ei) ↔ (Ep) if p 6= i.

The scale factors s1, . . . , sn are computed only once and must also be
interchanged when row interchanges are performed.
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Example

Apply scaled partial pivoting to the linear system

E1 : 30.00x1 + 591400x2 = 591700,
E2 : 5.291x1 − 6.130x2 = 46.78.

The scale factors s1 and s2 are

s1 = max{|30.00|, |591400|} = 591400

and

s2 = max{|5.291|, | − 6.130|} = 6.130.

Consequently,

|a11|
s1

=
30.00

591400
= 0.5073× 10−4,

|a21|
s2

=
5.291

6.130
= 0.8631,

and the interchange (E1) ↔ (E2) is made.
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Applying Gaussian elimination to the new system

5.291x1 − 6.130x2 = 46.78,
30.00x1 + 591400x2 = 591700

produces the correct results: x1 = 10.00 and x2 = 1.000.
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Matrix factorization

This equation has a unique solution x = A−1b when the coefficient
matrix A is nonsingular.

Use Gaussian elimination to factor the coefficient matrix into a
product of matrices. The factorization is called LU -factorization and
has the form A = LU , where L is unit lower triangular and U is
upper triangular.

The solution to the original problem Ax = LUx = b is then found by
a two-step triangular solve process:

Ly = b, Ux = y.

LU factorization requires O(n3) arithmetic operations. Forward
substitution for solving a lower-triangular system Ly = b requires
O(n2). Backward substitution for solving an upper-triangular system
Ux = y requires O(n2) arithmetic operations.
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For a given vector v ∈ Rn with vk 6= 0 for some 1 ≤ k ≤ n, let

`ik =
vi

vk
, i = k + 1, . . . , n,

`k =
[

0 · · · 0 `k+1,k · · · `n,k

]T
,

and

Mk = I − `ke
T
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · −`k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · −`n,k 0 · · · 1


.
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Then one can verify that

Mkv =
[

v1 · · · vk 0 · · · 0
]T

.

Mk is called a Gaussian transformation, the vector `k a Gauss vector.
Furthermore, one can verify that

M−1
k = (I − `ke

T
k )−1 = I + `ke

T
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · `k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · `n,k 0 · · · 1


.
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Given a nonsingular matrix A ∈ Rn×n, denote A(1) ≡ [a
(1)
ij ] = A. If

a
(1)
11 6= 0, then

M1 = I − `1e
T
1 ,

where

`1 =
[

0 `21 · · · `n1

]T
, `i1 =

a
(1)
i1

a
(1)
11

, i = 2, . . . , n,

can be formed such that

A(2) = M1A
(1) =


a

(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn

 ,

where

a
(2)
ij = a

(1)
ij − `i1 × a

(1)
1j , for i = 2, . . . , n and j = 2, . . . , n.
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In general, at the k-th step, we are confronted with a matrix

A(k) = Mk−1 · · ·M2M1A
(1)

=



a
(1)
11 a

(1)
12 · · · a

(1)
1,k−1 a

(1)
1k · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2,k−1 a

(2)
2k · · · a

(2)
2n

...
...

. . .
...

...
...

0 0 · · · a
(k−1)
k−1,k−1 a

(k−1)
k−1,k · · · a

(k−1)
k−1,n

0 0 · · · 0 a
(k)
kk · · · a

(k)
kn

...
...

...
...

. . .
...

0 0 · · · 0 a
(k)
kn · · · a

(k)
nn


.

If the pivot a
(k)
kk 6= 0, then the multipliers

`ik =
a

(k)
ik

a
(k)
kk

, i = k + 1, . . . , n,
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can be computed and the Gaussian transformation

Mk = I − `ke
T
k , where `k =

[
0 · · · 0 `k+1,k · · · `nk

]T
,

can be applied to the left of A(k) to obtain

A(k+1) = MkA
(k)

=



a
(1)
11 a

(1)
12 · · · a

(1)
1,k−1 a

(1)
1k a

(1)
1,k+1 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2,k−1 a

(2)
2k a

(2)
2,k+1 · · · a

(2)
2n

...
...

. . .
...

...
...

...

0 0 · · · a
(k−1)
k−1,k−1 a

(k−1)
k−1,k a

(k−1)
k−1,k+1 · · · a

(k−1)
k−1,n

0 0 · · · 0 a
(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

...
...

... 0 a
(k+1)
k+1,k+1 · · · a

(k+1)
k+1,n

...
...

...
...

...
...

0 0 · · · 0 0 a
(k+1)
n,k+1 · · · a

(k+1)
nn


,
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in which

a
(k+1)
ij = a

(k)
ij − `ika

(k)
kj , (2)

for i = k + 1, . . . , n, j = k + 1, . . . , n. Upon the completion,

U ≡ A(n) = Mn−1 · · ·M2M1A

is upper triangular. Hence

A = M−1
1 M−1

2 · · ·M−1
n−1U ≡ LU,
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where

L ≡ M−1
1 M−1

2 · · ·M−1
n−1 = (I − `1e

T
1 )−1(I − `2e

T
2 )−1 · · · (I − `n−1e

T
n−1)

−1

= (I + `1e
T
1 )(I + `2e

T
2 ) · · · (I + `n−1e

T
n−1)

= I + `1e
T
1 + `2e

T
2 + · · ·+ `n−1e

T
n−1

=


1 0 0 · · · 0

`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . .
...

`n1 `n2 `n3 · · · 1


is unit lower triangular. This matrix factorization is called the

LU -factorization of A.
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Algorithm (LU Factorization with Direct Comparison)

Given A ∈ Rn×n nonsingular, this algorithm computes a unit lower
triangular matrix L and an upper triangular matrix U such that A = LU .

i = 1
For j = 1, . . . , n

U(1, j) = A(1, j)
End for j
For i′ = 2, . . . , n

L(i′, 1) = A(i′, 1)
End for i′

For i = 2, . . . , n− 1
For j = i, . . . , n

U(i, j) = A(i, j)−
∑i−1

k=1 L(i, k)U(k, j)
End for j
For i′ = i + 1, . . . , n

L(i′, i) = ( A(i′, i)−
∑i−1

k=1 L(i′, k)U(k, i) )/U(i, i)
End for i′

End for i

U(n, n) = A(n, n)−
∑n−1

k=1 L(n, k)U(k, n)
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Algorithm (Recursive LU Factorization )

For i = 1, . . . , n− 1
For j = i, . . . , n

U(i, j) = A(i, j) (Compute ith row of U)
End for j
For i′ = i + 1, . . . , n

L(i′, i) = A(i′, i)/A(i, i) (Compute ith column of L)
For j′ = i + 1, . . . , n

A(i′, j′) = A(i′, j′)− L(i′, i)U(i, j′)
(Update the right-lower sub-matrix, row by row)

End for j′

End for i′

End for i
U(n, n) = A(n, n)
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Algorithm (Memory Saving Recursive LU Factorization)

Memory saving version of LU factorization. The matrix A is overwritten
by L and U .

For i = 1, . . . , n− 1
For i′ = i + 1, . . . , n

A(i′, i) = A(i′, i)/A(i, i)
For j′ = i + 1, . . . , n

A(i′, j′) = A(i′, j′)−A(i′, i)A(i, j′)
End for

End for
End for
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Forward Substitution

When a linear system Lx = b is lower triangular of the form
`11 0 · · · 0
`21 `22 · · · 0
...

...
. . .

...
`n1 `n2 · · · `nn




x1

x2
...

xn

 =


b1

b2
...

bn

 ,

where all diagonals `ii 6= 0, xi can be obtained by the following procedure

x1 = b1/`11,

x2 = (b2 − `21x1)/`22,

x3 = (b3 − `31x1 − `32x2)/`33,
...

xn = (bn − `n1x1 − `n2x2 − · · · − `n,n−1xn−1)/`nn.
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The general formulation for computing xi is

xi =

bi −
i−1∑
j=1

`ijxj

 /
`ii, i = 1, 2, . . . , n.

Algorithm (Forward Substitution)

Suppose that L ∈ Rn×n is nonsingular lower triangular and b ∈ Rn. This
algorithm computes the solution of Lx = b.

For i = 1, . . . , n
tmp = 0
For j = 1, . . . , i− 1

tmp = tmp + L(i, j) ∗ x(j)
End for
x(i) = (b(i)− tmp)/L(i, i)

End for
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Example

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.

Solution:

The sequence {(E2 − 2E1) → (E2), (E3 − 3E1) → (E3),
(E4 − (−1)E1) → (E4), (E3 − 4E2) → (E3),
(E4 − (−3)E2) → (E4)} converts the system to the triangular system

x1 + x2 + 3x4 = 4,
− x2 − x3 − 5x4 = −7,

3x3 + 13x4 = 13,
− 13x4 = −13.
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LU factorization of A:

A =


1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1



=


1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

 = LU.
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Solve Ly = b:
1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1




y1

y2

y3

y4

 =


8
7

14
−7


which implies that

y1 = 8,

y2 = 7− 2y1 = −9,

y3 = 14− 3y1 − 4y2 = 26,

y4 = −7 + y1 + 3y2 = −26.
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Solve Ux = y:
1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13




x1

x2

x3

x4

 =


8

−9
26

−26


which implies that

x4 = 2,

x3 = (26− 13x4)/3 = 0,

x2 = (−9 + 5x4 + x3)/(−1) = −1,

x1 = 8− 3x4 − x2 = 3.
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Partial pivoting

At the k-th step, select pivoting a
(k)
pk with

|a(k)
pk | = max

k≤i≤n
|a(k)

ik |

and perform (Ek) ↔ (Ep). That is, choose a permutation matrix

Pk =


Ik−1 0 0 0 0

0 0 0 1 0
0 0 Ip−k−1 0 0
0 1 0 0 0
0 0 0 0 In−p


so that ∣∣∣(PkA

(k))kk

∣∣∣ = max
k≤i≤n

∣∣∣(A(k))ik

∣∣∣
and

A(k+1) = M (k)PkA
(k).

Wei-Cheng Wang (NTHU) Direct methods for LS Fall 2011 52 / 82



Let P1, . . . , Pk−1 be the permutations chosen and M1, . . . Mk−1 denote
the Gaussian transformations performed in the first k − 1 steps. At the
k-th step, a permutation matrix Pk is chosen so that

|(PkMk−1 · · ·M1P1A)kk| = max
k≤i≤n

|(Mk−1 · · ·M1P1A)ik| .

As a consequence, |`ij | ≤ 1 for i = 1, . . . , n, j = 1, . . . , i. Upon
completion, we obtain an upper triangular matrix

U ≡ Mn−1Pn−1 · · ·M1P1A. (3)

Since any Pk is symmetric and P T
k Pk = P 2

k = I, we have

Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1Pn−1 · · ·P2P1A = U,

therefore,

Pn−1 · · ·P1A = (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1U.
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In summary, Gaussian elimination with partial pivoting leads to the LU
factorization

PA = LU, (4)

where
P = Pn−1 · · ·P1

is a permutation matrix, and

L ≡ (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1

= Pn−1 · · ·P2M
−1
1 P2M

−1
2 · · ·Pn−1M

−1
n−1.

Since,

Pj =


Ij−1 0 0 0 0

0 0 0 1 0
0 0 Ip−j−1 0 0
0 1 0 0 0
0 0 0 0 In−p

 , `j =



0
...
0

`j+1,j
...

`nj


,
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it implies that for i < j,

eT
i Pj = eT

i , eT
i `j = 0,

Pj`i =
[

0 · · · 0 ˜̀
i+1,i · · · ˜̀

n,i

]T ≡ ˜̀
i,

⇒

P2M
−1
1 P2 = P2(I + `1e

T
1 )P2 = I + ˜̀

1e
T
1

⇒

P2M
−1
1 P2M

−1
2 = (I + ˜̀

1e
T
1 )(I + `2e

T
2 ) = I + ˜̀

1e
T
1 + `2e

T
2 ,

⇒

P3

(
P2M

−1
1 P2M

−1
2

)
P3 = I + ˆ̀

1e
T
1 + ˜̀

2e
T
2

⇒ · · ·
Therefore, L is unit lower triangular.
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Algorithm (LU -factorization with Partial Pivoting)
Given a nonsingular A ∈ Rn×n, this algorithm finds a permutation P , and
computes a unit lower triangular L and an upper triangular U such that
PA = LU . A is overwritten by L and U , and P is not formed. An integer
array p is instead used for storing the row/column indices.

p(1 : n) = 1 : n
For k = 1, . . . , n− 1

m = k
For i = k + 1, . . . , n

If |A(p(m), k)| < |A(p(i), k)|, then m = i
End For
` = p(k); p(k) = p(m); p(m) = `
For i = k + 1, . . . , n

A(p(i), k) = A(p(i), k)/A(p(k), k)
For j = k + 1, . . . , n

A(p(i), j) = A(p(i), j)−A(p(i), k)A(p(k), j)
End For

End For
End For
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Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax = b =⇒ PAx = Pb =⇒ LUx = Pb.

Example

Find an LU factorization of

A =


0 1 −1 1
1 1 −1 2

−1 −1 1 0
1 2 0 2

 .

(E1) ↔ (E2), (E3 + E1) → (E3) and (E4 − E1) → (E4):

A(2) =


1 1 −1 2
0 1 −1 1
0 0 0 2
0 1 1 0

 , P1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,M1 =


1 0 0 0
0 1 0 0
1 0 1 0

−1 0 0 1

 .
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(E3) ↔ (E4) and (E3 − E2) → (E3):

A(3) =


1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2

 , P2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,M2 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

 .

Permutation matrix P :

P = P2P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


Unit lower triangular matrix L:

L = P2M
−1
1 P2M

−1
2 =


1 0 0 0
0 1 0 0
1 1 1 0

−1 0 0 1
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The LU factorization of PA:

PA =


1 0 0 0
0 1 0 0
1 1 1 0

−1 0 0 1




1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2

 = LU.

So

A = P−1LU = (P T L)U =


0 1 0 0
1 0 0 0

−1 0 0 1
1 1 1 0




1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2

 .
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Special types of matrices

Definition

A matrix A ∈ Rn×n is said to be strictly diagonally dominant if

|aii| >
n∑

j=1,j 6=i

|aij |.

Lemma

If A ∈ Rn×n is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists x ∈ Rn, x 6= 0 such that
Ax = 0. Let k be the integer index such that

|xk| = max
1≤i≤n

|xi| =⇒ |xi|
|xk|

≤ 1, ∀ |xi|.
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Since Ax = 0, for the fixed k, we have

n∑
j=1

akjxj = 0 ⇒ akkxk = −
n∑

j=1,j 6=k

akjxj ⇒ |akk||xk| ≤
n∑

j=1,j 6=k

|akj ||xj |,

which implies

|akk| ≤
n∑

j=1,j 6=k

|akj |
|xj |
|xk|

≤
n∑

j=1,j 6=k

|akj |.

But this contradicts the assumption that A is diagonally dominant.
Therefore A must be nonsingular.
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Theorem

Gaussian elimination without pivoting preserve the diagonal dominance of
a matrix.

Proof: Let A ∈ Rn×n be a diagonally dominant matrix and A(2) = [a
(2)
ij ] is

the result of applying one step of Gaussian elimination to A(1) = A
without any pivoting strategy.

After one step of Gaussian elimination, a
(2)
i1 = 0 for i = 2, . . . , n, and the

first row is unchanged. Therefore, the property

a
(2)
11 >

n∑
j=2

|a(2)
1j |

is preserved, and all we need to show is that

a
(2)
ii >

n∑
j=2,j 6=i

|a(2)
ij |, for i = 2, . . . , n.
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Using the Gaussian elimination formula (2), we have

|a(2)
ii | =

∣∣∣∣∣a(1)
ii −

a
(1)
i1

a
(1)
11

a
(1)
1i

∣∣∣∣∣ =

∣∣∣∣aii −
ai1

a11
a1i

∣∣∣∣
≥ |aii| −

|ai1|
|a11|

|a1i|

= |aii| − |ai1|+ |ai1| −
|ai1|
|a11|

|a1i|

= |aii| − |ai1|+
|ai1|
|a11|

(|a11| − |a1i|)

>

n∑
j=2,j 6=i

|aij |+
|ai1|
|a11|

n∑
j=2,j 6=i

|a1j |

=
n∑

j=2,j 6=i

|aij |+
n∑

j=2,j 6=i

|ai1|
|a11|

|a1j |

≥
n∑

j=2,j 6=i

∣∣∣∣aij −
ai1

a11
a1j

∣∣∣∣ =
n∑

j=2,j 6=i

|a(2)
ij |.
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Thus A(2) is still diagonally dominant. Since the subsequent steps of
Gaussian elimination mimic the first, except for being applied to
submatrices of smaller size, it suffices to conclude that Gaussian
elimination without pivoting preserves the diagonal dominance of a
matrix.

Theorem

Let A be strictly diagonally dominant. Then Gaussian elimination can be
performed on Ax = b to obtain its unique solution without row or column
interchanges.

Definition

A matrix A is positive definite if it is symmetric and xT Ax > 0 ∀ x 6= 0.
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Theorem

If A is an n× n positive definite matrix, then

(a) A has an inverse;

(b) aii > 0, ∀ i = 1, . . . , n;

(c) max1≤k,j≤n |akj | ≤ max1≤i≤n |aii|;
(d) (aij)

2 < aiiajj , ∀ i 6= j.

Proof:

(a) If x satisfies Ax = 0, then xT Ax = 0. Since A is positive
definite, this implies x = 0. Consequently, Ax = 0 has only
the zero solution, and A is nonsingular.

(b) Since A is positive definite,

aii = eT
i Aei > 0,

where ei is the i-th column of the n× n identify matrix.
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(c) For k 6= j, define x = [xi] by

xi =


0, if i 6= j and i 6= k,
1, if i = j,

−1, if i = k.

Since x 6= 0,

0 < xT Ax = ajj + akk − ajk − akj .

But AT = A, so

2akj < ajj + akk. (5)

Now define z = [zi] by

zi =

{
0, if i 6= j and j 6= k,
1, if i = j or i = k.
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Then zT Az > 0, so

−2akj < ajj + akk. (6)

Equations (5) and (6) imply that for each k 6= j,

|akj | <
akk + ajj

2
≤ max

1≤i≤n
|aii|,

so

max
1≤k,j≤n

|akj | ≤ max
1≤i≤n

|aii|.

(d) For i 6= j, define x = [xk] by

xk =


0, if k 6= j and k 6= i,
α, if k = i,
1, if k = j,

where α represents an arbitrary real number.
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Since x 6= 0,

0 < xT Ax = aiiα
2 + 2aijα + ajj ≡ P (α), ∀ α ∈ R.

That is the quadratic polynomial P (α) has no real roots. It
implies that

4a2
ij − 4aiiajj < 0 and a2

ij < aiiajj .

Definition (Leading principal minor)

Let A be an n× n matrix. The upper left k × k submatrix, denoted as

Ak =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

 ,

is called the leading k × k principal submatrix, and the determinant of Ak,
det(Ak), is called the leading principal minor.
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Theorem

A symmetric matrix A is positive definite if and only if each of its leading
principal submatrices has a positive determinant.

Theorem

The symmetric matrix A is positive definite if and only if Gaussian
elimination without row interchanges can be performed on Ax = b with all
pivot elements positive.

Corollary

The matrix A is positive definite if and only if A can be factored in the
form LDLT , where L is lower triangular with 1’s on its diagonal and D is
a diagonal matrix with positive diagonal entries.
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Theorem

If all leading principal submatrices of A ∈ Rn×n are nonsingular, then A
has an LU -factorization.

Proof: Proof by mathematical induction.

1 n = 1, A1 = [a11] is nonsingular, then a11 6= 0. Let L1 = [1] and
U1 = [a11]. Then A1 = L1U1. The theorem holds.

2 Assume that the leading principal submatrices A1, . . . , Ak are
nonsingular and Ak has an LU -factorization Ak = LkUk, where Lk is
unit lower triangular and Uk is upper triangular.

3 Show that there exist an unit lower triangular matrix Lk+1 and an
upper triangular matrix Uk+1 such that Ak+1 = Lk+1Uk+1.
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Write

Ak+1 =

[
Ak vk

wT
k ak+1,k+1

]
,

where

vk =


a1,k+1

a2,k+1
...

ak,k+1

 and wk =


ak+1,1

ak+1,2
...

ak+1,k

 .

Since Ak is nonsingular, both Lk and Uk are nonsingular. Therefore,
Lkyk = vk has a unique solution yk ∈ Rk, and ztUk = wT

k has a unique
solution zk ∈ Rk. Let

Lk+1 =

[
Lk 0
zT
k 1

]
and Uk+1 =

[
Uk yk

0 ak+1,k+1 − zT
k yk

]
.
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Then Lk+1 is unit lower triangular, Uk+1 is upper triangular, and

Lk+1Uk+1 =

[
LkUk Lkyk

zT
k Uk zT

k yk + ak+1,k+1 − zT
k yk

]
=

[
Ak vk

wT
k ak+1,k+1

]
= Ak+1.

This proves the theorem.
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Theorem

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both

A = L1U1 and A = L2U2

are LU factorizations. Since A is nonsingular, L1, U1, L2, U2 are all
nonsingular, and

A = L1U1 = L2U2 =⇒ L−1
2 L1 = U2U

−1
1 .

Since L1 and L2 are unit lower triangular, it implies that L−1
2 L1 is also

unit lower triangular. On the other hand, since U1 and U2 are upper
triangular, U2U

−1
1 is also upper triangular. Therefore,

L−1
2 L1 = I = U2U

−1
1

which implies that L1 = L2 and U1 = U2.
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Lemma

If A ∈ Rn×n is positive definite, then all leading principal submatrices of A
are nonsingular.

Proof: For 1 ≤ k ≤ n, let

zk = [x1, . . . , xk]
T ∈ Rk and x = [x1, . . . , xk, 0, . . . , 0]T ∈ Rn,

where x1, . . . , xk ∈ R are not all zero. Since A is positive definite,

zT
k Akzk = xT Ax > 0,

where Ak is the k × k leading principal submatrix of A. This shows that
Ak are also positive definite, hence Ak are nonsingular.
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Corollary

The matrix A is positive definite if and only if

A = GGT , (7)

where G is lower triangular with positive diagonal entries.

Proof: “⇒”
A is positive definite
⇒ all leading principal submatrices of A are nonsingular
⇒ A has the LU factorization A = LU , where L is unit lower triangular
and U is upper triangular.
Since A is symmetric,

LU = A = AT = UT LT =⇒ U(LT )−1 = L−1UT .

U(LT )−1 is upper triangular and L−1UT is lower triangular
⇒ U(LT )−1 to be a diagonal matrix, say, U(LT )−1 = D.
⇒ U = DLT . Hence

A = LDLT .
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Since A is positive definite,

xT Ax > 0 =⇒ xT LDLT x = (LT x)T D(LT x) > 0.

This means D is also positive definite, and hence dii > 0. Thus D1/2 is
well-defined and we have

A = LDLT = LD1/2D1/2LT ≡ GGT ,

where G ≡ LD1/2. Since the LU factorization is unique, G is unique.
“⇐”
Since G is lower triangular with positive diagonal entries, G is nonsingular.
It implies that

GT x 6= 0, ∀ x 6= 0.

Hence

xT Ax = xT GGT x = ‖GT x‖2
2 > 0, ∀ x 6= 0

which implies that A is positive definite.
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The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Let

A ≡ [aij ] and G =


g11 0 · · · 0

g21 g22
. . .

...
...

...
. . . 0

gn1 gn2 · · · gnn

 .

Assume the first k − 1 columns of G have been determined after k − 1
steps. By componentwise comparison with

[aij ] =


g11 0 · · · 0

g21 g22
. . .

...
...

...
. . . 0

gn1 gn2 · · · gnn




g11 g21 · · · gn1

0 g22 · · · gn2
...

. . .
. . .

...
0 · · · 0 gnn

 ,

one has

akk =
k∑

j=1

g2
kj ,
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which gives

g2
kk = akk −

k−1∑
j=1

g2
kj .

Moreover,

aik =
k∑

j=1

gijgkj , i = k + 1, . . . , n,

hence the k-th column of G can be computed by

gik =

aik −
k−1∑
j=1

gijgkj

 /
gkk, i = k + 1, . . . , n.
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Algorithm (Cholesky Factorization)
Given an n× n symmetric positive definite matrix A, this algorithm
computes the Cholesky factorization A = GGT .

Initialize G = 0
For k = 1, . . . , n

G(k, k) =
√

A(k, k)−
∑k−1

j=1 G(k, j)G(k, j)

For i = k + 1, . . . , n

G(i, k) =
(
A(i, k)−

∑k−1
j=1 G(i, j)G(k, j)

) /
G(k, k)

End For
End For

In addition to n square root operations, there are approximately

n∑
k=1

[2k − 2 + (2k − 1)(n− k)] =
1

3
n3 +

1

2
n2 − 5

6
n

floating-point arithmetic required by the algorithm.
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Band matrix

Definition

An n× n matrix A is called a band matrix if ∃ p and q with 1 < p, q < n
such that

aij = 0 whenever p ≤ j − i or q ≤ i− j.

The bandwidth of a band matrix is defined as w = p + q − 1. That is

A =



a11 · · · a1p 0 · · · 0
...

. . .
. . .

. . .
...

aq1
. . .

. . . 0

0
. . .

. . . an−p+1,n
...

. . .
. . .

. . .
...

0 · · · 0 an,n−q+1 · · · ann


.
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Definition

A square matrix A = [aij ] is said to be tridiagonal if

A =


a11 a12 0

a21 a22
. . .

. . .
. . . an−1,n

0 an,n−1 an,n

 .

If Gaussian elimination can be applied safely without pivoting. Then L and
U factors would have the form

L =


1

`21 1
. . .

. . .

0 `n,n−1 1

 and U =


u11 u12 0

u22
. . .
. . . un−1,n

unn

 ,

and the entries are computed by the simple algorithm which only costs 3n
flops.
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Algorithm (Tridiagonal LU Factorization)

This algorithm computes the LU factorization for a tridiagonal matrix
without using pivoting strategy.

U(1, 1) = A(1, 1)
For i = 2, . . . , n

U(i− 1, i) = A(i− 1, i)
L(i, i− 1) = A(i, i− 1)/U(i− 1, i− 1)
U(i, i) = A(i, i)− L(i, i− 1)U(i− 1, i)

End For

A tridiagonal linear system arises in many applications, such as finite
difference discretization to second order linear boundary-value problem and
the cubic spline approximations.
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