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Outline

© Linear systems of equations

© Pivoting Strategies

© Matrix factorization

@ Special types of matrices
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Linear systems of equations

Three operations to simplify the linear system:
O (\E;) — (E:): Equation E; can be multiplied by A # 0 with the
resulting equation used in place of E;.
Q (E; + AE;) — (F;): Equation E; can be multiplied by A # 0 and
added to equation E; with the resulting equation used in place of E;.
© (E;) < (Ej): Equation E; and E; can be transposed in order.

Example
FEq: xr1 + X2 + 3x4 = 4,
Ey: 2ty + 22 — 23 + x4 = 1,
Es: 321 — x — 3 + 214 = -3,
Ey: —x1 + 220 4+ 323 — 24 = 4.
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Solution:

Qo (E2 = 2E1) — (Eg), (E3 = 3E1) — (E3) and (E4 + El) — (E4)Z

r1 + X2
- X2 — X3
- 4.’1:2 — I3
3z + 3z3

= 3$4
— 51}4
— 7.@4
+ 2x4

o (E3—4E») — (E3) and (E4 + 3E2) — (Ea):

Eli
E>:
E3Z
E4Z

r1 + o2
- X2 — Z3
3$3

a4 3.@4
— 51‘4
+ 13%4
— 1314
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@ Backward-substitution process:
Q FE, = 24=1
@ Solve Ej for x3:

1 1
23 = =(13 — 132z4) = = (13 — 13) = 0.
3 3
© E; gives
Ty = —(—7+5:L‘4—|—£L‘3) = —(—7—|—5+0) =2.
Q FE; gives

m1:4—3x4—g}2:4—3—2:—1.

Wei-Cheng Wang (NTHU) Direct methods for LS Fall 2011 5 /82



Solve linear systems of equations

a11r1 + a2 + -+ + @1y, =
a21x1 + a2 + -+ - + axpy =

Ap1%1 + @p2ZT2 + - - + GppTn =

Rewrite in the matrix form

Ax = b,
where
ail a2 - Qlp b1
i 0.21 a.22 . a?n . b2
anl Aap2 - Qpp bn

and [A4, ] is called the augmented matrix.
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Gaussian elimination with backward substitution
The augmented matrix in previous example is

1 1 0 3| 4
2 1 -1 1] 1
3 -1 -1 2|-3
-1 2 3 -1| 4

] (E2 = 2E1) — (Eg), (E3 = 3E1) — (E3) and (E4 aF El) — (E4):
1 1 0 3 4
0 -1 -1 -5| —7
0 -4 -1 —7|-15
o 3 3 2 8
o (E3 — 4Ep) — (F3) and (Eq + 3E2) — (Ea):

1 1 0 3 4
0 -1 -1 -5| -7
0 0 3 13 13
0 0 0 —13| -—13
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The general Gaussian elimination procedure

@ Provided aj; # 0, for each i =2,3,... n,
<EZ- - a“E1> — (E)).
ai1
Transform all the entries in the first column below the diagonal are

zero. Denote the new entry in the ith row and jth column by a;;.
@ Fori=2,3...,n—1, provided a;; # 0,

<Ej CL]E) —(B;), Vi=i+1,i+2,...,n

Qi
Transform all the entries in the ith column below the diagonal are
zero.

@ Result an upper triangular matrix:

@11 612 ‘- G [ b1
0 ax - aop|b2
o --- 0 apn|bn
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The process of Gaussian elimination result in a sequence of matrices as
follows:

A=A0 5 A@ ... AM) = ypper triangular matrix,

The matrix A*) has the following form:

(oY o a) e [ 6 el ]

. ;,E’iz?z_l ;2’:&1 ;5!1‘?3 ;2’“:12
|0 o ay | a) _ai'f?

3 e @ NOR 'ag,c) ;Ei?

0 0 NOR :ag;) ag;g

Wei-Cheng Wang (NTHU) Direct methods for LS Fall 2011 9 /82



The entries of A®*) are produced by the formula

oY, fori=1,...,k—1,j=1,...,n:
oF) — 0, fori=~k,...,n, j=1....k—1,;
RN IR e BN ()
a,; — S Xay g, fori=k,....n j=k. .. n
Ap—1,k—1 "
@ The procedure will fail if one of the elements aﬁ), ag), cee a,%) is
zero.
()

@ a;;’ is called the pivot element.
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Backward substitution
The new linear system is triangular:

a1171 + apr2 + -+ + apwr, = b,
axpxy + - + axpz, = b,
ApnTn = bn

@ Solving the nth equation for x,, gives

bn
B = ——
Qnn
@ Solving the (n — 1)th equation for x,,_1 and using the value for z,
yields
bn—l — An—1,nTn
ITp—-1 = .
pn—1n—1
@ In general,
by — > . 10T
—i+1 QijLj .
By = i , Vi=n—-1n—-2,...,1

Q4
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Algorithm (Backward Substitution)

Suppose that U € R™*™ is nonsingular upper triangular and b € R™. This
algorithm computes the solution of Ux = b.

Fori=mn,...,1
tmp =0
Forj=i+1,...,n
tmp = tmp + U(i,7) * z(j)
End for
(i) = (b(¢) — tmp) /U (4,4)
End for
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Example
Solve system of linear equations.

6 —2 2 4][m 12
12 86 10| |a| | 34
3 139 3| |a3| | 27
—6 4 1 —18 | | x4 —38

Solution:

1% step Use 6 as pivot element, the first row as pivot row, and

multipliers 2, %, —1 are produced to reduce the system to

6 22 4][m 12
0 —4 2 2| |x]| | 10
0 —12 8 1 ||| | 2
0 23 —14 || a4 —26
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2nd

374 step Use 2 as pivot element, the third row as pivot row, and

12
10
-9
—21

multipliers 2 is found to reduce the system to

Wei-Cheng Wang (NTHU)
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4th step The backward substitution is applied:

=38
Ty = _—3:1,
= . —9+5$4_—9+5__2
3 = 2 - 2 - )
10 —2x4 — 223 10—2+44
‘/'UZ = = :—3’
—4 —4
12 — 4xq — 223 + 222 12—-44+4-06

@ This example is done since akk # 0 forall k=1,2,3 4.

@ How to do if aék) = 0 for some k7
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Example

Solve system of linear equations.

1 -1 2 -17[x -8
2 =2 3 =3 | |a | | —20
1 11 0f|as| | -2
1 -1 4 3| 24 4

Solution:

15" step Use 1 as pivot element, the first row as pivot row, and
multipliers 2,1, 1 are produced to reduce the system to

1 -1 2 -17[m -8
0 0 -1 1| |a| | -4
0 2 -1 1| |as| | 6
0 0 2 4] | 12
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24 step Since agzz) =0 and ag22) # 0, the operation (E3) < (E3) is
performed to obtain a new system

1 -1 2 -1 1 —8
0 2 -1 1||ax]| | 6
0 0 -1 -1 I3 o —4
0 0 2 4 T4 12

374 step Use —1 as pivot element, the third row as pivot row, and

multipliers —2 is found to reduce the system to

1 -1 2 17 [m -8
0 2 -1 1||ax]| | 6
0 0 -1 —1||as| | -4
0 0 0 2|z 4
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4th step The backward substitution is applied:

4
Ty = 522,

-4+
T = — =2

6 —
W = ﬂzg’

2

—8+ x4 — 223 + T2

r1 = = —7.

1

@ This example illustrates what is done if ag}? = 0 for some k.

o If agz) # 0 for some p with £ 4+ 1 < p < n, then the operation
(Ex) < (E)p) is performed to obtain new matrix.

o If ag,? = 0 for each p, then the linear system does not have a unique

solution and the procedure stops.
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Algorithm (Gaussian elimination)

Given A € R™" and b € R", this algorithm implements the Gaussian
elimination procedure to reduce A to upper triangular and modify the
entries of b accordingly.

Fork=1,...,n—1
Let p be the smallest integer with £ < p < n and ap # 0.
If 3 p, then stop.
If p # k, then perform (E,) < (Ey).
Fori=k+1,...,n
t = A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(i) — t x b(k)
Forj=k+1,...,n
A(Za.]) = A(Y’vj) —1X A(kvj)
End for
End for
End for
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Number of floating-point arithmetic operations

Eliminate kth column

Fori=k+1,....,n
t = A(i, k)/A(k, k); b(i) = b(i) — t x b(k).
Forj=k+1,...,n
A(Z’j) = A(7’7.7) —tx A(kh])
End for
End for

e Multiplications/divisions
(n—k)+(n—k)+(n—k)(n—k)=Mn—Fk)(n—k+2)
e Additions/subtractions

m—k)+(n—k)n—k)=Mn-k)n-k+1)
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e Total number of operations for multiplications/divisions

n—1 n—1
Y (n—k)(n—k+2)=> (n®—2nk+k* + 2n — 2k)
k=1 k=1

= (n2+2n)21—2n+1 Zk+2k2
k=1

(n— 1) N (n—1)n(2n —1)

= (n24+2n)(n—1)—-2(n+1) 5 e

2n3 +3n% — 5n
6

@ Total number of operations for additions/subtractions

n—1 1

S
|

d(n—k)n—k+1)=> (n®—2nk+k +n—k)
k=1 k=1
n—1 n—1 —
= (®+n)Y 1-(2n+1) Z =
k=1 k= k=1
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Backward substitution
z(n) = b(n)/U(n,n).
Fori=n—1,...,1
tmp =U(i,i + 1) x z(i + 1)
Forj=i+2,....n
tmp = tmp + U(1, ) x z(j)
End for
(i) = (b(i) — tmp)/U (i, i)
End for

e Multiplications/divisions

n2+n

n—1
L+ [(n—i)+1]=—
i=1

e Additions/subtractions

n2—n

n—1
Z[(n—i—l)+1]: 5

Wei-Cheng Wang (NTHU) Direct methods for LS Fall 2011 22 /82




The total number of arithmetic operations in Gaussian elimination with
backward substitution is:

e Multiplications/divisions

2n3+3n2—5n+n2+n n3+ , n_nd
= — n® —— &~ —
6 2 3 3 3
e Additions/subtractions
n3—n+n2—n_n3+n2 5n~n3
3 2 3 2 6 3
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Pivoting Strategies

o If a](jf) is small in magnitude compared to agl,?, then
(k)
a.
Imxl = |G| > 1
a®)
kk

Round-off error introduced in the computation of

G§IZ+1) = aﬁ-’Z) - mjkag?, for f=k+1,...,n.

@ Error can be increased when performing the backward substitution for

n (k)
b, — ijkﬂ Qi Lj

k
al(ck)

Tl —

with a small value of a,(jc).
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Example
The linear system

E;: 0.003000z; + 59.14z, = 59.17,
by 5291z; — 6.13022 = 46.78,

has the exact solution 27 = 10.00 and x5 = 1.000. Suppose Gaussian
elimination is performed on this system using four-digit arithmetic with
rounding.

@ a1 = 0.0030 is small and

_ 5.201
21 = 140030

@ Perform (E2 — mglEl) — (EQ)Z

= 1763.66 ~ 1764.

0.0030z; + 59.14z, = 59.17
— 104309.376z, = —104309.376.
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@ Rounding with four-digit arithmetic:
Coefficient of x5:

—6.130 — 1764 x 59.14 = —6.130 — 104322.96
—6.130 — 104300 = —104306.13
—104300.

Q

Right hand side:

46.78 — 1764 x 59.17 = 46.78 — 104375.88
~ 46.78 — 104400 = —104353.22
—104400.

New linear system:

0.0030z1 +  59.14z>, = 59.17
— 104300z, ~ —104400.
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@ Approximated solution:

104400 _

rp = m ~ 100].,
o 59.17 — 59.14 x 1.001 _ 59.17 — 59.19914
b 0.0030 B 0.0030
59.17 — 59.20
~ ——— = —10.00.
0.0030 0.00
This ruins the approximation to the actual value 27 = 10.00. [
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Partial pivoting

@ To avoid the pivot element small relative to other entries, pivoting is

performed by selecting an element agf]) with a larger magnitude as the
pivot.
@ Specifically, select pivoting ag,? with
(k) _ (k)
i | = max ai,’|

and perform (Ej) < (Ep).

@ This row interchange strategy is called partial pivoting.
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Example

Reconsider the linear system

Ep: 0.003000z7 + 59.14z, = 59.17,
By 5291z; — 6.130z> = 46.78.

e Find pivoting with
max{|a11|, ’a21’} =5.291 = ’CL21’.
@ Perform (E») < (FE1):

Ey: 5291z;1 — 6.130z2 = 46.78,
E>: 0.003000x; + 59.14z> = 59.17.

@ The multiplier for new system is

moy = 22X = 0.0005670.
aiil
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@ The operation (Ey — mp1E1) — (E2) reduces the system to

5.291z; — 6.130x2 = 46.78,
59.142> =~ 59.14.

@ The four-digit answers resulting from the backward substitution are
the correct values 21 = 10.00 and z> = 1.000. ]
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Example
The linear system

E;: 30.00z; + 591400z, = 591700,
E,: 5291z; —  6.130zp =  46.78,

is the same as that in previous example except that all the entries in the
first equation have been multiplied by 104,

The pivoting is a;; = 30.00 and the multiplier

5.2901

= ——=0.1764
30.00 0.176

ma1

leads to the system

30.00z; + 591400z, = 591700
— 104300z, ~ —104400,

L

which has inaccurate solution x5 ~ 1.001 and x; ~ —10.00. ]
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Scaled partial pivoting

@ Define a scale factor s; as

s; = max l|a;i|, for i=1,... n.
[ lﬁjﬁn‘ Z]|7 ) )

o If s; = 0 for some 4, then the system has no unique solution.

@ In the 7th column, choose the least integer p > ¢ with

Qpi Gl
‘ pz| — max | kz|
Sp i<k<n Sk
and perform (E;) < (E,) if p # i.
@ The scale factors s1,...,s, are computed only once and must also be

interchanged when row interchanges are performed.
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Example
Apply scaled partial pivoting to the linear system

E;: 30.00z; + 591400z, = 591700,
E>: 5291z; — 6130z, =  46.78.

The scale factors s; and s are

s1 = max{|30.00|, |591400|} = 591400
and

so = max{|5.291|, | — 6.130|} = 6.130.

Consequently,
|a11] 30.00

= =0.5073 x 1074
- 501400 ~ 02073 < 107,
|a21| 5.201
o] 2290 8631
o 6.130  0-893L,

and the interchange (E1) < (E») is made.
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Applying Gaussian elimination to the new system

5.291z; —  6.130x, = 46.78,
30.00z; + 5914002, = 591700
produces the correct results: x; = 10.00 and z, = 1.000. O
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Matrix factorization

e This equation has a unique solution 2 = A~'b when the coefficient
matrix A is nonsingular.

@ Use Gaussian elimination to factor the coefficient matrix into a
product of matrices. The factorization is called LU-factorization and
has the form A = LU, where L is unit lower triangular and U is
upper triangular.

@ The solution to the original problem Az = LUz = b is then found by
a two-step triangular solve process:

e LU factorization requires O(n?) arithmetic operations. Forward
substitution for solving a lower-triangular system Ly = b requires
O(n?). Backward substitution for solving an upper-triangular system
Ux = y requires O(n?) arithmetic operations.
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For a given vector v € R™ with vy # 0 for some 1 < k£ < n, let

br=2 i=k+1,....n

Ok
T
=10 -+ 0 liprp - Lok |,

and

(1 0 0 0]
0 ... 1 0 ... 0

T _
Mk—[ Ekek 0 ... —€k+1,k 1 0
[0 -+ 4y 0 - 1
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Then one can verify that

Mw=[v - v 0 - 0]

M, is called a Gaussian transformation, the vector /;, a Gauss vector.
Furthermore, one can verify that

[ 1 0 0 0 ]
. . 0 1 0 0
MkIZ(I—EkGZ) 1:I+£ke£: 0 £k+1k 1 0
|0 log O 1|
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Given a nonsingular matrix A € R™*", denote A(Y) = [az(-;)] =A If
a11) # 0, then

My =1 —tel,
where
ro,
(=10 ln - bu] , la=—45,i=2,...,n,
b
11
can be formed such that
1 1 1
A@) — A0 — 0 ayy - ay, ,
0 agzz) aﬁ{i%
where
asz) a(J) — {1 X a%), fori=2,...,nand j=2,....n
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In general, at the k-th step, we are confronted with a matrix

A®) = M - MM AD

r ) (1)

1 1 1) 7
117 G130 ag,l 0 s

) B I

0 ayp - a4y, Qo "7 oy

_ : ) ' k-1 k:—l k:—l
- 0 o - agc—l,lZ—l al(c—l,ll e a/(€—1,7)z

; T T R—

If the pivot a\") # 0, then the multipliers
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can be computed and the Gaussian transformation

]Wk =1- Ekez, where fk — [ 0 0 £k+1,k Enk ]T
can be applied to the left of A%) to obtain
AG+Y) — pp AK)
- 1 1 1 1 1
0 ay - A3 k-1 Ao A3 k+1 Ao,
k-1 k-1 k—:l k:—l
_ 0 al(c—l 11—1 al(c—l I)c al(c—l l)c+1 §c—1,7)z
I I T
k+1 k+1
0 al(<:+1,l)c+1 a§§+1,r)z
L 0 0 0 o o) alrt)
Fall 2011

40/ 82



in which
ag = aip) — lxal), (2)
fori=k+1,...,n, j=k+1,...,n. Upon the completion,
U=AM™ = M,_;--- MyM; A

is upper triangular. Hence

—13r7—-1 -1 —
A= MMy MZLU = LU,
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where

L=M'"My MY = (I —tre]) YT —ed) ™t (T = lyorel 1)
(I +l1e] ) + l2e3) -+ (I + lp1e)_y)
= I+ 518{ + Egeg + -4 Zn,lez_l

1 0 0 - 0

by 1 o --- 0

- l33 €3 1 -+ 0
| gnl €n2 €n3 e 1 |

is unit lower triangular. This matrix factorization is called the
LU-factorization of A.
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Algorithm (LU Factorization with Direct Comparison)

Given A € R™ " nonsingular, this algorithm computes a unit lower

triangular matrix . and an upper triangular matrix U such that A = LU.
i=1

Forj=1,...,n
U(1,4) = AL, j)

End for j

Fori/ =2,...,n

L(#,1) = A(#, 1)

End for ¢/
Fori=2,....n—1
Forj=i,...,n '
Ui, §) = A(i, ) — S LG, K)U (R, 5)
End for j

Fori/=i+1,...,n
L(i',i) = (A(¥',4) — Sy (&, k)U (K, 4) ) /U (4, 7)
End for ¢/
End for i

U(n,n) = A(n,n) — S 721 L(n, k)U(k, n)

Fall 2011 43 / 82



Algorithm (Recursive LU Factorization )

Fori=1,...,n—1

Forj=i,...,n
U(i,j) = A(7,7) (Compute ith row of U)
End for j

Fori=i+1,....n
L(¢',1) = A(¢/,i)/A(¢,i) (Compute ith column of L)
Forj/=i+1,...,n
A(#, ") = A7, ") — L(&, 1)U (4, §')
(Update the right-lower sub-matrix, row by row)
End for j
End for i’
End for ¢
U(n,n) = A(n,n)
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Algorithm (Memory Saving Recursive LU Factorization)

Memory saving version of LU factorization. The matrix A is overwritten
by L and U.

Fori=1,...,n—1
Fori=i+1,....,n
A(i', 1) = A(7,4) /A(4,19)
Forj/=i+1,...,n
A, ) = A, 77) — A, 3)AGi, )
End for
End for
End for
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Forward Substitution

When a linear system Lz = b is lower triangular of the form

fi1 0 - 0 T b1
£y fyp -+ O T2 B b>
Enl £n2 T gnn H bn

where all diagonals ¢;; # 0, x; can be obtained by the following procedure

r1 = bi/ln,

x2 = (bp — loaz1) /o2,

z3 = (b3 — l3121 — l3222) /¢33,

Tn = (bn - gnlxl - £n2x2 — En,n—lxn—l)/fnn-
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The general formulation for computing z; is
i—1
Ty = bifzgijl'j /fu, i:1,2,...,n.
j=1

Algorithm (Forward Substitution)

Suppose that L € R"*™ is nonsingular lower triangular and b € R™. This
algorithm computes the solution of Lz = b.

Fori=1,...,n
tmp =0
Forj=1,...,:i—1
tmp = tmp + L(3, j) * x(j)
End for
(i) = (b(i) — tmp)/L(i, i)
End for

Wei-Cheng Wang (NTHU) Direct methods for LS Fall 2011 47 / 82



Example
FEq: r1 + Z2 + 3z4 = 4,
Ey: 2r; + 22 — 23 + x4 = 1,
Ez: 321 — 1z — 3 + 214 = -3,
Ey: —x1 + 220 + 323 — x4 = 4,

Solution:
@ The sequence {(E» — 2E1) — (E2), (E3 — 3E1) — (E3),
(Ea — (=1)E1) — (Ea), (E3 — 4E2) — (E3),
(Ea — (—3)E») — (E4)} converts the system to the triangular system

1 + X2 + 3z4 = 4,
- T2 — r3 — 5:64 = —7,
33 + 13x24 = 13,

— 13.%4 = —13.
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@ LU factorization of A:

1 1 0 3
2 1 -1 1
A= g i 1 2
-1 2 3 -1

1 000][1 1 0 3

2 100(||0 -1 -1 -5

- 3 410||0 o 3 13|
| -1 3 01||0 0o 0 -13
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@ Solve Ly = b:

= W N =
~ R O

which implies that

Y1
Y2
Y3
Ya

O = O O

0 Y1 8
0 v | 7
0 ys | 14
1 Ya —7
8,
7T—2y1 = —9,

14 — 3y; — 4yp = 26,
—7 4+ y1 + 3y» = —26.
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e Solve Uz = y:

1
0
0
0

which implies that

T4
L3
L2

I

-1

0 3 T 8

-1 =5 T2 | —9
3 13 x3 | 26
0 -13 T4 —26
Z8

(26 — 13x4)/3 =0,
(=9 +5x4 + x3)/(—1) = -1,
8 —3x4 — 12 = 3.
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Partial pivoting
(k)

At the k-th step, select pivoting e with
(k) _ (k)
|apk | = krgfgn |az”|

and perform (Ej) < (E,). That is, choose a permutation matrix

I._1 0O 0 0 0
0 0 0 1 0
Po=| 0 0 I,,i 0 0
0 1 0 0 0
0 0 0 0 I,
so that
k), | — (k). ‘
’(PkA ik VIETS (AN i
and

AEFY — prk) pA(K)
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Let Pi,..., P._1 be the permutations chosen and M, ... M} 1 denote
the Gaussian transformations performed in the first £ — 1 steps. At the
k-th step, a permutation matrix P is chosen so that

’(Pk]\/fk,1 °© oo AflplA)kk‘ = max ’(Mk,1 coo ]\/flplA)zk’ .
k<i<n

As a consequence, |/;;| <1fori=1,...,n, j=1,...,i. Upon
completion, we obtain an upper triangular matrix

U=M,-1P,—1---M1PA. (3)
Since any Py is symmetric and PkTPk = sz = [, we have
My _1Py_1---MoP,M1Ps--- Py 1P, 1--- P,PLA=U,
therefore,

Py PiA= (My_1Ppy- - MyPoMy Py -+ Py q) UL
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In summary, Gaussian elimination with partial pivoting leads to the LU
factorization

PA=LU, (4)
where
P=P, . --P
is a permutation matrix, and
L = (My_1Po_1---MyPaMyPy---Py_q)7t
= Po1---PM{IPMGY P MY

Since,

S

I,y 0 0 0 0 :

0 0 0 1 0 "
Pi=| 0 0 L1 0 0 |, f=1|," |,
0o 1 0 0 O gL

0 0 0 0 I, 5

L g
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it implies that for ¢ < 7,
T T T
ein:ei, eigj:(),
~ :|T ~

Pj&':[o - 0 Zi-}-l,@' Enz

PM7YPy = Po(I + trel )Py = I + Uref
PM P My = (I + el ) (I + baed ) = T+ fref + loe],

Ps (P My 'PMy ) Py = I+ bef + lpe)

:> coo
Therefore, L is unit lower triangular.
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Algorithm (LU-factorization with Partial Pivoting)

Given a nonsingular A € R™*", this algorithm finds a permutation P, and
computes a unit lower triangular L and an upper triangular U such that
PA = LU. A'is overwritten by L and U, and P is not formed. An integer
array p is instead used for storing the row/column indices.

p(l:n)=1:n
Fork=1,....n—1
m=k

Fore=k+1,...,n
If [A(p(m), k)] < |A(p(a), K),
End For
¢ = p(k); p(k) = p(m); p(m) = ¢
Fori=k+1,....,n
A(p(i), k) = A(p(l) k)/A(p(k), k)
Forj=k+1,..
(1)) = A7) — A, DAGE). )
End For
End For

End For
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Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax = b= PAx = Pb= LUx = Pb.

Example
Find an LU factorization of

0 1 -1 1
1 1 -1 2
A= -1 -1 10
1 2 0 2

] (El) — (Eg), (E3 aF El) — (E3) and (E4 = El) — (E4):

11 -1 2 0100 1 000
@_|01 -11 _|1000 _| o100
A 00 o02|'N 001 0| M 1010

01 10 000 1 100 1
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() (E3) — (E4) and (E3 — Eg) — (E3)I

1 1 -1 2 1 000 1 0 0O
(3):01—11 :0100 _0100
4 00 2 -1|7F 000 1| 0 -1 10
00 o0 2 0 010 0O 0 0 1
@ Permutation matrix P:
01 00
1 000
P=PRh=14 901
0 010
o Unit lower triangular matrix L:
1 000
01 00
_ ~1p -1 _
L=PM "PBM " = 1110
-1 0 0 1
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@ The LU factorization of PA:

1 0 0O 1 1 -1
01 0O 01 -1
el = 1 110 00 2
-1 0 0 1 00 O

So
01 00
1 0 0O

_ p—1 _ (pT _

A=PLU=(PTLU=| | 4 o 1
1 110

Wei-Cheng Wang (NTHU) Direct methods for LS

O o owr

=LU.

1 -1 2
1 -1 1
0 2 -1
0O 0 2
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Special types of matrices

Definition
A matrix A € R"*" is said to be strictly diagonally dominant if

n

|ai| > Z |aijl.

J=L.j#i

Lemma

If A € R™" s strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists x € R", x # 0 such that
Ax = 0. Let k be the integer index such that

||

lzg| = 7

|k | = D lzi| = V|24
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Since Az = 0, for the fixed k, we have

n n n
D oarwi =0 = apzr=— > agx; = lawller] < D laggllel,
i=1 i=Li#k J=Lik

which implies

|a’kk| < E : |a’k] | ]l < § |akj"
Jj=1,3#k J=1,j#k

But this contradicts the assumption that A is diagonally dominant.
Therefore A must be nonsingular. Ol
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Theorem

Gaussian elimination without pivoting preserve the diagonal dominance of
a matrix.

Proof: Let A € R™ " be a diagonally dominant matrix and A(?) = [az(?)] is

the result of applying one step of Gaussian elimination to A1) = A
without any pivoting strategy.

After one step of Gaussian elimination, al(-f) =0fori=2,...,n, and the
first row is unchanged. Therefore, the property

n
(2) (2)
ay; > Z |ag; |
J=2
is preserved, and all we need to show is that

n
ag) > Z \agj.)], for i=2,...,n.
=257
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Using the Gaussian

a2

Wei-Cheng Wang (NTHU) Direct methods for LS

elimination formula (2), we have

1
o
X 1 7
agl)

ai1
= Qi — —a1;
ai

a1
= aw| — la ||a1i|
|a11]
;1
= lai| —laa| + |aa| - M|a1i|
|a11]
— ol — foal + 122 (x| = o)
n |ai1‘ n
> > |zj|+| | > layl
J=2,j#i W5 —g i
= ) agl+ Y Syl
=2 i sz |l
n @ n
1 2
> > aij = a1y = > la)
J=2,j#i j=2,j#i
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Thus A® is still diagonally dominant. Since the subsequent steps of
Gaussian elimination mimic the first, except for being applied to
submatrices of smaller size, it suffices to conclude that Gaussian
elimination without pivoting preserves the diagonal dominance of a

matrix. [

Theorem

Let A be strictly diagonally dominant. Then Gaussian elimination can be
performed on Ax = b to obtain its unique solution without row or column
interchanges.

Definition

A matrix A is positive definite if it is symmetric and 27 Az > 0V x # 0.

v
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Theorem

If A is an n X n positive definite matrix, then

()
(b)
(c)
(d)

A has an inverse;

a; >0, Vi=1,...,n;

’

maxi<i j<n |ak;| < Maxi<i<n @i
(aij)2 < @j;Q544, V1 7& 7.

Proof:
(a)

If « satisfies Az = 0, then 27 Az = 0. Since A is positive
definite, this implies x = 0. Consequently, Az = 0 has only
the zero solution, and A is nonsingular.

Since A is positive definite,
a;; = 6?1461' > 0,

where e; is the i-th column of the n x n identify matrix.
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(c) For k # j, define x = [z;] by
0, if i#£j and i#k,
Ty = ]., if 1= j,
-1, if i=k.
Since z # 0,
0<alAz = ajj + Qpk — Gk — Q-
But AT = A, so
2ap; < ajj + k- ()
Now define z = [z;] by
L 0, if i#£j and j#Ek,
L ifi=j or i=k
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Then 27Az > 0, so
—2ayj < ajj + akg- (6)
Equations (5) and (6) imply that for each k # j,

Ok + 05 o

2 1<i<n jaiil,

|lak;| <
SO

1<mkax lag;| < e @i .

(d) For i # j, define x = [x}] by

0, if k#j and k #1,
=14 «a, Iif k=1,
1, if k=y,
where « represents an arbitrary real number.
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Since x # 0,
0< 2T Az = aja® + 205500+ aj; = P(a), Va € R.

That is the quadratic polynomial P(«) has no real roots. It
implies that

4afj —4a;ai; <0 and afj < Qy0jj5. ]

Definition (Leading principal minor)

Let A be an n X n matrix. The upper left k& x k submatrix, denoted as

aixz @12 - Q1g
a1 az2 - Gk

Ak - . . . . P
ag1 Aag2 - Qg

is called the leading k x k principal submatrix, and the determinant of Ay,
det(Ay), is called the leading principal minor.

v
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Theorem

A symmetric matrix A is positive definite if and only if each of its leading
principal submatrices has a positive determinant.

Theorem

The symmetric matrix A is positive definite if and only if Gaussian
elimination without row interchanges can be performed on Ax = b with all
pivot elements positive.

v

Corollary

The matrix A is positive definite if and only if A can be factored in the
form LDL", where L is lower triangular with 1's on its diagonal and D is
a diagonal matrix with positive diagonal entries.
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Theorem

If all leading principal submatrices of A € R™*™ are nonsingular, then A
has an LU -factorization.

Proof: Proof by mathematical induction.
© n =1, A; = [a11] is nonsingular, then a;1 # 0. Let L; = [1] and
Uy = [a11]. Then A; = L1U;. The theorem holds.

@ Assume that the leading principal submatrices A1, ..., Ay are
nonsingular and Ay, has an LU-factorization Ay = LUy, where Ly is
unit lower triangular and Uy, is upper triangular.

© Show that there exist an unit lower triangular matrix L;11 and an
upper triangular matrix Uj41 such that Agy1 = Li+1Uky1.
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Write

Ay, Vg
Aggp1 = [ T
Wy, Qk+1,k+1
where
a1,k+1 ak+1,1
a2 k+1 ak+1,2
Vi = . and Wy = .
Ak, k+1 Af+1,k

Since Ay is nonsingular, both L; and Uy are nonsingular. Therefore,
Ly, = vi, has a unique solution y;, € R*, and 2!U;, = wg has a unique
solution z;, € R*. Let

. Ly O . Uy Yk
Lkﬂ_[?«‘g 1] and U1 = 0 ak+1,k+1—z§yk ’
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Then L1 is unit lower triangular, U1 is upper triangular, and

Lis1Upiy [ LUy Lyyx
R Uk 2lye + akti 1 — 2L i
Ag Uk }
= = Ap1.
[ w% Ok4+1,k+1 *
This proves the theorem. Ol
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Theorem

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LlUl and A= L2U2

are LU factorizations. Since A is nonsingular, L1, Uz, Ly, U; are all
nonsingular, and

A= LUy = LUy = Ly 'Ly = DUy .

Since Ly and Ly are unit lower triangular, it implies that L;lLl is also
unit lower triangular. On the other hand, since Uy and U, are upper
triangular, UgUfl is also upper triangular. Therefore,

LDy =T =U,U7!

which implies that L; = Ly and Uy = Us. [J
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Lemma

If A € R™™™ js positive definite, then all leading principal submatrices of A
are nonsingular.

Proof: For 1 < k <n, let
2 = [xl,...,xk]T eRF and z = [ml,...,xk,O,...,O]T e R",
where z1,..., 2z € R are not all zero. Since A is positive definite,
ZgAka =zTAz >0,

where Ay is the k x k leading principal submatrix of A. This shows that
Ay are also positive definite, hence Ay are nonsingular. Ol
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Corollary
The matrix A is positive definite if and only if

A—GG", (7)

where G is lower triangular with positive diagonal entries.

Proof: “="

A is positive definite

= all leading principal submatrices of A are nonsingular

= A has the LU factorization A = LU, where L is unit lower triangular
and U is upper triangular.

Since A is symmetric,

LU=A=AT =0T — vu(IhH) ="

U(LT)~! is upper triangular and L=1U7 is lower triangular
= U(L")~! to be a diagonal matrix, say, U(LT)~! = D.
= U = DL”. Hence

A=LDL".
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Since A is positive definite,
tTAr >0 = 2"LDLTz = (LT2)"D(LTz) > 0.

This means D is also positive definite, and hence d;; > 0. Thus DY2 s
well-defined and we have

A=LDLT = LDY2D1?[T = gGT,

where G = LD/2. Since the LU factorization is unique, G is unique.

=

Since G is lower triangular with positive diagonal entries, G is nonsingular.
It implies that

Gle #£0, Vo #0.
Hence
2T Az = 27GGTz = |GTz|3 >0,V #0

which implies that A is positive definite. O
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The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Let

g 0 - 0

A=[ay] and G=| 9 92
: : : 0
gnl Gn2 - Gnn

Assume the first £ — 1 columns of G have been determined after k — 1
steps. By componentwise comparison with

gu 0 -0 911 921 - gnl
g : 0 g» -+ gn2
g21  g22 . : n
[aif] = | 7% ™ S s
: : . 0
gnl Gn2 - Gnn 0 T 0 9nn
one has

k
2
Ak = Z Ikj»
j=1
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which gives
k-1
2 2
Ikk = Akk — ngj'
=1
Moreover,

k
aik:Zgijgkj, i:k—l-l,...,n,
=1

hence the k-th column of G can be computed by

k-1
Gik = aik:_zgijgkj /gkk, i=k+1,...,n.
=1
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Algorithm (Cholesky Factorization)
Given an n X n symmetric positive definite matrix A, this algorithm
computes the Cholesky factorization A = GGT.

Initialize G = 0
Fork=1,....n

Gk, k) = \/A(k, k) — S5=1 Gk, )G (K, )
Fori=k+1,....n
6(i.) = (4G, - £41 6. )6(k.)) /60

End For
End For

In addition to n square root operations, there are approximately

- 1, 1
S [k =2+ (2k— 1)(n— k)] = 2n° + 202 — 2n
T 37 T2 7%

floating-point arithmetic required by the algorithm.
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Band matrix

Definition

An n X n matrix A is called a band matrix if 3 p and ¢ with 1 < p,g <n
such that

a;; =0 whenever p<j—i or ¢<1i—j.

The bandwidth of a band matrix is defined as w =p+ ¢q — 1. That is

o e o1y 0 . 0
A= | 0o - R
0 - - An—p+1n
L O co 0 ann—q+1 Gnn |
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Definition
A square matrix A = [a;;] is said to be tridiagonal if

ai; a2 0
a a
A= 21 22
An—1n
0 Gnpn—1 Qnpn

If Gaussian elimination can be applied safely without pivoting. Then L and
U factors would have the form

1 U1l U12 0
b1 1 &y
L = . . and U = — 9
a a . Un—1,n
0 En,n—l 1 U,

and the entries are computed by the simple algorithm which only costs 37
flops.
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Algorithm (Tridiagonal LU Factorization)

This algorithm computes the LU factorization for a tridiagonal matrix
without using pivoting strategy.

U(1,1) = A(1,1)

Fori=2,...,n
U(i —1,i) = A(i — 1,4)
L(iyi—1)=A(,i—1)/U(i —1,i—1)
U(i,i) = A(i,7) — L(i,0 — 1)U (i — 1,1)

End For

A tridiagonal linear system arises in many applications, such as finite
difference discretization to second order linear boundary-value problem and
the cubic spline approximations.
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