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Outline

© Bisection Method

© Fixed-Point Iteration

© Newton's method

@ Error analysis for iterative methods
© Accelerating convergence

@ Zeros of polynomials and Miiller's method (SKIP)
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Bisection Method
Idea
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If f(x) € Cla, b] and f(a)f(b) <0, then 3 ¢ € (a, b) such that f(c) = 0.

Fip)
Flpa) 4
fa) =
ﬂll .Dll
LS Pz by

Wei-Cheng Wang (NTHU)

Solutions of Equations in One Variable

Fall 2011

2a0

3/73

J



Bisection method algorithm

Given f(x) defined on (a, b), the maximal number of iterations M, and
stop criteria § and ¢, this algorithm tries to locate one root of f(x).

Compute fa = f(a), fb=f(b),and e=b—a
If sign(fa) = sign(fb), then stop End If
For k=1,2.--- M

e=¢e/2, c=(a+b)/2, fc =1(c)

If (le| < or|fc|] <e), then stop End If

If sign(fc) # sign(fa)

b=c, fb=fc
Else
a=c, fa=fc
End If
End For
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Let {c,} be the sequence of numbers produced. The algorithm should
stop if one of the following conditions is satisfied.

© the iteration number k > M,
Q |ck — k1] <6, or
Q |f(«)| <e.

Let [a0, bo], [a1, b1], - - - denote the successive intervals produced by the
bisection algorithm. Then

a=a<a<a<---<b=0>b
= {an} and {b,} are bounded

= |im a, and |im b, exist

n—oo n—oo
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Since

1
by —a1 = E(bo—ao)
by— 3 = (by—a1)=~(bo— a0)
2 2 = 5 1) = 4 (Po 0
1
bn_an == 2n(b0_30)
hence
lim b, — lim a, = lim (b, — a,) = I|m —(bo—ao)—O
Therefore
lim a, = lim b, = z.

Since f is a continuous function, we have that

lim f(ap) = f( I|m ap) =1f(z) and lim f(b,) = f(lim b,) = f(2).

n—oo n—oo n—oo
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On the other hand,
f(an)f(bn) <O
= lim f(an)f(bn) = f?(z) <0
n—oo
= f(z)=0

Therefore, the limit of the sequences {a,} and {b,} is a zero of f in [a, b].
Let ¢, = %(a,, + bp). Then

. 1
|z — cp| ‘nll_)ngoa,,—i(an—l—b,,)}

\%[nm an—bn}+%[|im an—an]\

n—o0o n—oo

IN

max{‘nli_)ngoa,,— b,,‘,|nli_)n;oa,,—a,,‘}

IN

1
’bn - a,,] = E’bo — ao’.

This proves the following theorem.
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Theorem

Let {[a,, b,|} denote the intervals produced by the bisection algorithm.
Then lim a, and lim b, exist, are equal, and represent a zero of f(x). If

n—0o0 n—oo

1
z= lim a,= lim b, and c¢,= =(an+ bn),
n—oo n—o0 2

then

1
]z—c,,]ﬁz—n(bo—ao).

Remark

{cn} converges to z with the rate of O(27").
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Example

How many steps should be taken to compute a root of
f(x) = x3 +4x2 — 10 = 0 on [1, 2] with relative error 1037

solution: Seek an n such that

|z — cpl

7 <1072 = |z—c <z x 1073
z

Since z € [1,2], it is sufficient to show
|z —cp| <1073,
That is, we solve
27"2-1)<107% = —nlogyp2 < -3

which gives n > 10. 58
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Fixed-Point lteration

Definition

x is called a fixed point of a given function f if f(x) = x.

Root-finding problems and fixed-point problems

e Find x* such that f(x*) = 0.
Let g(x) = x — f(x). Then g(x*) = x* — f(x*) = x™.
= x* is a fixed point for g(x).
o Find x* such that g(x*) = x*.
Define f(x) = x — g(x) so that f(x*) = x* — g(x*) = x* —x* =0
= x* is a zero of f(x).
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Example

The function g(x) = x2 — 2, for =2 < x < 3, has fixed points at x = —1
and x = 2 since

g(-1)=(-12-2=-1 and g(2)=22-2=2.

YA

61 y=x-2
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Theorem (Existence and uniqueness)

Q Ifg € Cla, b] such that a < g(x) < b for all x € [a, b], then g has a
fixed point in [a, b].

Q If, in addition, g'(x) exists in (a, b) and there exists a positive
constant M < 1 such that |g'(x)| < M < 1 for all x € (a, b). Then
the fixed point is unique.

YA

y=g®

=Y
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Proof

Existence:

o If g(a) = aor g(b) = b, then a or b is a fixed point of g and we are
done.

o Otherwise, it must be g(a) > a and g(b) < b. The function
h(x) = g(x) — x is continuous on [a, b], with

h(a) = g(a) —a >0 and h(b) =g(b)— b < 0.

By the Intermediate Value Theorem, 3 x* € [a, b] such that
h(x*) = 0. That is

g(x*)—x"=0 = g(x*)=x"

Hence g has a fixed point x* in [a, b].
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Proof

Uniqueness:
Suppose that p # g are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists & between p and g such that

£(€) = gp)—gla) _pP—a_,
P—q P—q

However, this contradicts to the assumption that |g'(x)| < M < 1 for all x
in [a, b]. Therefore the fixed point of g is unique. O
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Example
Show that the following function has a unique fixed point.

gx)=(x*-1)/3, xe[-1,1].

Solution: The Extreme Value Theorem implies that

. 1

i g(x) =g(0) = —3,
= g(+£1) =0.

(Jhax g(x) = g(+1)

That is g(x) € [-1,1], V x € [-1,1].
Moreover, g is continuous and

2x

2
£ = —1.1).
g _3,vxe( ,1)

lg'(x)| =

By above theorem, g has a unique fixed point in [—1,1].
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Let p be such unique fixed point of g. Then

2
pc—1
p=glp)="—75— = p>—3p—1=0

= p=3(3- VD)

O
by
5_
4.__
3T (G0 +Vv13).5( + Vi3))
y=x
2 4
-1
1 y= 3
AN i
—/1 2 3 4 x
_l_.
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Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xp and generate
{xic}rZo by

Xk+1 = g(Xk), k > 0.

{xk} may not converge, e.g., g(x) = 3x. However, when the sequence

converges, say,
. *
lim x, = x™,
k—o00

then, since g is continuous,

g(x*)=g(lim xx) = lim g(xk) = lim xc41 = x™.
k—o0 k—o0 k—o00

That is, x* is a fixed point of g.
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Fixed-point iteration

Given xp, tolerance TOL, maximum number of iteration M.

Set i =1 and x = g(xo).
While i < M and |x — x| > TOL

Seti=i+1, xp=x and x = g(xp).

End While
V.
y y=ux y y=x
(P2 P3) y =g
(p1, ) p3 = 8(p2)
p2=8p) (P2 D) P2 =g(p) (P2 p2)
P = 8(py) (Po, P1)
1= 8(po) ) (Po-P1) 1= 8lpo) (P pD)
y =g
Pi P3 P> Po x Do P P

(a)
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Example
The equation

x3+4x>-10=0

has a unique root in [1,2]. Change the equation to the fixed-point form
x = g(x).

Q) x=gi(x)=x—f(x)=x—x3—4x>+10 J

(b) x = g2(x) = (12 — 4x)"/2 J

1/2
3 =10-4x> = X2:E—4X = x::I:(E—4x>
X X
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(©) x= 809 = (10 )" )

1
4x2 =10 — x3 = X = j:§ (10 _ X3)1/2

(d) x = ga(x) = (41+_0X)1/2 J
X(x+4)=10 = x==+ <4TX)1/2
(e) x = gs(x) = x — XFH=10 J
x = gs(x) = x — ;((’;))
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Results of the fixed-point iteration with initial point xp = 1.5

n (a) ) () ) (e)
0 15 1.5 1.5 15 15
1 —0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 —469.7 (=8.65)1/2 1.345458374 1.364957015 1.365230014
4 1.03 x 108 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012

10 1.365410062 1.365230014

15 1.365223680 1.365230013

20 1.365230236

25 1.365230006

30 1.365230013

Fall 2011
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Theorem (Fixed-point Theorem)

Let g € Cla, b] be such that g(x) € [a, b] for all x € [a, b]. Suppose that
g’ exists on (a, b) and that 3 k with 0 < k < 1 such that

lg’(x)| < k, ¥V x € (a, b).
Then, for any number xg in [a, b],

Xn = g(Xn—l)a n>1,

converges to the unique fixed point x in [a, b].
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Proof: By the assumptions, a unique fixed point exists in [a, b]. Since
g([a, b]) C [a, b], {xn}32, is defined and x, € [a, b] for all n > 0. Using
the Mean Values Theorem and the fact that |g’(x)| < k, we have

X = xa| = [g(xa-1) — 8(x)| = 1g"(€n)llx = Xn-1| < Klx = xn-1],
where &, € (a, b). It follows that
IXn — x| < k|xa_1 — x| < K?|Xp_2 — x| < --- < k"|xg — X|. (1)

Since 0 < k < 1, we have

lim k" =0
n—oo
and
lim [x, — x| < lim k"|xp — x| = 0.
n—oo n—oo
Hence, {x,}52, converges to x. B
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Corollary
If g satisfies the hypotheses of above theorem, then

Ix — xn| < k"max{xo —a,b — xo}

and

n

1—k

Ixn — x| < |x1 — xo|, V n>1.

Proof: From (1),
|xn — x| < k"|xo0 — x| < k" max{xp — a,b — x0}.
For n > 1, using the Mean Values Theorem,

[Xn+1 = Xn| = |g(xn) — g(xn-1)| < klxn — xn—1| < -+ < k"|x1 — xol.
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Thus, for m > n>1,

|Xm - Xn| = |Xm —Xm—1+Xm—1— "+ Xny1 — Xn|
< |Xm - Xm—1| + |Xm—1 - Xm—2| 4+ |Xn+1 - Xn|
< K™ Hxg — xo| + k™2 x1 — xo| + - + k"|x1 — X0
= Kk"x1—xo| (L+k+k*+---+ k™ "1,
It implies that
m—n—1 )
el =m0l < fim Kol 3
j=0
< K" |X1—X0|ij |X1—X0|

]
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Example

For previous example, f(x) = x3 +4x?> — 10 = 0.

Let g1(x) = x — x> — 4x2 4 10, we have
a)=6 and g(2) =12
so g1([1,2]) € [1,2]. Moreover,
gl(x)=1-3x2-8x = |g(x)|>1Vx€e][1,2]

Convergence is NOT guaranteed. In fact, it almost for sure will not
converge since when x, is close to the solution x*,

P = x| = lg10xn-1) — 81 (x")| = lg1(c)(xn-1 = X)| > [xp—1 — x7|.

The error is amplified whenever x,, is close to convergence. The only
possibility for convergence is when x, is far from x* and (by chance, and
very unlikely) that g1(x,) = x*.

v
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For g3(x) = £(10 — xH2 ¥ x €[1,1.5],
) = —%x2(10 _3) Y2 <0, ¥xeL,15],
so g3 is strictly decreasing on [1,1.5] and
1 <1.28~ g3(1.5) < g3(x) < g3(1) =15, V x € [1,1.5].
On the other hand,
lg5(x)] < |g5(1.5)| ~ 0.66, V x € [1,1.5]

Hence, the sequence is convergent to the fixed point.
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For ga(x) = 1/10/(4 + x), we have

@SQ [vxe[lz] ~ a2 (1.2

Moreover,

<0.15, V x €[1,2].

40 = | e | < T

The bound of |g;(x)| is much smaller than the bound of |g5(x)|, which
explains the more rapid convergence using ga.
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Newton's method

Suppose that f : R — R and f € C?[a, b], i.e., f exists and is continuous.
If f(x*) =0 and x* = x + h where h is small, then by Taylor's theorem

0=1f(x*) = f(x+h)
= f(x)+f(x)h+ %f”(x)hz + %f”’(x)h3 +
= f(x)+f'(x)h+ O(h).

Since h is small, O(h?) is negligible. It is reasonable to drop O(h?) terms.
This implies

f(x)

FO)+F()h~0 and h~—grs, i £() #0.
Hence f(x)
X
X+ h=x— F10x)

is a better approximation to x*.
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This sets the stage for the Newton-Raphson’s method, which starts with
an initial approximation xp and generates the sequence {x,}7°, defined by

f (xn)
Xn+1 = Xn — f/(Xn).

Since the Taylor's expansion of f(x) at x is given by

1
f(x) = f(xk) + ' (xx)(x — xk) + Ef”(xk)(x —x )P+
At xi, one uses the tangent line

y = £(x) = f(xc) + ' (xic) (x = x)

to approximate the curve of f(x) and uses the zero of the tangent line to
approximate the zero of f(x).
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Newton's Method

Given xp, tolerance TOL, maximum number of iteration M.
Set i =1and x = xp — f(x0)/f'(x0).
While i < M and |x — xp| > TOL
Seti=i+1 x=xand x=xy— f(xo)/f'(x0)-
End While

,Vlr

Slope f'(p)) y = f(x)

(1. f(pD)

v p Slope f*(py)
i
|

P x
|
(Po, f(Po)
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Three stopping-technique inequalities

(a)- |xn— xn-1] <,
|Xn _Xn—1’

b).

(b) PN

(c). If(xn)| <e.

<e, xp#0,

Note that Newton's method for solving f(x) =0

f(xn)

X"H:X"_f’(x)’ for n>1
n

is just a special case of functional iteration in which

g(x) =x— ;(();))
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Example

The following table shows the convergence behavior of Newton's method
applied to solving f(x) = x> — 1 = 0. Observe the quadratic convergence

rate.
n| Xxp len] = |1 — x4
0|20 1
1] 1.25 0.25
2 | 1.025 2.5e-2
3 | 1.0003048780488 | 3.048780488e-4
4 | 1.0000000464611 | 4.64611e-8
51 1.0 0
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Theorem

Assume f(x*) =0, f'(x*) # 0 and f(x), f'(x) and f"(x) are continuous
on N.(x*). Then if xo is chosen sufficiently close to x*, then

{Xnﬂ . f((xx)) } Xt

Proof: Define

Find an interval [x* — §,x* + d] such that
g(Ix" — 6, X"+ 8]) € [x* — 6,x" + 9]
and
lg'(x)| < k<1, Vxe(x*—d§x*+0).
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Since f' is continuous and f'(x*) # 0, it implies that 3 d; > 0 such that
f'(x) #0V x € [x* — d1,x* + 1] C [a, b]. Thus, g is defined and
continuous on [x* — d1, x* 4 d1]. Also

f'(x)f'(x) = F(x)f"(x f(x)f"(x
Py =1 - PP~ A () _ FF()
[#/(x)] [#/(x)]
for x € [x* — 81, x* + d1]. Since " is continuous on [a, b], we have g’ is
continuous on [x* — d1, x* + d1].
By assumption f(x*) =0, so

()P (x")

/ * _f —
g0 ="l =

Since g’ is continuous on [x* — d1, x* + d1] and g'(x*) =0, 3 § with
0 <0 <071 and k € (0,1) such that

lg'(x)] < k, V x € [x* —d,x* +6].
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Claim: g([x* — 0, x* +d]) C [x* — 0, x* + 4].
If x € [x* — 4§, x* + ], then, by the Mean Value Theorem, 3 £ between x
and x* such that

lg(x) — g(x")] = lg"()lIx = x71.
It implies that
o= lglx) —g(x) =1g'(€)lIx — x|
< kx — x¥| < |x = x¥| < 0.

lg(x) — x

Hence, g([x* — d,x* +6]) C [x* — 0, x* + 4].
By the Fixed-Point Theorem, the sequence {x,}>°, defined by

f(xn—
Xn = g(Xn-1) = Xn—1 — f/((xn 11)), for n>1,
.
converges to x* for any xg € [x* — d, x* + 4] 0
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Example

When Newton's method applied
Xo = 3, which is close to the roo

to f(x) = cos x with starting point
t 5 of f, it produces

x1 = —4.01525, x, = —4.8526, - - - , which converges to another root —37“.
15
y = cos(x)
XO

0
s S

5 4 3 2 1 0 1 2 3 4 5
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Secant method

Disadvantage of Newton's method

In many applications, the derivative f'(x) is very expensive to compute, or
the function f(x) is not given in an algebraic formula so that f’(x) is not
available.

By definition,

f(x) — f(x,—
f(xn_1) = lim M
X—Xn—1 X — Xp—1
Letting x = x,_2, we have
f(xn—2) — f(xp— f(xn—1) — f(xp—
Flxn 1) ~ (xn-2) = Flxn-1) _ F(xn-1) = F(xn-2)

Xp—2 — Xn—1 Xp—1 — Xp—2

Using this approximation for ’(x,—1) in Newton's formula gives
f(anl)(anl - an2)
f(xn—1) — f(xn—2)

which is called the Secant method.
Fall 2011 38 /73
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From geometric point of view, we use a secant line through x, 1 and x, >
instead of the tangent line to approximate the function at the point x,_1.

The slope of the secant line is

f(xn—1) — f(xn—2)

Xp—1 — Xp—2

Sp—1 =

and the equation is
M(x) = f(xn—1) + sp—1(x — xn—1).

The zero of the secant line

f(Xn—1)

Xpn—1 — Xp_2
X =Xpo1— ——— = Xp_1 — f(Xn—1) 7—" -

Sn—1 f(xn—1) — f(xn—2)

is then used as a new approximate x,.
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Secant Method

Given xp, x1, tolerance TOL, maximum number of iteration M.
Set i =2; yo="1(x0);y1 = f(x1);

x =x1 — y1(x1 — x0)/(y1 — y0)-
While i < M and |x — x3| > TOL

Seti=i+1; x0 =x1;%0 = y1;x1 = X; y1 = f(x);

x=x1 —y1(x1 — x0)/(y1 — y0)-

End While

YA

y:f(x)V
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Method of False Position

@ Choose initial approximations xg and x; with f(xg)f(x1) < 0.
Q x = x1 — f(x1)(x1 — x0)/(f(x1) — f(x0))
© Decide which secant line to use to compute x3:

If f(x2)f(x1) <0, then x; and x» bracket a root, i.e.,

x3 =x — f(x2)(x2 — x1)/(f(x2) — f(x1))

Else, xg and x> bracket a root, i.e.,

x3 = x2 — f(x2)(x2 — x0)/(f(x2) — f(x0))

End if
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Method of False Position

Given xg, x1, tolerance TOL, maximum number of iteration M.

Seti=2;y="(x0);y1="Ff(x1); x=x1—y1(x1 — x0)/(y1 — yo0)-

While i < M and |x — x1| > TOL
Seti=i+1;y="f(x).
If y-y1 <0, then set xp = x1; Yo = y1-
Set xy =x;y1 =y; x =x1 — y1(x1 — x0)/(y1 — y0)-
End While

Y A
y=fx®
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Error analysis for iterative methods
Definition
Let {x,} — x*. If there are positive constants c¢ and « such that

li ‘Xn—l—l _X*‘ -
M =L =

)
N—00 ‘Xn—X*‘a

then we say the rate of convergence is of order a.

We say that the rate of convergence is
Q linearifa=1and 0 < c < 1.
@ superlinear if
X1 — X7 _

[m ——— =0;

n—oo |x, — x*|

© quadratic if a = 2.
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Suppose that {x,}72, and {X,}°2 are linearly and quadratically
convergent to x*, respectively, with the same constant ¢ = 0.5. For
simplicity, suppose that

-  ~c and M
|xp — x*| |Xp — x*|?

~ C.

These imply that

|xn — x| = ¢|xp—1 — x| = c2|xn_2 — x|~ xg — x|,

4

El
|
X
2

clxn_1 — x|~ c [c|52,,_2 - x”‘|2]2 = 3%y — x*

~
~

. 4 .
S [clnos — x*?]" = |3 — x*[?
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Remark

Quadratically convergent sequences generally converge much more quickly
than those that converge only linearly.

Theorem

Let g € Cla, b] with g([a, b]) C [a, b]. Suppose that g’ is continuous on
(a, b) and 3 k € (0,1) such that

lg’(x)| < k, V x € (a, b).
If g'(x*) # 0, then for any xo € [a, b], the sequence
Xn = g(xp-1), for n>1

converges only linearly to the unique fixed point x* in [a, b].
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Proof:
@ By the Fixed-Point Theorem, the sequence {x,}°°, converges to x*.

@ Since g’ exists on (a, b), by the Mean Value Theorem, 3 £, between
X, and x* such that

Xn41 — X* = g(xa) — g(x*) = g'(&n)(xa — x*).
o {xa}plo = x* = {2~ X"

@ Since g’ is continuous on (a, b), we have

lim g'(¢n) = g'(x").

n—o0o

@ Thus,

I |Xn+1 - X*|

n—o0 |Xn —X*|

= Jlim_[¢g'(¢n)| = Ig'(<)

Hence, if g’(x*) # 0, fixed-point iteration exhibits linear
convergence. ]
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Theorem

Let x* be a fixed point of g and | be an open interval with x* € I.
Suppose that g'(x*) =0 and g" is continuous with

lg"(x)| < M, ¥V x €l

Then 3 6 > 0 such that

{xn =8g(xn-1)}021 — x* for xp € [x* — §,x" + 4]

at least quadratically. Moreover,

M ..
|Xpt1 — X¥| < ?|x,, — x*|2, for sufficiently large n.
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Proof:

@ Since g/(x*) = 0 and g’ is continuous on /, 3 § such that
[x* —d,x*+d] C I and

lg'(x)| < k<1, Vxe[x"—§x"+4].
@ In the proof of the convergence for Newton's method, we have
{xn}o2o C [x* — 9, x* + 4]
o Consider the Taylor expansion of g(x,) at x*

a1 = 80n) = () + 00— x) + 5 (g, - )2

g"(¢)

= x*4+ 5 (xn — x*)?,

where £ lies between x, and x*.
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@ Since
(x| < k<1, Vxe[x*—dx"+ 7]
and
g([x" —d,x* +4]) C [x* —0,x" + 4],

it follows that {x,}>2, converges to x*.
@ But &, is between x, and x* for each n, so {{,}7° also converges to
x* and
b =X g6 _ M
n—oo |x, — x*|2 2 2"

o It implies that {x,}>2 is quadratically convergent to x* if
g"(x*) #0 and

M .
|Xpr1 — x| < ?|x,, — x*|?, for sufficiently large n. O
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Example

Recall that Newton's method x,+1 = x, — ff,((f;)) corresponds to

g(x)=x— f(( )) Suppose that f(x) has a m-fold root at x*, that is

f(x) = (x=x")"q(x),  a(x*) #0.

Let pu(x) = :,((f()) = (x — x¥) mq(x)—i-ggi)x*)q’(x)’ it is easy to see that

' (x*) = L. It follows that 0 < g’(x,) =1 — L < 1. Hence Newton's
method is locally convergent. Moreover, it converges quadratically for
simple roots (m = 1) and linearly for multiple roots (m > 1).

Remedy for slow convergence on multiple roots (m > 1):

@ If mis known, take xp+1 = X, — %

o If mis not known, take x,+1 = Xxp — 5((); )) since

wu(x) = :/((X)) = O(())EX Xf),l r = O(x — x*) always has a simple root at

x* for any m > 1. This is known as modified Newton's method.
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Global Convergence for Convex (Concave) Functions

Theorem

If f € C?, f" >0 and f(x) = 0 has a root, then Newton's method always
converges to a root x* for any initial xg.

Proof:
It suffices to consider the case where f" > 0, f” > 0 and f(x) = 0 has a
root. In this case, the root x* is unique. Define e, = x, — x*. Since
_ f(xn)
Xnt1 = Xn = () It follows that

€n+l = €p — ff,(())(;)) . (2)

Moreover, since f(x*) = f(xn) + f'(xn)(x* — x5) + f”(zén)(x* ~ X)) we
(&) ) g2
2

also have f(x,) = f'(xn)e, — . Therefore

e
erin = &0 = s = Fo el > 0. (3)

Consequently x,+1 > x* and f(xp+1) > 0 for all n.> 0.
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Moreover e 11 = €, — f,(x") < e,, we conclude that
+ f'(xn)

0< .. < X1 < Xp < ... < X1

and x, converges monotonically to some X satisfying X = X — )" that is
f(x) =0, thus X = x* by uniqueness of the root.
The proof for other cases

o /<0, f">0, f(x) =0 has a root.

e f” >0, has two distinct roots.

e ” >0, has a double root.

are similar. So is the concave case (" < 0).
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Alternative Error Estimate for Newton's Method

Suppose f'(x*) # 0, then both f(x) and its linearization at (xn, ¥n), Ln(X),

are locally invertible (Inverse Function Theorem). The formula of the
tangent lines are given by

Lo(x) = f(xn) + I (x — xn)
and
-1
Lot (y) =Y ym) + dfd—;y")(y — Yn) = Xp + %

x )(y_}/n)

n
X

=LOO=H(x )+ )(x-X,)

x*=f(0)

LY
X17L (0

M
n
XL )=y )0y,

Wei-Cheng Wang (NTHU)
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Since x* = f~1(0) and x,11 = L, (0), the error estimate for Newton's
method reduces to error estimate between f~1(y) and its linearization
approximation L, %(y) at y = 0. From standard analysis, the error is
proportional to (0 — y,)?:

2r—1
|Xnp1 — x*| = |L;1(0) — F71(0)| = % ‘dd;(nn)(yn —0)?2
2r—1 21
— % ‘dd;z("?n) (f(Xn)—f(x*))2 _ (; ‘dd;z(n”) . (f,(fn))2> (X,,—X*)Z

The main advantage of this formulation:

Higher order approximations of f~1(0), such as quadratic approximation,
gives rise to higher order iteration schemes for solving the original equation
f(x)=0.

Wei-Cheng Wang (NTHU) Fall 2011 54 / 73



Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, " Numerical analysis”
Let x* denote the exact solution of f(x) =0, ex = xx — x* be the errors at
the k-th step. Then

3
€k+1 — Xk+1 — X
Xk — Xk—1

f(Xk) — f(Xk—l)
1 . )
- f(xk) — f(xk—1) [(xk—1 = x*)F (xic) = (i = X*) F (xie—1)]
1

=S f(xk) — f(inl) (ek_lf(xk) - ekf(xk_l))

1
(e_kf(xk) ~ gy %) Xk — Xk—1 )
= €k€k—1 :

Xk — Xk—1 f(xk) — f(xk—1)

*

= Xk — f(Xk) — X
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if(xk)— ekl—l f(Xk—1)

To estimate the numerator
Xk —Xk—1

, we apply the Taylor's
theorem

1
f(xk) = F(x* +ex) = F(x*) + f(x")ex + Ef”(x*)e,% + O(e,%),

to get
1 1
—f(x) = F'(x*) + =" (x*)ex + O(e?).
(5] 2
Similarly,
1
f(xk—1) = F'(x*) + =" (x*)ex—1 + O(e/%—ﬂ-
€K1 2
Hence

1 1 1

—f — ——f(xe_1) ~ =(ex — ex_1)f"(x*).
o (xk) o (1) = 5 (ek — ex—1)f7(x7)
Since x, — Xx_1 = ex — ex—1 and

Xk — Xk—1 . 1
f(xk) — F(xk—1) f(x*)’
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we have

~—

T2 (x) KOk

= Cekek_l (4)

Ha—e)f'(x) 1\ _ 1f(x*
€k — €k_1 f’(X*)

€k+1 ~ ekek—l(

To estimate the convergence rate, we assume
) (0%
|ew+1] = nlex|®,

where n > 0 and « > 0 are constants, i.e.,

’ek+1’ =1

as k — oo.
n|ex|®

Then |ex| =~ n|ex—1]|“ which implies |ex_1| ~ nfl/a’ek‘l/a_ Hence (4) gives
nlex|® = Clex|n Ve /* —  Clpita ~ |e|l7Fa.

: _ 1.
Since |ex| — 0 as k — oo, and C1n'*a is a nonzero constant,

1++5
2
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This result implies that C~17'*& — 1 and
o f'//(X*) 062
Cira = [ ——= .
LR <2f’(x*>
In summary, we have shown that
lek+1| = nlex|®, a~1.62,

that is, the rate of convergence is superlinear.
Rate of convergence:

@ secant method: superlinear
@ Newton's method: quadratic

@ bisection method: linear
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Each iteration of method requires
@ secant method: one function evaluation

@ Newton's method: two function evaluation, namely, f(xx) and f'(xx).
= two steps of secant method are comparable to one step of
Newton's method. Thus

3+65
lekra| ~ nlex1]|” ~ 771+a|ek’ 2= 771+a|ek|2'62'

= secant method is more efficient than Newton's method.

Remark

Two steps of secant method would require a little more work than one
step of Newton's method.
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Accelerating convergence

Aitken’'s A% method
@ Accelerate the convergence of a sequence that is linearly convergent.

@ Suppose {x,}7, is a linearly convergent sequence with limit y.
Construct {%,}7° 4 that converges more rapidly to x than {x,}7°,.

For n sufficiently large,

Xn+1 — X - Xn+2 — X
Xp — X Xnil — X

Then

(1 = X% & (xnsz = X) (0 — X),

SO

2 2 2
Siail — G DA e B — (06 < ) P
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and
-2 ~ _ 2
(Xnt2 + Xn — 2Xa1)X R Xp2Xn — Xpi1-
Solving for x gives

Xnt2Xn — X241
Xnt+2 — 2Xp+1 + Xn
= D A B B By 2
Xnt2 — 2Xp41 + Xn
Xn(Xnt2 — 2Xnt1 + Xn) — (Xng1 — Xn)?
(Xnt+2 = Xn+1) — (Xnt1 — Xn)
(Xn+1 — Xn)2
(Xnt+2 = Xnt+1) — (X1 — Xn)

= Xn—

Aitken's A2 method

o (Xn+1 - Xn)2 2
Xp = Xp — ={A Y x,. 5
Lt A ) E SRS B )
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Theorem

Suppose {x,}72o — x linearly and

. Xpa1 — X
lim =L~

n—oo Xp — X

<1

Then {X,}°2, — x faster than {x,}32, in the sense that

. Xp—X
lim =0.

n—00 Xp — X

o Aitken's A2 method constructs the terms in order:

x1 = g(x0), x2 = g(x), %0 ={A%}(x0), x3=g(x),
f1={0%(x1), Ro={A%(x), -,

This is based on the assumption that [%) — x| < |[x2 — x|,
X1 — x| < |x3 — x

, etc.
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Example

The sequence {x, = cos(%)}52; converges linearly to x = 1.

Xn

€n

Xn

én

0.54030
0.87758
0.94496
0.96891
0.98007
0.98614
0.98981

~NOoO ok~ WD HS

0.45969
0.12242
0.05504
0.03109
0.01993
0.01386
0.01019

0.96178
0.98213
0.98979
0.99342
0.99541

0.03822
0.01787
0.01021
0.00658
0.00459

o Note that lim,_o *H=%

large n. (Why?)

Wei-Cheng Wang (NTHU)

= 1. The assumption in previous Theorem
is not satisfied. In this case, {%,}7°; converges more rapidly to x =1
than {x,42}5°,, but is of the same order. In fact &,/ep42 ~ 1/3 for
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@ Steffensen’s method constructs the terms in order:

x0= x, (= x) = g(x"), V(=) = g(?),
V(=) = {a2304Y), (=) = g(!), V(= %) = g(),

P (= x) = {820), P (=) = g(?), (= x) = g(?),

Steffensen’s method (To find a solution of x = g(x))

Given xg, tolerance TOL, maximum number of iteration M.

Set i = 1.

While i < M
Set x1 = g(x0); x2 = g(x1); x = x0 — (2 — x0)?/(x2 — 2x1 + x0)-
If [x — xo| < Tol, then STOP.
Set i =i+ 1; xg = x.

End While

v
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Theorem

Suppose that x = g(x) has the solution x* with g'(x*) # 1. If3§ >0
such that g € C3[x* — 0, x* + 8], then Steffensen’s method gives quadratic
convergence for any xp € [x* — 0, x* + ¢].

Proof: _ _ _

We denote by xp, x1, X2, - - -, (instead of xé'), x{'), xz(')), the sequence
generated by Steffensen’s method.

We will show that |x3 — x| < C|xp — x|2, [x6 — x| < C|x3 — x|?, etc. to
establish quadratic convergence. Denote by A; = x; — x*, we have

A =x1 —x" = g(x0) — g(x")

= 200~ x) + E5 o '+ O]
Bo= 2 —x* = glo) — g
= £ )+ S5 o —x)2 + 0(8)

/X* //X* //X* /X*2
o+ (BB | g8 )
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(x1 — x0)?

e =20 X0 — 2x1 + X
_ (A1 — Ap)?
Az = Ao - Ao — 2A1 + A
— Do - (') = 1)80 + 243 + 0(A3)’
(g2(x) — 2¢'(x) + 1) Ao + £ (g72(x) + g/(x) — 2)A3 + O(A]
An ( (g'() = 1) + g"(x)(g'(x) = 1)Ao + O(2) )
= 0 o g"(x)( 2
(g'(x) — 1)2 + &8 (g/(x) + 2)(g'(x) — 1)Ag + O(A2)
= Do — A (1 - f((f(x)*) (_Xl))Ao + O(A%)) . () #1

It follows that x3 — x = C(xp — x)2, x6 — x = C(x3 — x)?, etc. with

C = Seniyin if8/(x) #1,

Wei-Cheng Wang (NTHU) Fall 2011 66 / 73



Zeros of polynomials and Miiller's method (SKIP)

e Horner's method:
Goal: Find successively all roots of a polynomial

P(x) = ag + a1x + apx® + -+ + ap_1x "L + apx" (6)

with minimal computational cost.

The key step is to efficiently compute the quotient P(x)/(x — x*) when a
root x* of P(x) has been found (eg. by Newton's method), or more
generally, to find the quotient Q(x) and the remainder by such that

P(x) = (x = x) Q(x) + bo, (7)
for any given xx. As a byproduct, one obtains P'(xx) = Q(xx) from (7)
which can be utilized in the Newton-Raphson iteration xx11 = xx — II:’(():&))'

The coefficients of Q(x) can be obtained by assuming
Q(x) = b1 + box + -+ + byx"*

and then comparing the coefficients in (6) and (7),
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We have

bo + (x — xk)Q(x) = bo + (x — xx) (b1 + box + -+ + bpx™1)
= (bo — blxk) = (bl = b2Xk)X Spooo S (bn—l = ank)Xn_1 + byx"
= apt+aix+ -+ apx" = P(x).

and therefore

bn - anv

bj = aj+bjyixx, for j=n—-1,n-2,--- 1,0,

Moreover, the evaluation of Q(xx) can be obtained through the nested
expression:

Q(x) = b1 + x (b2 + x (b3 + - - - + x (bn—_1 + xbp)))
that is, let ¢, = by(= ap), and for j=n—1,n—2,--- 1,
G = b+ Grixe

then Q(xx) = c1.
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Horner's method (Evaluate P(x) and P'(xx) = Q(x«))

Sety = an; z=ap (by = an; cnh = an).
Forj=n—-1,n-2,---,1
Sety =aj+yxk; z=y + zxx (bj = aj + bjy1xk; ¢ = bj + ¢jy1Xxk).
End for
Set y = ap + yxk (bo = a0 + b1xx).
Output P(xx) =y (= bo); P'(xx) =z (= c1).

If xy is an approximate zero of P, then

—xn) Q(x) + Pxn)
) Q1 (x)-
So x — X1 is an approximate factor of P(x) and we can find a second

approximate zero of P by applying Newton's method to Qi(x). The
procedure is called deflation.

P(x) = (x—xn)Q(x)+ by
~ (x—xn)Q(x) = (X

><>’-\
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e Miiller's method: Find complex roots of a polynomial P(x) (or any
complex valued function f : C — C):

Theorem

If z=a+ ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of P(x) and
(x2 — 2ax + a® + b?)™ is a factor of P(x).

Secant method: Given pg and ps, Miiller's method: Given pg, p1

determine p, as the intersection and pp, determine p3 by the
of the x-axis with the line through intersection of the x-axis with the
(Po, f(po)) and (p1, f(p1))- parabola through (po, f(po)),

(p1,f(p1)) and (p2, f(p2)).

v

y

\ \ .
+ t 1
Py 4l \ Py X X
t t t +
f P =Py * Py ps o
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Let
P(x) = a(x — p2)? + b(x — p2) + ¢

that passes through (po, f(po)), (p1,f(p1)) and (p2, f(p2)). Then

f(po) = a(po— p2)®+ b(po — Pz)
f(p) = a(pr—p2)>+ b(p1 — p2) + ¢,
f(p2) = a(p2— p2)> + b(p2 — Pz) c=c.

It follows that

c = f(p),

p — (po—=p2)*[F(p1) = F(p2)] = (1 = p2)* [F(po) — F(p2)]
(Po — p2)(p1r — P2)(Po — p1) ’

_ (pr=p2) [f(Po) — F(p2)] = (Po — p2) [f(p1) — F(p2)]

(Po — p2)(p1r — P2)(Po — p1)
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To determine ps3, a zero of P, we apply the quadratic formula to P(x) =0

and get
2c

PR VR

If a, b, c are all real, we can choose

(8)

2c
=po+
ey + sgn(b)v b? — 4ac

such that the denominator will be largest in magnitude. The selected p3 is
the one closer to p, among those given in (8).

In case a, b, ¢ are complex, the selection principle for p3 can be modified
accordingly.

Wei-Cheng Wang (NTHU) Fall 2011 72 /73



Miiller's method (Find a solution of f(x) = 0)

Given pg, p1, p2; tolerance TOL; maximum number of iterations M
Set h = p1 — po; ha = p2 — p1;
61 = (f(p1) — f(po))/ M 62 = (f(p2) — f(p1))/h2;
d= (52 = 51)/(h2 aF hl); i=3.
While i < M
Set b= 05 + hod; D = +/ b% — 4f(p2)d
If [b— D| < |b+ D|, then set E = b+ D else set E =b—D.
Set h= —2f(p2)/E; p=p2+ h.
If |h| < TOL, then STOP.
Set po = p1; p1 = p2; p2 = p; h1 = p1 — po; h2 = p2 — p1;
d1 = (f(p1) — f(po))/h1; 62 = (f(p2) — f(p1))/ b2
d= (52 —51)/(h2—|— hl); i =1+ 1.
End while
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