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Orth. projection

Orthogonal projection methods

Let A e C"*™ and K c C", dim(K) = m < n. The eigenvalue
problem is to find 0 # = € C™, A € C such that

Az = M\x.

In an orthogonal projection technique onto X, we want to find
an approximate eigenpair A € C, z € K satisfying Galerkin
condition

(AZ — A\&,v) =0, Yvek. (1)

Let V = [v1,v2,...,v,] be an orthonormal basis for K. Letting
z = Vy, (1) becomes

(AVy—S\Vy,vj):Q ji=1,2,...,m.
Therefore, y and X satisfy
Amy =Xy with A, =vHAV.



Orth. projection

|AV —VA,|, < ||AV —VB|,, YBeC™™

= A,, can be seen to be a best approximation of A in K.

Algorithm (Rayleigh-Ritz Procedure)

Compute V = [vy,...., vy, forms an orthonormal basis for K.
Compute A, = V7 AV.

Compute eigenvalues \; of A, (Ritz values)

Compute eigenvector y; of A, &; = Vy; (Ritz vector).

ANWh=~

@ No guarantee that the result approximates the desired
eigenpair of A.



Orth. projection

T

Let A =diag(0, 1, —1) and suppose we are interested in
approximating the eigenpair (0, ;). Assume

1 0
V[O 1/\/§].
0 1/v2
Then

S Ha, |00
poviay =] 0]

and any nonzero vector p is an eigenvector of B. If we take
p=[1,1]T, then Vp = [1,1/+/2,1/+/2] is an approximate
eigenvector of A, which is completely wrong. Thus the method
can fail, even though the space K contains the desired
eigenvector. O




Orth. projection

@ Note that the approximate eigenpairs (f\i,fci), i=1,...,m,
are exact eigenpairs of A provided that K is an invariant
subspace of A.

@ Question: Which subspace K is meaningful and effective?

Suppose the eigenvalue with maximum module is wanted.

Power method
Compute the dominant eigenpair

Disadvantage

At each step it considers only the single vector A*u, which
throws away the information contained in the previously
generated vectors u, Au, A%u, ..., A1,




Krylov Subsp.

Krylov Subspaces

Definition
Let A be of order n and let u ## 0 be an n vector. Then

{u, Au, A%u, A3u, ...}
is a Krylov sequence based on A and u. We call the matrix
Kp(Au) =[u Au A%u - A1y ]
the kth Krylov matrix. The space

Ki(A,u) = R[Ki(A, u)]

is called the kth Krylov subspace.




Krylov Subsp.

By the definition of K (A, u), for any vector v € K (A, u) can be
written in the form

v =+ yAu+ - 4y A e = p(A)u,
where
p(A) =yl + ’YQA + 73_,42 4+t ,ykAkfl.

Assume that AT = A and Az; = \jz; fori=1,...,n. Write u in
the form

U= o121 + a2 + -+ QpTy.
Since p(A)z; = p(\;)z;, we have
p(A)u = ar1p(A)x1 + aop(A2)z2 + - - + app(An)Tp. (2)

If p(\;) is large compared with p();) for j # i, then p(A)u is a
good approximation to x;.



Krylov Subsp.

If zu 0 and p(\;) # 0, then

lp(A;)]
tan Z(p(A)u, z;) < max tan Z(u, x;
(p(A)u, ;) S T (u, ;).
Proof. From (2), we have
|z p(A)ul |aip(Ni)]

cos Z(p(A)u, ;) = Ip(A)ullalzll2 \/Z 1 legp(X) P

and

Vi o) 2

sin Z(p(A)u, x;) =
Vi lagp() 2




Krylov Subsp.

Hence

tan? Z(p(Ayu,z) = 30 1P

Assume that p(\;) = 1, then

tan Z(p(A)u, ;) <  max |p(Aj)|tan Z(u, ;) YV p(A)u € K.
]#va()‘l)zl

Hence

tan Z(x;, Kg) < min max [p(\;)| tan Z(u, 2;).
( g deg(p)<k—1,p(X;)=1 j#i Ip(A5)] ( )



Krylov Subsp.

Assume that
AL>A > > A,
and that our interest is in the eigenvector x;. Then

tan Z(x1, Kp) < i ma; A)| tan Z(u, z1).
LK) S )t adie Sy P o £, 1)

Question
How to compute

min max _|p(A)|?
deg(p)<k—1,p(A1)=1 A€[An,A2]

Definition
The Chebyshev polynomials are defined by

() = cos(kcos™1t), lt] <1,
F) =\ cosh(kcosh™¢), |t > 1.




(i) Co(t) =1, Cl(t) =t and

ck+1(t) = 2ck(t) —cp-1(t), k=1,2,....

(i) Forlt|> 1, cx(t) =1+ V2 -1+ 1+ V2 -1)".

(i) Fort e [-1,1], |ex(t)| < 1. Moreover, if

tik:COS(k_Z)Wa i20717"'ak7
k
then Ck(tik) = (—1)k_i.
(iv) Fors>1,
1
min max |p(t)| = —, 3
deg(p)<k.p(s)=11€[0,1] p(®) cr(s) &

and the minimum is obtained only for p(t) = c(t)/ck(s).




Krylov Subsp.

For applying (3), we define
A= X+ (,u — 1)()\2 — )\n)
to transform interval [\, \2] to [0, 1]. Then the value of x at \; is

Al — A2

=1
M1 +)\2_>\n

and

min max
deg(p)<k—1,p(A1)=1 AE[An,A2]

[PV

= min max |p = —
deg(p)ékfl,p(m)ﬂuE[O,l]| (w) cr—1(p1)



Krylov Subsp.

Theorem

Let AT = Aand Ax; = \ix;, i =1,--- ,n with
AL> g > > A Loty = 32232, Then

tan Z(x1,u)

tan /]y, Ku(4, )] <
an Z[x1, Kr(A, u)] (L)

tan Z(x1,u)

(14 /27 + 021+ (1 + /27 + n2)1-H




Krylov Subsp.

@ For k large and if n is small, then the bound becomes

tan Z(x1,u)
tan Z[x1, (A < — "
an [xlv k( ,’LL)] ~ (1 + m)k_l
@ Compare it with power method: If [A;| > [Aa| > -+ > A,
then the conv. rate is [Aa/A1|".
@ For example, let A\; =1, Ay = 0.95, A3 = 0.95%, - - -,
A100 = 0.95% be the Ews of A € R10%100 Then 5 = 0.0530
and the bound on the conv. rate is 1/(1 + /2n) = 0.7544.
Thus the square root effect gives a great improvement over
the rate of 0.95 for the power method.



Householder

Householder transformation

Definition
A Householder transformation or elementary reflector is a
matrix of

H=1—uu*

where [|ul|s = V2.

Note that H is Hermitian and unitary.



Householder

Theorem

Let = be a vector such that ||z| = 1 and x; is real and
nonnegative. Let

u=(x+e1)/V1+ .

Then
Hx = (I —uu®)x = —ey.
Proof:
([—uwu)x = z—(Wr)u==2x rrimoorta

i+ m Vit
= x—(z+e)=—e

O



Householder

Let z be a vector with x, #~ 0. Let

_x
Pz T4

14_[)%717

[E3P

where p = z1/|x1|. Then

Hz = —pl|z|2e1.




Householder

Proof: Since

[pz* /||z||2 + €] ][pz/ ||z + e1]
pp + pr1/lzll2 + pr1/|xll2 + 1
= 21+ px1/||z]|2],
it follows that
wvu=2 = |ula=v2

and -
v PllEle + a1
U r—=—F]F———

/ T
1+pm



Householder

Hence,

pllzfls + 21 PRp T e

\/1 + p||:vH2 \/1 + pHJ»’||2

Hx = z— (u'z)u

B [1 (Pllzllz + =1) gl pllzllz + 1
= — T - x
1+ prds L+ p1ts
_ _Plallz A
1+ orhs
= —pllzllzer.



Householder

A complex m x n-matrix R = [r;;] is called an upper (lower)
triangular matrix, if r;; = 0 for i > j (i < j).

Definition
Given A € C™*" @ € C™*™ unitary and R € C™*" upper

triangular such that A = QR. Then the product is called a
() R-factorization of A.




Householder

Any complex m x n. matrix A can be factorized by the product
A = QR, where Q is m x m-unitary and R is m x n upper
triangular.

Proof: Let A© = A = [a\”|a{”]- - |a{”]. Find
Q1 = (I — 2wiwy) such that Qlago) = ce;. Then

A(l) — QIA(O) = [QlagO)7 Qlag))? Ty Qlagz())]

C1 ‘ * ‘ ‘ *
-0 4)
- agl) a%l)



Householder

1 0
0|1 —wws

Find Q> = [
Then

] such that (I — 2w2w§)agl) = cqeq.

AP =AW =1 0 0

We continue this process. Then after I = min(m, n) steps A®)
is an upper triangular matrix satisfying

ATV =R=Q1 - QA

Then A = QR, where Q = Q% --- Q7. -



Householder

Let A be a nonsingular n x n matrix. Then the Q R- factorization
is essentially unique. That is, if A = Q1R = Q2 R2, then there
is a unitary diagonal matrix D = diag(d;) with |d;| = 1 such that
Ql = QQD and DR, = Rs.

Proof: Let A= QiR = Q2Ry. Then Q3Q; = ReR; " = D must
be a diagonal unitary matrix. O



Arnoldi

Arnoldi Method

Suppose that the columns of K., are linearly independent
and let

Kiyv1 = U1 Rpa

be the QR factorization of K. Then the columns of Uy, are
results of successively orthogonalizing the columns of K.



Theorem

Let||ui||2 = 1 and the columns of K1 (A, u1) be linearly indep.
LetUyy1 = [u1 --- ugt1] be the Q-factor of Ky1. Then there is
a (k+ 1) x k unreduced upper Hessenberg matrix

I ;}H S @lk
ho1 hoy - hay
H, = - - : with  his1:#0  (5)
ilk:,k—l ilkk
i Pit1k |
such that
AU}, = Uy 41 Hy,. (Arnoldi decomp.) (6)

Conversely, if U1 is orthonormal and satisfies (6), where H;,
is defined in (5), then Uy, is the Q-factor of Kj1(A,uy).




Proof: (“=") Let K, = Uy Ry be the QR factorization and
Sy = R;;'. Then

0 0 -
AU = AKp S, = Ki 41 [ g ] = Ug41Rk+1 [ g } = U1 Hy,
k k
where
S 0
HkZRkH[Sk}

It implies that [, is a (k + 1) x k Hessenberg matrix and

B Tit1,i+1
hiv1i = riv1iv186 = ————.

Tis
Thus by the nonsingularity of Ry, Hj, is unreduced.
(“<=") If k=1, then
—h11 1

— Auq.
ha1 w ha1 "

Aup = hjqur + hotus = ug =



Since [ u; wg ]is orthonormal and u, is a linear combination
of u; and Auq, [ w1 us ] is the Q-factor of K.
Assume Uy is the Q-factor of K. If we partition

3 Hion Iy }
= ,
: [ 0 hpgik
then from (6)
Auy, = Uphy + hip1 pUp41-

Thus w41 is a linear combination of Awuy and the columns of
Ui. Hence Uy, is the Q-factor of Kj. O



Let the orthonormal matrix Uy, satisfy
AUy, = Ug1 Hy,

where H,, is Hessenberg. Then H,, is reduced if and only if
R(Uy) contains an eigenspace of A.

Proof: (“=") Suppose that Hy is reduced, say that h; 1 ; = 0.
Partition

A H H
Hk = |: 011 H;z :| and Uk = [ U11 U12 ],

where Hyp is an j x j matrix and Uy, is consisted the first j
columns of Uy141. Then

Hyi Hip ]

AlUn U |=[Un Uiz upy | [ 0 Hy



It implies that
AU = Ui Hi

so that Uy, is an eigenbasis of A.

(“<") Suppose that A has an eigenspace that is a subset of
R(Uy) and H,, is unreduced. Let (\, U,w) for some w be an
eigenpair of A. Then

0 = (A= N)Upw = (Upg1 Hy — \Up)w
N I N
= <UI<:+1Hk — AUg+1 [ 0 D w = Up1 Hyw,

where
. Hy — M
H, = .
g [ hky1 kel }

Since H, is unreduced, the matrix Uk+1FIA is of full column
rank. It follows that w = 0 which is a contradiction. El



Partition H;, = [ . - ] ,and set B = hyy1.4- Then (6) is
hit1 ke
equivalent to the Arnoldi decomp.

AUy, = UpHy, + Brugsrey, - (7)
Write (7) in the form
Aug = Ughy, + Brugy1-
Then from the orthogonality of U1, we have
hy, = UH Auy,.
Since Srugy1 = Aug, — Ughy and |Jugy1]|2 = 1, we must have

Br = | Aug — Ughylla, w1 = By (Aug — Ughy).



Algorithm (Arnoldi process)

1. Fork=1,2,...
3 v = Auy — Ughy
4. Br = hry1e = [[v]l2
5. k1 = v/

3 He 1 hy
6 Hr [ 0 hgyik ]
7. end fork

@ The computation of u; is actually a form of the
well-known Gram-Schmidt algorithm.

@ In the presence of inexact arithmetic cancelation in
statement 3 can cause it to fail to produce orthogonal
vectors.

@ The cure is process called reorthogonalization.



Algorithm (Reorthogonalized Arnoldi process)

Fork=1,2,...
lop, = U,fAuk.
v = Auk — Ukhk.
w = U,flv.
hr = hr + w.

v=v— Upw.
Br = hiv1,k = |lv]|2
k1 = v/ B

5 Hip_1  hy
i, —
g [ 0 hgtik ]

end for k




Let yfk) be an eigenvector of H;, associated with the Ew AE’“)

and ngk) = Ukyi(k) the Ritz approximate eigenvector.

Theorem

(A— A(k)—r)ﬂ%(k) = hk+1,k€;£yz(k)uk+1‘

)

and therefore,

2 k k
1A = AP DO lo = s il el ™).




Arnoldi

Lanczos Method

Let A be Hermitian and let
AUy = U Ty, + Brugs1en (8)

be an Arnoldi decomposition. Since T}, is upper Hessenberg
and T, = U,f[AUk is Hermitian, it follows that T, is tridiagonal
and can be written in the form

o B
fr a2 [
B2 a3 B3
T, = . )
Br—2 or—1 Br-1
Br—1 o

Equation (8) is called a Lanczos decomposition.



The first column of (8) is

Au1 — X1U1
Au1 = ojul + B]Ug or U = T
1

From the orthonormality of u; and wus, it follows that
a1 = u{IAul
and
B1 = [[Aur — aqu |z
More generality, from the j-th column of (8) we get the relation

Wil = AUj — ajuj — ijluj;l
J Bj

where
aj = quuj and B = ||Au; — ajuj — Bj—1uj—1a.

This is the Lanczos three-term recurrence.



Algorithm (Lanczos recurrence)

Letu; be given. This algorithm generates the Lanczos

decomposition

AUy, = UpTy, + Brug+1€f,

where Ty, is Hermitian tridiagonal.

1. up = 0; By = 0;

2. forj=1tok

3 Uj+1 = AUj

4 oy = ufuj_H

5. V= Uj+1 — iju]' - 5j_1uj_1

6 Bj = llvll2

7. ujp1 =0/

8. endforj




Theorem (Stop criterion)

Suppose that j steps of the Lanczos algorithm have been
performed and that

SHT;S; = diag(6y,- - , )

is the Schur decomposition of the tridiagonal matrix T, if
Y; € C"J js defined by

G=[w - w]=UsS
thenfori=1,---,j we have
| Ay; — Oiyillz = [B;llsjil

where S; = [spq].




Proof : Post-multiplying
AU; = U;T; + Bjujire;
by S; gives
AY; =Y,diag(61,--- ,6;) + Bjujﬁ-l@?SW

Ayi = Owyi + Bjujia(e] Sjeq) . i =1, ]

The proof is complete by taking norms. O

@ Stop criterion = |3;||s;:|. Do not need to compute
| Ays — O:yil|2-

@ Ingeneral, |3;| is not small. It is possible that |3;||s;;| is
small.




Theorem

Let A be n x n symmetric matrix with eigenvalues \y > --- > \,
and corresponding orthonormal eigenvectors zy, - - - , zy. If

61 > --- > 0; are the eigenvalues of T; obtained after j steps
of the Lanczos iteration, then

(A1 — ) (tan ¢1)?

A >0 > = -
R N CEUETY

where cos ¢1 = |u{ 21|, ¢;_1 is a Chebychev polynomal of
degree j — 1 and
NP

/\2 — /\n.

P1




Proof: From Courant-Fischer theorem we have

91=maxyTij:m M max U)Tﬂ
v#0 yly v20  (Ujy)T(Ujy) 0#wek(qr,A,5) wlw

Since )\ is the maximum of w” Aw /w”w over all nonzero w, it
follows that A; > 6. To obtain the lower bound for 81, note that

Tp(A)Ap(A
61 = max qlp(T )Ap§ )
rebi-1 qi p(A)?q

where P;_; is the set of all j — 1 degree polynomials. If
q1 = E?:l dizi, then

A p(A)Ap(A)ar Yy dEp(N)*A
4 p(A)*q > iy dip(Ni)?

> )\1 — (/\1 —)\n)

Z?=2 d%p()\i)2 ‘
dip(A1)? 4 D7, dZp(X)?




We can make the lower bound tight by selecting a polynomial
p(z) that is large at x = A; in comparison to its value at the
remaining eigenvalues. Set

T — A\p
p(x) = cj—1 (—1 + 2)\2 — )\n> ,
where ¢;_;(z) is the (j — 1)-th Chebychev polynomial
generated by

cj(z) = 2z¢j_1(2) —cj—a(2), co=1,c1 = 2.
These polynomials are bounded by unity on [-1,1]. It follows
that |p(\;)| is bounded by unity for i = 2,--- . n while
p(A1) = ¢j—1(1 4+ 2p1). Thus,
(1-d) 1

di & (1+2p)

01> 1 — (A1 — )

The desired lower bound is obtained by noting that
tan (¢1) = (1 — d?)/d3. 0



Theorem

Using the same notation as Theorem 19,
A1 — Ay tan?
An < 65 < Ay 4 QLT 2n) 007 n
[cj—1(1 + 2pn)]
where
T ] cos on, = |u] 2z
Pn )\1 — )\nfl y S Pn 1 2n|-

Proof : Apply Theorem 19 with A replaced by —A. O



@ Rounding errors greatly affect the behavior of the Lanczos
iteration.

@ The basic difficulty is caused by loss of orthogonality
among the Lanczos vectors.

@ To avoid these difficulties we can reorthogonalize the
Lanczos vectors.

For details of complete reorthogonalization and selective
reorthogonalization see the books:
@ Parlett: “Symmetric Eigenvalue problem” (1980) pp.257—
@ Golub & Van Loan: “Matrix computation” (1981) pp.332—



Generalized eigenvalue problem

Consider the generalized eigenvalue problem
Ax = A\Bzx,
where B is symmetric positive definite. Let
C=DB'A
Applying Arnoldi process to matrix C, we get
CUi = UpHy + Brugsrey,
or

AU, = BULH, + ﬂkBukJrleg. (9)



Write the k-th column of (9) in the form

Auy, = BUihy, + B Buja1.
Let Uj, satisfy that
Ul BU, = I.
Then
hy, = U, Auy,

and

BrBugi1 = Aug — BUghp =1, = Brugyr = B~



Since w1 satisfies u,_, Buy1 = 1, it implies that

Br = (Brturs1) " B(Brurs1) =t B~ 'y,

which implies that

5k=m

and

U1 = B ' B .



Algorithm (Arnoldi process for GEP)

1. Fork=1,2,...
hy = U,IAuk.

3 t = Auy, — BUihy,

4 Solve linear system Bv = t

4. Br = hig1k, = VtTo

5. Up+1 = v/ B

6 Hy, — [ Hi v Dy ]

7

end for k




Shift-and-invert Lanczos for GEP

Consider the generalized eigenvalue problem
Az = A\Bz, (11)

where A is symmetric and B is symmetric positive definite.

Shift-and-invert

@ Compute the eigenvalues which are closest to a given shift
value o.

@ Transform (11) into

(A—oB) !Bz =(\—-0)"lz. (12)




The basic recursion for applying Lanczos method to (12) is

(A—0B)'BV; = V;Tj + Bjujse; , (13)

where the basis V; is B-orthogonal and 7} is a real symmetric
tridiagonal matrix defined by
a1
T, — B1
Bj-1

Bj—l Qg
or equivalent to

(A — JB)_lB’Uj = ;v + 5j_1vj_1 + ,Bj’l)j_H.



By the condition V* BV; = I;, it holds that
aj =vIB(A—oB) 'Bv;, B} =t;Bt,

where

tj = (A — O'B)ilBUj — ozjvj — Bj—lvj—l = ijj+1'
An eigenpair (0, si) of Tj is used to get an approximate
eigenpair (\g, zx) of (A, B) by

1
AL =0+ —, SL‘k:VjSk.
Ok

The corresponding residual is
r, = AVjsy — \eBVjsp = (A — 0B)Vjsy, — 0, ' BVjs
= —0.'[BYV; — (A—0B)V;T}] s
= —0;'(A—0B)[(A—0oB) 'BV; - V;Tj]
= —0."Bj(e] s1)(A— 0B)vj 11
which implies ||r|| is small whenever ‘Bj(e‘;rSk)/Gk‘ is small.



Shift-and-invert Lanczos method for symmetric GEP

1: Given starting vector ¢, compute ¢ = Bt and 8y = +/|¢*t|.
2: forj=1,2,...,do

38: Compute w; = ¢/fj—1 and v; =t/5;_1.

4:  Solve linear system (A — 0 B)t = w;.

5.  Sett:=t— fj_1vj_1; compute a; = w;ft and reset

t:=1t— a;v;.

6: B-reorthogonalize ¢ to vy, ..., v; if necessary.

7:  Compute ¢ = Bt and 3; = +/|q*t|.

8:  Compute approximate Ews T; = S;0;57.

9: Test for convergence.
10: end for
11: Compute approximate Evs X = V;S;.




Restart

Restarting method

Let
AU, = UpHy, + Brugsrey

be an Arnoldi decomposition.

@ In principle, we can keep expanding the Arnoldi
decomposition until the Ritz pairs have converged.

@ Unfortunately, it is limited by the amount of memory to
storage of Uy.

@ Restarted the Arnoldi process once k& becomes so large
that we cannot store Uy.
e Implicitly restarting method
o Krylov-Schur restarting method



Restart

Implicitly restarting method

@ Let
AU, = U Hypy 4 Bimtimy 16, (14)

be an Arnoldi decomposition with order m.

@ Letky,..., Kk, be eigenvalues of H,, and suppose that
K1,--.,km_k correspond to the part of the spectrum we are
not interested in.

@ From (14), we have

(A= kiDUp = Un(Hp — 511) + Brntimy e,
= UleRl + ﬁmum—i-lejna
where
Hy — kil = Q1 Ry

is the QR factorization of H,,, — x11.



Postmultiplying by @1, we get
(A — k1 1)(Um@Q1) = (Un@1)(R1Q1) + Brnttm11(€,,Q1)-
It implies that
AUY = UDHD + Bty 1607
where

UD = UnQi, HY = RiQi+mI, b5 =el Q.

o UT(,LU is orthonormal.

@ Since H,, is upper Hessenberg and Q) is the Q-factor of
the QR factorization of H,, — k11, it implies that Q, and
Hfﬁ) are also upper Hessenberg.




Restart

Remark (continue)

@ The vector b( H '1 = emQ1 has the form
1)H
WE=0 - 0 ¢y abn ]

i.e., only the last two components of bf;)+1 are nonzero.

@ By the definition of oy, we get

QHWVQY = Q1(R1Q1 + s I)QY = QiRy + k11 = Hyy,.

Therefore, k1, ka, . .., kn, are also eigenvalues of Hr(r}).




Repeating this process with ko, ks, . .., km_k, the result will be a
Krylov decomposition
m— m— m— m—k
AUm=k) — y(m=Fk) g(m=k) ﬁmum+1b7(n+1 H

m m m

with the following properties

@ U™ " is orthonormal.

Qo H,(nm*'“) is upper Hessenberg.

(m—k)

H
mil . arezero.

© The first £ — 1 components of b

© The first column of U™ is a multiple of
(A=kriD) (A= Em—iD)uy.



Restart

Corollary

Letkq,...,kn be eigenvalues of H,,. If the implicitly restarted
QR step is performed with shifts k1, . .., km_k, then the matrix

Hr(nm_k) has the form

m—k m—k
Hm—k) _ HpP BN
" 0 T(m=k) |’

where T(™=*) js an upper triangular matrix with Ritz value
K1,---,Km_k ON its diagonal.




For £k =3 and m = 6,

A[u U u‘u U u]

X X X[ X X X

O O OO X X
S O O X X X
O O X[ X X X
o X X|X X X
X X X[ X X X

—HL[O 0 q‘q q q].

Therefore, the first £ columns of the decomposition can be
written in the form

AU,E’”"“) = Ulim_k)HéZl_k) + hk+1,kuéﬁfk)€; + Brelmktmr1€p »



where Uém_k) consists of the first & columns of U™, H,E’]f_k)

is the leading principal submatrix of order k of HT(nm_k), and qgm,
is from the matrix Q = Q1 - - - Q,_x. Hence if we set

0, = U™,
- g
B = Hthrl,kugzl_k)+5k9mkum+1H27
Upr1 = B}Zl(hk—&-l,kul(:ll_k)+/8kakum+l)a

then
AUy, = UpHy, + Briig el

is an Arnoldi decomposition whose starting vector is
proportional to (A — k11) -+ (A — ki L )uq.



Restart

Krylov-Schur restarting method (Locking and Purging)

Use Arnoldi process to generate the Arnoldi decomposition of

order j +p
AVjyp = VitpHjrp + Bj+p”j+p+1egr+p- (15)
Let
R; Ul
Hjyp = Uj+pRj+PUJ+p = [ Ui Up ] 0 R UT (16)
P

be a Schur decomposition of H;, where the diagonal
elements of R; and R, are the j wanted and p unwanted Ritz
values, respectively. Substituting (16) into (15), it holds that

A(Vj4pUjp)
= (Vj+pUj+p)(UgT+pH +9Uj1p) + BispVispr1(€,Ujsp)



which implies that
AV = ViRj + Bjapvjspsit]

is a Krylov decomposition of order j where V; = V;,,U; and
s Ujip = [th, t]}f]. Let H, be a Householder transformation

such that
ti Hy = fe; .

Reduce H{ R;H; to Hessenberg form by using Householder
transformations H; fori =2,...,7 — 1 as follows:



X X X X

X X X X

X X X X

X X X X

SQ; = H| R;H

=



Let
Q=HHy---Hj ;.
Then H; = Q" R;Q is Hessenberg and
t]Q = (t Hi)(Hy- - Hj_1) = Bej (Hy--- Hj_1) = fe.
Therefore, the Krylov decomposition
A(V;Q) = (V;Q)Hj + (Bj4pB)vjspire]

is a Arnoldi decomposition of order j and we can use it to
generate a new Arnoldi decomposition of order j + p if the j
eigenpairs of A do not converge.
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