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Orthogonal projection methods

Let A ∈ Cn×n and K ⊂ Cn, dim(K) = m < n. The eigenvalue
problem is to find 0 6= x ∈ Cn, λ ∈ C such that

Ax = λx.

In an orthogonal projection technique onto K, we want to find
an approximate eigenpair λ̃ ∈ C, x̃ ∈ K satisfying Galerkin
condition

(Ax̃− λ̃x̃, v) = 0, ∀ v ∈ K. (1)

Let V = [v1, v2, . . . , vm] be an orthonormal basis for K. Letting
x̃ = V y, (1) becomes

(AV y − λ̃V y, vj) = 0, j = 1, 2, . . . ,m.

Therefore, y and λ̃ satisfy

Amy = λ̃y with Am = V HAV.
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Theorem
‖AV − V Am‖2 ≤ ‖AV − V B‖2 , ∀B ∈ Cm×m.

⇒ Am can be seen to be a best approximation of A in K.

Algorithm (Rayleigh-Ritz Procedure)

1. Compute V = [v1, ...., vm] forms an orthonormal basis for K.
2. Compute Am = V HAV.

3. Compute eigenvalues λ̃i of Am (Ritz values)
4. Compute eigenvector yi of Am, x̃i = V yi (Ritz vector).

No guarantee that the result approximates the desired
eigenpair of A.
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Example

Let A = diag(0, 1,−1) and suppose we are interested in
approximating the eigenpair (0, e1). Assume

V =

 1 0

0 1/
√

2

0 1/
√

2

 .
Then

B = V HAV =

[
0 0
0 0

]
and any nonzero vector p is an eigenvector of B. If we take
p = [1, 1]>, then V p = [1, 1/

√
2, 1/
√

2] is an approximate
eigenvector of A, which is completely wrong. Thus the method
can fail, even though the space K contains the desired
eigenvector.
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Note that the approximate eigenpairs (λ̃i, x̃i), i = 1, . . . ,m,
are exact eigenpairs of A provided that K is an invariant
subspace of A.
Question: Which subspace K is meaningful and effective?

Suppose the eigenvalue with maximum module is wanted.

Power method
Compute the dominant eigenpair

Disadvantage

At each step it considers only the single vector Aku, which
throws away the information contained in the previously
generated vectors u,Au,A2u, . . . , Ak−1u.
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Krylov Subspaces

Definition
Let A be of order n and let u 6= 0 be an n vector. Then

{u,Au,A2u,A3u, . . .}

is a Krylov sequence based on A and u. We call the matrix

Kk(A, u) =
[
u Au A2u · · · Ak−1u

]
the kth Krylov matrix. The space

Kk(A, u) = R[Kk(A, u)]

is called the kth Krylov subspace.
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By the definition of Kk(A, u), for any vector v ∈ Kk(A, u) can be
written in the form

v = γ1u+ γ2Au+ · · ·+ γkA
k−1u ≡ p(A)u,

where

p(A) = γ1I + γ2A+ γ3A
2 + · · ·+ γkA

k−1.

Assume that A> = A and Axi = λixi for i = 1, . . . , n. Write u in
the form

u = α1x1 + α2x2 + · · ·+ αnxn.

Since p(A)xi = p(λi)xi, we have

p(A)u = α1p(λ1)x1 + α2p(λ2)x2 + · · ·+ αnp(λn)xn. (2)

If p(λi) is large compared with p(λj) for j 6= i, then p(A)u is a
good approximation to xi.
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Theorem

If xHi u 6= 0 and p(λi) 6= 0, then

tan∠(p(A)u, xi) ≤ max
j 6=i

|p(λj)|
|p(λi)|

tan∠(u, xi).

Proof: From (2), we have

cos∠(p(A)u, xi) =
|xHi p(A)u|
‖p(A)u‖2‖xi‖2

=
|αip(λi)|√∑n
j=1 |αjp(λj)|2

and

sin∠(p(A)u, xi) =

√∑
j 6=i |αjp(λj)|2√∑n
j=1 |αjp(λj)|2
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Hence

tan2∠(p(A)u, xi) =
∑
j 6=i

|αjp(λj)|2

|αip(λi)|2

≤ max
j 6=i

|p(λj)|2

|p(λi)|2
∑
j 6=i

|αj |2

|αi|2

= max
j 6=i

|p(λj)|2

|p(λi)|2
tan2∠(u, xi).

Assume that p(λi) = 1, then

tan∠(p(A)u, xi) ≤ max
j 6=i,p(λi)=1

|p(λj)| tan∠(u, xi) ∀ p(A)u ∈ Kk.

Hence

tan∠(xi,Kk) ≤ min
deg(p)≤k−1,p(λi)=1

max
j 6=i
|p(λj)| tan∠(u, xi).
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Assume that

λ1 > λ2 ≥ · · · ≥ λn
and that our interest is in the eigenvector x1. Then

tan∠(x1,Kk) ≤ min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)| tan∠(u, x1).

Question
How to compute

min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)|?

Definition
The Chebyshev polynomials are defined by

ck(t) =

{
cos(k cos−1 t), |t| ≤ 1,
cosh(k cosh−1 t), |t| ≥ 1.
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Theorem

(i) c0(t) = 1, c1(t) = t and

ck+1(t) = 2ck(t)− ck−1(t), k = 1, 2, . . . .

(ii) For |t| > 1, ck(t) = (1 +
√
t2 − 1)k + (1 +

√
t2 − 1)−k.

(iii) For t ∈ [−1, 1], |ck(t)| ≤ 1. Moreover, if

tik = cos
(k − i)π

k
, i = 0, 1, . . . , k,

then ck(tik) = (−1)k−i.
(iv) For s > 1,

min
deg(p)≤k,p(s)=1

max
t∈[0,1]

|p(t)| = 1

ck(s)
, (3)

and the minimum is obtained only for p(t) = ck(t)/ck(s).
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For applying (3), we define

λ = λ2 + (µ− 1)(λ2 − λn)

to transform interval [λn, λ2] to [0, 1]. Then the value of µ at λ1 is

µ1 = 1 +
λ1 − λ2
λ2 − λn

and

min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)|

= min
deg(p)≤k−1,p(µ1)=1

max
µ∈[0,1]

|p(µ)| = 1

ck−1(µ1)
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Theorem

Let A> = A and Axi = λixi, i = 1, · · · , n with
λ1 > λ2 ≥ · · · ≥ λn. Let η = λ1−λ2

λ2−λn . Then

tan∠[x1,Kk(A, u)] ≤ tan∠(x1, u)

ck−1(1 + η)

=
tan∠(x1, u)

(1 +
√

2η + η2)k−1 + (1 +
√

2η + η2)1−k
.
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For k large and if η is small, then the bound becomes

tan∠[x1,Kk(A, u)] .
tan∠(x1, u)

(1 +
√

2η)k−1
.

Compare it with power method: If |λ1| > |λ2| ≥ · · · ≥ |λn|,
then the conv. rate is |λ2/λ1|k.
For example, let λ1 = 1, λ2 = 0.95, λ3 = 0.952, · · · ,
λ100 = 0.9599 be the Ews of A ∈ R100×100. Then η = 0.0530
and the bound on the conv. rate is 1/(1 +

√
2η) = 0.7544.

Thus the square root effect gives a great improvement over
the rate of 0.95 for the power method.
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Householder transformation

Definition
A Householder transformation or elementary reflector is a
matrix of

H = I − uu∗

where ‖u‖2 =
√

2.

Note that H is Hermitian and unitary.
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Theorem
Let x be a vector such that ‖x‖2 = 1 and x1 is real and
nonnegative. Let

u = (x+ e1)/
√

1 + x1.

Then
Hx = (I − uu∗)x = −e1.

Proof:

(I − uu∗)x = x− (u∗x)u = x− x∗x+ x1√
1 + x1

· x+ e1√
1 + x1

= x− (x+ e1) = −e1
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Theorem
Let x be a vector with x1 6= 0. Let

u =
ρ x
‖x‖2 + e1√
1 + ρ x1

‖x‖2

,

where ρ = x̄1/|x1|. Then

Hx = −ρ̄‖x‖2e1.
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Proof: Since

[ρ̄x∗/‖x‖2 + eT1 ][ρx/‖x‖2 + e1]

= ρ̄ρ+ ρx1/‖x‖2 + ρ̄x̄1/‖x‖2 + 1

= 2[1 + ρx1/‖x‖2],

it follows that
u∗u = 2 ⇒ ‖u‖2 =

√
2

and

u∗x =
ρ̄‖x‖2 + x1√

1 + ρ x1
‖x‖2

.
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Hence,

Hx = x− (u∗x)u = x− ρ̄‖x‖2 + x1√
1 + ρ x1

‖x‖2

ρ x
‖x‖2 + e1√
1 + ρ x1

‖x‖2

=

[
1−

(ρ̄‖x‖2 + x1)
ρ
‖x‖2

1 + ρ x1
‖x‖2

]
x− ρ̄‖x‖2 + x1

1 + ρ x1
‖x‖2

e1

= − ρ̄‖x‖2 + x1
1 + ρ x1

‖x‖2
e1

= −ρ̄‖x‖2e1.
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Definition
A complex m× n-matrix R = [rij ] is called an upper (lower)
triangular matrix, if rij = 0 for i > j (i < j).

Definition
Given A ∈ Cm×n, Q ∈ Cm×m unitary and R ∈ Cm×n upper
triangular such that A = QR. Then the product is called a
QR-factorization of A.
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Theorem

Any complex m× n matrix A can be factorized by the product
A = QR, where Q is m×m-unitary and R is m× n upper
triangular.

Proof: Let A(0) = A = [a
(0)
1 |a

(0)
2 | · · · |a

(0)
n ]. Find

Q1 = (I − 2w1w
∗
1) such that Q1a

(0)
1 = ce1. Then

A(1) = Q1A
(0) = [Q1a

(0)
1 , Q1a

(0)
2 , · · · , Q1a

(0)
n ]

=


c1 ∗ · · · ∗
0
... a

(1)
2 · · · a

(1)
n

0

 . (4)
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Find Q2 =

[
1 0

0 I − w2w
∗
2

]
such that (I − 2w2w

∗
2)a

(1)
2 = c2e1.

Then

A(2) = Q2A
(1) =


c1 ∗ ∗ · · · ∗
0 c2 ∗ · · · ∗
0 0
...

... a
(2)
3 · · · a

(2)
n

0 0

 .

We continue this process. Then after l = min(m,n) steps A(l)

is an upper triangular matrix satisfying

A(l−1) = R = Ql−1 · · ·Q1A.

Then A = QR, where Q = Q∗1 · · ·Q∗l−1.
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Theorem

Let A be a nonsingular n× n matrix. Then the QR- factorization
is essentially unique. That is, if A = Q1R1 = Q2R2, then there
is a unitary diagonal matrix D = diag(di) with |di| = 1 such that
Q1 = Q2D and DR1 = R2.

Proof: Let A = Q1R1 = Q2R2. Then Q∗2Q1 = R2R
−1
1 = D must

be a diagonal unitary matrix.
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Arnoldi Method

Suppose that the columns of Kk+1 are linearly independent
and let

Kk+1 = Uk+1Rk+1

be the QR factorization of Kk+1. Then the columns of Uk+1 are
results of successively orthogonalizing the columns of Kk+1.
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Theorem

Let ‖u1‖2 = 1 and the columns of Kk+1(A, u1) be linearly indep.
Let Uk+1 = [u1 · · · uk+1] be the Q-factor of Kk+1. Then there is
a (k + 1)× k unreduced upper Hessenberg matrix

Ĥk ≡


ĥ11 · · · · · · ĥ1k
ĥ21 ĥ22 · · · ĥ2k

. . . . . .
...

ĥk,k−1 ĥkk
ĥk+1,k

 with ĥi+1,i 6= 0 (5)

such that

AUk = Uk+1Ĥk. (Arnoldi decomp.) (6)

Conversely, if Uk+1 is orthonormal and satisfies (6), where Ĥk

is defined in (5), then Uk+1 is the Q-factor of Kk+1(A, u1).
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Proof: (“⇒”) Let Kk = UkRk be the QR factorization and
Sk = R−1k . Then

AUk = AKkSk = Kk+1

[
0
Sk

]
= Uk+1Rk+1

[
0
Sk

]
= Uk+1Ĥk,

where

Ĥk = Rk+1

[
0
Sk

]
.

It implies that Ĥk is a (k + 1)× k Hessenberg matrix and

hi+1,i = ri+1,i+1sii =
ri+1,i+1

rii
.

Thus by the nonsingularity of Rk, Ĥk is unreduced.
(“⇐”) If k = 1, then

Au1 = h11u1 + h21u2 ⇒ u2 =
−h11
h21

u1 +
1

h21
Au1.
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Since [ u1 u2 ] is orthonormal and u2 is a linear combination
of u1 and Au1, [ u1 u2 ] is the Q-factor of K2.
Assume Uk is the Q-factor of Kk. If we partition

Ĥk =

[
Ĥk−1 hk

0 hk+1,k

]
,

then from (6)

Auk = Ukhk + hk+1,kuk+1.

Thus uk+1 is a linear combination of Auk and the columns of
Uk. Hence Uk+1 is the Q-factor of Kk+1.
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Theorem
Let the orthonormal matrix Uk+1 satisfy

AUk = Uk+1Ĥk,

where Ĥk is Hessenberg. Then Ĥk is reduced if and only if
R(Uk) contains an eigenspace of A.

Proof: (“⇒”) Suppose that Ĥk is reduced, say that hj+1,j = 0.
Partition

Ĥk =

[
H11 H12

0 H22

]
and Uk = [ U11 U12 ],

where H11 is an j × j matrix and U11 is consisted the first j
columns of Uk+1. Then

A[ U11 U12 ] = [ U11 U12 uk+1 ]

[
H11 H12

0 H22

]
.
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It implies that

AU11 = U11H11

so that U11 is an eigenbasis of A.
(“⇐”) Suppose that A has an eigenspace that is a subset of
R(Uk) and Ĥk is unreduced. Let (λ,Ukw) for some w be an
eigenpair of A. Then

0 = (A− λI)Ukw = (Uk+1Ĥk − λUk)w

=

(
Uk+1Ĥk − λUk+1

[
I
0

])
w = Uk+1Ĥλw,

where

Ĥλ =

[
Hk − λI
hk+1,ke

T
k

]
.

Since Ĥλ is unreduced, the matrix Uk+1Ĥλ is of full column
rank. It follows that w = 0 which is a contradiction.
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Partition Ĥk =

[
Hk

ĥk+1,ke
>
k

]
, and set βk = ĥk+1,k. Then (6) is

equivalent to the Arnoldi decomp.

AUk = UkHk + βkuk+1e
>
k . (7)

Write (7) in the form

Auk = Ukhk + βkuk+1.

Then from the orthogonality of Uk+1, we have

hk = UHk Auk.

Since βkuk+1 = Auk − Ukhk and ‖uk+1‖2 = 1, we must have

βk = ‖Auk − Ukhk‖2, uk+1 = β−1k (Auk − Ukhk).
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Algorithm (Arnoldi process)

1. For k = 1, 2, . . .
2. hk = UHk Auk.
3. v = Auk − Ukhk
4. βk = hk+1,k = ‖v‖2
5. uk+1 = v/βk

6. Ĥk =

[
Ĥk−1 hk

0 hk+1,k

]
7. end for k

The computation of uk+1 is actually a form of the
well-known Gram-Schmidt algorithm.
In the presence of inexact arithmetic cancelation in
statement 3 can cause it to fail to produce orthogonal
vectors.
The cure is process called reorthogonalization.
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Algorithm (Reorthogonalized Arnoldi process)

For k = 1, 2, . . .
hk = UHk Auk.
v = Auk − Ukhk.
w = UHk v.
hk = hk + w.
v = v − Ukw.
βk = hk+1,k = ‖v‖2
uk+1 = v/βk

Ĥk =

[
Ĥk−1 hk

0 hk+1,k

]
end for k
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Let y(k)i be an eigenvector of Hk associated with the Ew λ
(k)
i

and x(k)i = Uky
(k)
i the Ritz approximate eigenvector.

Theorem

(A− λ(k)i I)x
(k)
i = hk+1,ke

T
k y

(k)
i uk+1.

and therefore,

‖(A− λ(k)i I)x
(k)
i ‖2 = |hk+1,k|| e>k y

(k)
i |.
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Lanczos Method

Let A be Hermitian and let

AUk = UkTk + βkuk+1e
>
k (8)

be an Arnoldi decomposition. Since Tk is upper Hessenberg
and Tk = UHk AUk is Hermitian, it follows that Tk is tridiagonal
and can be written in the form

Tk =



α1 β1
β1 α2 β2

β2 α3 β3
. . . . . . . . .

βk−2 αk−1 βk−1
βk−1 αk


.

Equation (8) is called a Lanczos decomposition.
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The first column of (8) is

Au1 = α1u1 + β1u2 or u2 =
Au1 − α1u1

β1
.

From the orthonormality of u1 and u2, it follows that

α1 = uH1 Au1

and

β1 = ‖Au1 − α1u1‖2.

More generality, from the j-th column of (8) we get the relation

uj+1 =
Auj − αjuj − β̄j−1uj−1

βj

where

αj = uHj Auj and βj = ‖Auj − αjuj − β̄j−1uj−1‖2.

This is the Lanczos three-term recurrence.
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Algorithm (Lanczos recurrence)

Let u1 be given. This algorithm generates the Lanczos
decomposition

AUk = UkTk + βkuk+1e
>
k

where Tk is Hermitian tridiagonal.
1. u0 = 0;β0 = 0;
2. for j = 1 to k
3. uj+1 = Auj
4. αj = uHj uj+1

5. v = uj+1 − αjuj − βj−1uj−1
6. βj = ‖v‖2
7. uj+1 = v/βj
8. end for j
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Theorem (Stop criterion)

Suppose that j steps of the Lanczos algorithm have been
performed and that

SHj TjSj = diag(θ1, · · · , θj)

is the Schur decomposition of the tridiagonal matrix Tj , if
Yj ∈ Cn×j is defined by

Yj ≡
[
y1 · · · yj

]
= UjSj

then for i = 1, · · · , j we have

‖Ayi − θiyi‖2 = |βj ||sji|

where Sj = [spq].
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Proof : Post-multiplying

AUj = UjTj + βjuj+1e
>
j

by Sj gives

AYj = Yjdiag(θ1, · · · , θj) + βjuj+1e
T
j Sj ,

i.e.,

Ayi = θiyi + βjuj+1(e
T
j Sjei) , i = 1, · · · , j.

The proof is complete by taking norms.

Remark

Stop criterion = |βj ||sji|. Do not need to compute
‖Ayi − θiyi‖2.
In general, |βj | is not small. It is possible that |βj ||sji| is
small.
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Theorem

Let A be n× n symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn
and corresponding orthonormal eigenvectors z1, · · · , zn. If
θ1 ≥ · · · ≥ θj are the eigenvalues of Tj obtained after j steps
of the Lanczos iteration, then

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn)(tanφ1)

2

[cj−1(1 + 2ρ1)]2
,

where cosφ1 = |u>1 z1|, cj−1 is a Chebychev polynomal of
degree j − 1 and

ρ1 =
λ1 − λ2
λ2 − λn

.
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Proof: From Courant-Fischer theorem we have

θ1 = max
y 6=0

yTTjy

yT y
= max

y 6=0

(Ujy)TA(Ujy)

(Ujy)T (Ujy)
= max

06=w∈K(q1,A,j)

wTAw

wTw
.

Since λ1 is the maximum of wTAw/wTw over all nonzero w, it
follows that λ1 ≥ θ1. To obtain the lower bound for θ1, note that

θ1 = max
p∈Pj−1

qT1 p(A)Ap(A)q1

qT1 p(A)2q1
,

where Pj−1 is the set of all j − 1 degree polynomials. If
q1 =

∑n
i=1 dizi, then

qT1 p(A)Ap(A)q1

qT1 p(A)2q1
=

∑n
i=1 d

2
i p(λi)

2λi∑n
i=1 d

2
i p(λi)

2

≥ λ1 − (λ1 − λn)

∑n
i=2 d

2
i p(λi)

2

d21p(λ1)
2 +

∑n
i=2 d

2
i p(λi)

2
.
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We can make the lower bound tight by selecting a polynomial
p(x) that is large at x = λ1 in comparison to its value at the
remaining eigenvalues. Set

p(x) = cj−1

(
−1 + 2

x− λn
λ2 − λn

)
,

where cj−1(z) is the (j − 1)-th Chebychev polynomial
generated by

cj(z) = 2zcj−1(z)− cj−2(z), c0 = 1, c1 = z.

These polynomials are bounded by unity on [-1,1]. It follows
that |p(λi)| is bounded by unity for i = 2, · · · , n while
p(λ1) = cj−1(1 + 2ρ1). Thus,

θ1 ≥ λ1 − (λ1 − λn)
(1− d21)
d21

1

c2j−1(1 + 2ρ1)
.

The desired lower bound is obtained by noting that
tan (φ1)

2 = (1− d21)/d21.
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Theorem
Using the same notation as Theorem 19,

λn ≤ θj ≤ λn +
(λ1 − λn) tan2 ϕn
[cj−1(1 + 2ρn)]2

,

where

ρn =
λn−1 − λn
λ1 − λn−1

, cosϕn = |u>1 zn|.

Proof : Apply Theorem 19 with A replaced by −A.
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Rounding errors greatly affect the behavior of the Lanczos
iteration.
The basic difficulty is caused by loss of orthogonality
among the Lanczos vectors.
To avoid these difficulties we can reorthogonalize the
Lanczos vectors.

For details of complete reorthogonalization and selective
reorthogonalization see the books:

Parlett: “Symmetric Eigenvalue problem” (1980) pp.257–
Golub & Van Loan: “Matrix computation” (1981) pp.332–
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Generalized eigenvalue problem

Consider the generalized eigenvalue problem

Ax = λBx,

where B is symmetric positive definite. Let

C = B−1A.

Applying Arnoldi process to matrix C, we get

CUk = UkHk + βkuk+1e
>
k ,

or

AUk = BUkHk + βkBuk+1e
>
k . (9)
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Write the k-th column of (9) in the form

Auk = BUkhk + βkBuk+1. (10)

Let Uk satisfy that

U>k BUk = Ik.

Then

hk = U>k Auk

and

βkBuk+1 = Auk −BUkhk ≡ tk ⇒ βkuk+1 = B−1tk
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Since uk+1 satisfies u>k+1Buk+1 = 1, it implies that

β2k = (βkuk+1)
>B(βkuk+1) = t>k B

−1tk,

which implies that

βk =
√
t>k B

−1tk

and

uk+1 = β−1k B−1tk.
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Algorithm (Arnoldi process for GEP)

1. For k = 1, 2, . . .
2. hk = U>k Auk.
3. t = Auk −BUkhk
4. Solve linear system Bv = t

4. βk = hk+1,k =
√
t>v

5. uk+1 = v/βk

6. Hk =

[
Hk−1 hk

0 hk+1,k

]
7. end for k
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Shift-and-invert Lanczos for GEP

Consider the generalized eigenvalue problem

Ax = λBx, (11)

where A is symmetric and B is symmetric positive definite.

Shift-and-invert
Compute the eigenvalues which are closest to a given shift
value σ.
Transform (11) into

(A− σB)−1Bx = (λ− σ)−1x. (12)
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The basic recursion for applying Lanczos method to (12) is

(A− σB)−1BVj = VjTj + βjvj+1e
>
j , (13)

where the basis Vj is B-orthogonal and Tj is a real symmetric
tridiagonal matrix defined by

Tj =


α1 β1

β1 α2
. . .

. . . . . . βj−1
βj−1 αj


or equivalent to

(A− σB)−1Bvj = αjvj + βj−1vj−1 + βjvj+1.
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By the condition V ∗j BVj = Ij , it holds that

αj = v∗jB(A− σB)−1Bvj , β2j = t∗jBtj ,

where

tj ≡ (A− σB)−1Bvj − αjvj − βj−1vj−1 = βjvj+1.

An eigenpair (θk, sk) of Tj is used to get an approximate
eigenpair (λk, xk) of (A,B) by

λk = σ +
1

θk
, xk = Vjsk.

The corresponding residual is

rk = AVjsk − λkBVjsk = (A− σB)Vjsk − θ−1k BVjsk

= −θ−1k [BVj − (A− σB)VjTj ] sk

= −θ−1k (A− σB)
[
(A− σB)−1BVj − VjTj

]
= −θ−1k βj(e

>
j sk)(A− σB)vj+1

which implies ‖rk‖ is small whenever |βj(e>j sk)/θk| is small.
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Shift-and-invert Lanczos method for symmetric GEP

1: Given starting vector t, compute q = Bt and β0 =
√
|q∗t|.

2: for j = 1, 2, . . . , do
3: Compute wj = q/βj−1 and vj = t/βj−1.
4: Solve linear system (A− σB)t = wj .
5: Set t := t− βj−1vj−1; compute αj = w∗j t and reset

t := t− αjvj .
6: B-reorthogonalize t to v1, . . . , vj if necessary.
7: Compute q = Bt and βj =

√
|q∗t|.

8: Compute approximate Ews Tj = SjΘjS
∗
j .

9: Test for convergence.
10: end for
11: Compute approximate Evs X = VjSj .
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Restarting method

Let

AUk = UkHk + βkuk+1e
>
k

be an Arnoldi decomposition.
In principle, we can keep expanding the Arnoldi
decomposition until the Ritz pairs have converged.
Unfortunately, it is limited by the amount of memory to
storage of Uk.
Restarted the Arnoldi process once k becomes so large
that we cannot store Uk.

Implicitly restarting method
Krylov-Schur restarting method
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Implicitly restarting method

Let

AUm = UmHm + βmum+1e
>
m (14)

be an Arnoldi decomposition with order m.
Let κ1, . . . , κm be eigenvalues of Hm and suppose that
κ1, . . . , κm−k correspond to the part of the spectrum we are
not interested in.
From (14), we have

(A− κ1I)Um = Um(Hm − κ1I) + βmum+1e
>
m

= UmQ1R1 + βmum+1e
>
m,

where

Hm − κ1I = Q1R1

is the QR factorization of Hm − κ1I.
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Postmultiplying by Q1, we get

(A− κ1I)(UmQ1) = (UmQ1)(R1Q1) + βmum+1(e
>
mQ1).

It implies that

AU (1)
m = U (1)

m H(1)
m + βmum+1b

(1)T
m+1,

where

U (1)
m = UmQ1, H(1)

m = R1Q1 + κ1I, b
(1)T
m+1 = e>mQ1.

Remark

U
(1)
m is orthonormal.

Since Hm is upper Hessenberg and Q1 is the Q-factor of
the QR factorization of Hm − κ1I, it implies that Q1 and
H

(1)
m are also upper Hessenberg.
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Remark (continue)

The vector b(1)Hm+1 = e>mQ1 has the form

b
(1)H
m+1 =

[
0 · · · 0 q

(1)
m−1,m q

(1)
m,m

]
;

i.e., only the last two components of b(1)m+1 are nonzero.

By the definition of H(1)
m , we get

Q1H
(1)
m QH1 = Q1(R1Q1 + κ1I)QH1 = Q1R1 + κ1I = Hm.

Therefore, κ1, κ2, . . . , κm are also eigenvalues of H(1)
m .
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Repeating this process with κ2, κ3, . . . , κm−k, the result will be a
Krylov decomposition

AU (m−k)
m = U (m−k)

m H(m−k)
m + βmum+1b

(m−k)H
m+1

with the following properties
1 U

(m−k)
m is orthonormal.

2 H
(m−k)
m is upper Hessenberg.

3 The first k − 1 components of b(m−k)Hm+1 are zero.

4 The first column of U (m−k)
m is a multiple of

(A− κ1I) · · · (A− κm−kI)u1.
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Corollary
Let κ1, . . . , κm be eigenvalues of Hm. If the implicitly restarted
QR step is performed with shifts κ1, . . . , κm−k, then the matrix
H

(m−k)
m has the form

H(m−k)
m =

[
H

(m−k)
kk H

(m−k)
k,m−k

0 T (m−k)

]
,

where T (m−k) is an upper triangular matrix with Ritz value
κ1, . . . , κm−k on its diagonal.
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For k = 3 and m = 6,

A
[
u u u u u u

]

=
[
u u u u u u

]


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×


+u
[

0 0 q q q q
]
.

Therefore, the first k columns of the decomposition can be
written in the form

AU
(m−k)
k = U

(m−k)
k H

(m−k)
kk + hk+1,ku

(m−k)
k+1 e>k + βkqmkum+1e

>
k ,
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where U (m−k)
k consists of the first k columns of U (m−k)

m , H(m−k)
kk

is the leading principal submatrix of order k of H(m−k)
m , and qkm

is from the matrix Q = Q1 · · ·Qm−k. Hence if we set

Ũk = U
(m−k)
k ,

H̃k = H
(m−k)
kk ,

β̃k = ‖hk+1,ku
(m−k)
k+1 + βkqmkum+1‖2,

ũk+1 = β̃−1k (hk+1,ku
(m−k)
k+1 + βkqmkum+1),

then

AŨk = ŨkH̃k + β̃kũk+1e
>
k

is an Arnoldi decomposition whose starting vector is
proportional to (A− κ1I) · · · (A− κm−kI)u1.
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Krylov-Schur restarting method (Locking and Purging)

Use Arnoldi process to generate the Arnoldi decomposition of
order j + p

AVj+p = Vj+pHj+p + βj+pvj+p+1e
T
j+p. (15)

Let

Hj+p = Uj+pRj+pU
>
j+p ≡

[
Uj Up

] [Rj ?
0 Rp

] [
U>j
U>p

]
(16)

be a Schur decomposition of Hj+p where the diagonal
elements of Rj and Rp are the j wanted and p unwanted Ritz
values, respectively. Substituting (16) into (15), it holds that

A(Vj+pUj+p)

= (Vj+pUj+p)(U
>
j+pHj+pUj+p) + βj+pvj+p+1(e

T
j+pUj+p)
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which implies that

AṼj = ṼjRj + βj+pvj+p+1t
T
j

is a Krylov decomposition of order j where Ṽj ≡ Vj+pUj and
eTj+pUj+p ≡

[
tTj , t

T
p

]
. Let H1 be a Householder transformation

such that

tTj H1 = βe>j .

Reduce HT
1 RjH1 to Hessenberg form by using Householder

transformations Hi for i = 2, . . . , j − 1 as follows:
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SQj := H>1 RjH1 =


× × × ×
× × × ×
× × × ×
× × × ×



⇒ Sj := H>2 SjH2 =


× × × ×
× × × ×
× × × ×
0 0 × ×



⇒ Sj := H>3 SjH3 =


× × × ×
× × × ×
0 × × ×
0 0 × ×
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Let

Q = H1H2 · · ·Hj−1.

Then H̃j ≡ QTRjQ is Hessenberg and

tTj Q = (tTj H1)(H2 · · ·Hj−1) = βe>j (H2 · · ·Hj−1) = βe>j .

Therefore, the Krylov decomposition

A(ṼjQ) = (ṼjQ)H̃j + (βj+pβ)vj+p+1e
>
j

is a Arnoldi decomposition of order j and we can use it to
generate a new Arnoldi decomposition of order j + p if the j
eigenpairs of A do not converge.
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