Numerical Analysis II Numerical solutions of nonlinear systems of equations

Instructor: Wei-Cheng Wang ¹

Department of Mathematics National TsingHua University

Spring 2011

- Fixed points for functions of several variables
- 2 Newton's method
- Quasi-Newton methods
- 4 Steepest Descent Techniques

- 1 Fixed points for functions of several variables
- 2 Newton's method
- Quasi-Newton methods
- 4 Steepest Descent Techniques

- 1 Fixed points for functions of several variables
- 2 Newton's method
- 3 Quasi-Newton methods
- 4 Steepest Descent Techniques

- 1 Fixed points for functions of several variables
- 2 Newton's method
- Quasi-Newton methods
- 4 Steepest Descent Techniques

Theorem

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and \exists $\delta>0$ and $\alpha>0$ such that \forall $\|x-x_0\|<\delta$ and $x\in D$, we have

$$\left. \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = n.

Theorem

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and \exists $\delta>0$ and $\alpha>0$ such that \forall $\|x-x_0\|<\delta$ and $x\in D$, we have

$$\left. \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Theorem

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and \exists $\delta>0$ and $\alpha>0$ such that \forall $\|x-x_0\|<\delta$ and $x\in D$, we have

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Theorem

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and \exists $\delta>0$ and $\alpha>0$ such that \forall $\|x-x_0\|<\delta$ and $x\in D$, we have

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Theorem

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and $\exists \ \delta > 0$ and $\alpha > 0$ such that $\forall \ \|x - x_0\| < \delta$ and $x \in D$, we have

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$. Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant $\alpha < 1$ exists with

$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $x^{(0)}\in D$,

$$x^{(k)} = G(x^{(k-1)}), \quad ext{for each } k \ge 1$$

converges to the unique fixed point $p \in D$ and

$$\|x^{(k)} - p\|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \|x^{(1)} - x^{(0)}\|_{\infty}$$

- 《□》《圖》《意》《意》 - 連 - 《

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$. Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$.

Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant $\alpha < 1$ exists with

$$\left|\frac{\partial g_i(x)}{\partial x_j}\right| \le \frac{\alpha}{n}, \quad \text{whenever} \quad x \in D,$$

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $x^{(0)}\in D$,

$$x^{(k)} = G(x^{(k-1)}), \quad \text{for each } k \ge 1$$

converges to the unique fixed point $p \in D$ and

$$\|x^{(k)} - p\|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \|x^{(1)} - x^{(0)}\|_{\infty}.$$

- 《□》《圖》《圖》《圖》 ■ 《

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$. Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant lpha < 1 exists with

$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le \frac{\alpha}{n}, \quad \text{whenever} \quad x \in D,$$

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $x^{(0)}\in D$,

$$x^{(k)} = G(x^{(k-1)}), \quad \text{for each } k \ge 1$$

converges to the unique fixed point $p \in D$ and

$$\| x^{(k)} - p \|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \| x^{(1)} - x^{(0)} \|_{\infty}.$$

· ◆□ > ◆리 > ◆필 > ◆필 > · 필 · 约

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$. Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant $\alpha < 1$ exists with

$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $x^{(0)}\in D$,

$$x^{(k)} = G(x^{(k-1)}), \quad \text{for each } k \ge 1$$

converges to the unique fixed point $p \in D$ and

$$|x^{(k)} - p|_{\infty} \le \frac{\alpha^k}{1 - \alpha} ||x^{(1)} - x^{(0)}|_{\infty}$$

- (ロ) (部) (E) (E) (E) (9

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$. Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant $\alpha < 1$ exists with

$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $x^{(0)}\in D$,

$$x^{(k)} = G(x^{(k-1)}), \text{ for each } k \ge 1$$

converges to the unique fixed point $p \in D$ and

$$\|x^{(k)} - p\|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \|x^{(1)} - x^{(0)}\|_{\infty}$$

- ◆□▶ ◆圖▶ ◆團▶ ◆團▶ - 團 - 例

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$. Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant $\alpha < 1$ exists with

$$\left| \frac{\partial g_i(x)}{\partial x_j} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $x^{(0)}\in D$,

$$x^{(k)} = G(x^{(k-1)}), \text{ for each } k \ge 1$$

converges to the unique fixed point $p \in D$ and

$$\| x^{(k)} - p \|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \| x^{(1)} - x^{(0)} \|_{\infty}.$$

◆ロト ◆部ト ◆書ト ◆書ト 書 めら

Example

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

• Fixed-point problem:

Change the system into the fixed-point problem:

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6} \equiv g_1(x_1, x_2, x_3),$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \equiv g_2(x_1, x_2, x_3),$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \equiv g_3(x_1, x_2, x_3).$$

Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $G(x) = [g_1(x), g_2(x), g_3(x)]^T$.

Example

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

• Fixed-point problem:

Change the system into the fixed-point problem:

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6} \equiv g_1(x_1, x_2, x_3),$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \equiv g_2(x_1, x_2, x_3),$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \equiv g_3(x_1, x_2, x_3).$$

Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $G(x) = [g_1(x), g_2(x), g_3(x)]^T$.

- G has a unique point in $D \equiv [-1,1] \times [-1,1] \times [-1,1]$:
 - ightharpoonup Existence: $\forall x \in D$,

$$\begin{split} |g_1(x)| &\leq \frac{1}{3} |\cos(x_2 x_3)| + \frac{1}{6} \leq 0.5, \\ |g_2(x)| &= \left| \frac{1}{9} \sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \right| \leq \frac{1}{9} \sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.09, \\ |g_3(x)| &= \frac{1}{20} e^{-x_1 x_2} + \frac{10\pi - 3}{60} \leq \frac{1}{20} e^{+\frac{10\pi - 3}{60}} < 0.61, \end{split}$$

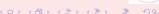
it implies that $G(x) \in D$ whenever $x \in D$

Uniqueness:

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \ \left| \frac{\partial g_2}{\partial x_2} \right| = 0 \ \text{and} \ \left| \frac{\partial g_3}{\partial x_3} \right| = 0,$$

as well as

$$\left|\frac{\partial g_1}{\partial x_2}\right| \leq \frac{1}{3}|x_3| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3}\sin 1 < 0.281$$



- G has a unique point in $D \equiv [-1,1] \times [-1,1] \times [-1,1]$:
 - ightharpoonup Existence: $\forall x \in D$,

$$\begin{split} |g_1(x)| &\leq \frac{1}{3} |\cos(x_2 x_3)| + \frac{1}{6} \leq 0.5, \\ |g_2(x)| &= \left| \frac{1}{9} \sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \right| \leq \frac{1}{9} \sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.09, \\ |g_3(x)| &= \frac{1}{20} e^{-x_1 x_2} + \frac{10\pi - 3}{60} \leq \frac{1}{20} e + \frac{10\pi - 3}{60} < 0.61, \end{split}$$

it implies that $G(x) \in D$ whenever $x \in D$.

Uniqueness:

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \ \left| \frac{\partial g_2}{\partial x_2} \right| = 0 \ \text{and} \ \left| \frac{\partial g_3}{\partial x_3} \right| = 0,$$

as well as

$$\left|\frac{\partial g_1}{\partial x_2}\right| \le \frac{1}{3}|x_3| \cdot |\sin(x_2 x_3)| \le \frac{1}{3}\sin 1 < 0.281$$

- G has a unique point in $D \equiv [-1,1] \times [-1,1] \times [-1,1]$:
 - ightharpoonup Existence: $\forall x \in D$,

$$\begin{split} |g_1(x)| &\leq \frac{1}{3} |\cos(x_2 x_3)| + \frac{1}{6} \leq 0.5, \\ |g_2(x)| &= \left| \frac{1}{9} \sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \right| \leq \frac{1}{9} \sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.09, \\ |g_3(x)| &= \frac{1}{20} e^{-x_1 x_2} + \frac{10\pi - 3}{60} \leq \frac{1}{20} e^{+\frac{10\pi - 3}{60}} < 0.61, \end{split}$$

it implies that $G(x) \in D$ whenever $x \in D$.

Uniqueness:

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \ \left| \frac{\partial g_2}{\partial x_2} \right| = 0 \ \text{ and } \ \left| \frac{\partial g_3}{\partial x_3} \right| = 0,$$

as well as

$$\left|\frac{\partial g_1}{\partial x_2}\right| \leq \frac{1}{3}|x_3| \cdot |\sin(x_2x_3)| \leq \frac{1}{3}\sin 1 < 0.281,$$

$$\begin{vmatrix} \frac{\partial g_1}{\partial x_3} \end{vmatrix} \leq \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_1} \end{vmatrix} = \frac{|x_1|}{9\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9\sqrt{0.218}} < 0.238,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_3} \end{vmatrix} = \frac{|\cos x_3|}{18\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18\sqrt{0.218}} < 0.119,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_1} \end{vmatrix} = \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_2} \end{vmatrix} = \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14.$$

$$\left| \frac{\partial g_i}{\partial x_j} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently, has a unique fixed point in D.

$$\begin{vmatrix} \frac{\partial g_1}{\partial x_3} \end{vmatrix} \leq \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_1} \end{vmatrix} = \frac{|x_1|}{9\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9\sqrt{0.218}} < 0.238,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_3} \end{vmatrix} = \frac{|\cos x_3|}{18\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18\sqrt{0.218}} < 0.119,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_1} \end{vmatrix} = \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_2} \end{vmatrix} = \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14.$$

$$\left| \frac{\partial g_i}{\partial x_j} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently, has a unique fixed point in D.

$$\begin{vmatrix} \frac{\partial g_1}{\partial x_3} \end{vmatrix} \leq \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_1} \end{vmatrix} = \frac{|x_1|}{9\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9\sqrt{0.218}} < 0.238,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_3} \end{vmatrix} = \frac{|\cos x_3|}{18\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18\sqrt{0.218}} < 0.119,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_1} \end{vmatrix} = \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_2} \end{vmatrix} = \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14.$$

$$\left| \frac{\partial g_i}{\partial x_j} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently, has a unique fixed point in D

$$\begin{vmatrix} \frac{\partial g_1}{\partial x_3} \end{vmatrix} \leq \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_1} \end{vmatrix} = \frac{|x_1|}{9\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9\sqrt{0.218}} < 0.238,$$

$$\begin{vmatrix} \frac{\partial g_2}{\partial x_3} \end{vmatrix} = \frac{|\cos x_3|}{18\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18\sqrt{0.218}} < 0.119,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_1} \end{vmatrix} = \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14,$$

$$\begin{vmatrix} \frac{\partial g_3}{\partial x_2} \end{vmatrix} = \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14.$$

$$\left| \frac{\partial g_i}{\partial x_i} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently, G has a unique fixed point in D.

Approximated solution:

Fixed-point iteration (I): Choosing $x^{(0)} = [0.1, 0.1, -0.1]^T$, the sequence $\{x^{(k)}\}$ is generated by

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6}, \\ \\ x_2^{(k)} & = & \frac{1}{9}\sqrt{\left(x_1^{(k-1)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ \\ x_3^{(k)} & = & -\frac{1}{20}e^{-x_1^{(k-1)}x_2^{(k-1)}} - \frac{10\pi - 3}{60}. \end{array}$$

Result

		1.2×10^{-5}
		3.1×10^{-7}

Approximated solution:

Fixed-point iteration (I): Choosing $x^{(0)} = [0.1, 0.1, -0.1]^T$, the sequence $\{x^{(k)}\}$ is generated by

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6}, \\ \\ x_2^{(k)} & = & \frac{1}{9}\sqrt{\left(x_1^{(k-1)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ \\ x_3^{(k)} & = & -\frac{1}{20}e^{-x_1^{(k-1)}x_2^{(k-1)}} - \frac{10\pi - 3}{60}. \end{array}$$

Result:

	7-1	7-1	7-1	
k	$x_1^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$	$ x^{(k)} - x^{(k-1)} _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	$9.4 imes 10^{-3}$
3	0.50000000	0.00001234	-0.52359814	2.3×10^{-4}
4	0.50000000	0.00000003	-0.52359847	1.2×10^{-5}
5	0.50000000	0.00000002	-0.52359877	3.1×10^{-7}

- Approximated solution (cont.):
 - ► Accelerate convergence of the fixed-point iteration:

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6}, \\ \\ x_2^{(k)} & = & \frac{1}{9}\sqrt{\left(x_1^{(k)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ \\ x_3^{(k)} & = & -\frac{1}{20}e^{-x_1^{(k)}x_2^{(k)}} - \frac{10\pi - 3}{60}, \end{array}$$

as in the Gauss-Seidel method for linear systems.

► Result

		3.8×10^{-8}
		<u> </u>

- Approximated solution (cont.):
 - Accelerate convergence of the fixed-point iteration:

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6}, \\ \\ x_2^{(k)} & = & \frac{1}{9}\sqrt{\left(x_1^{(k)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ \\ x_3^{(k)} & = & -\frac{1}{20}e^{-x_1^{(k)}x_2^{(k)}} - \frac{10\pi - 3}{60}, \end{array}$$

as in the Gauss-Seidel method for linear systems.

Result:

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$	$ x^{(k)} - x^{(k-1)} _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2×10^{-2}
3	0.50000000	0.00000004	-0.52359877	2.8×10^{-5}
4	0.50000000	0.00000000	-0.52359877	3.8×10^{-8}
				7.

First consider solving the following system of nonlinear equations:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)},x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that $(x_1^{(k)}+h_1^{(k)},x_2^{(k)}+h_2^{(k)})$ satisfies the system. By the Taylor's theorem fo two variables,

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

First consider solving the following system of nonlinear equations:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)}, x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that $(x_1^{(k)} + h_1^{(k)}, x_2^{(k)} + h_2^{(k)})$ satisfies the system. By the Taylor's theorem for two variables,

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

First consider solving the following system of nonlinear equations:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)},x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that $(x_1^{(k)}+h_1^{(k)},x_2^{(k)}+h_2^{(k)})$ satisfies the system. By the Taylor's theorem for two variables,

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

First consider solving the following system of nonlinear equations:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)}, x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that $(x_1^{(k)} + h_1^{(k)}, x_2^{(k)} + h_2^{(k)})$ satisfies the system. By the Taylor's theorem for two variables,

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

Put this in matrix form

$$\left[\begin{array}{cc} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{array} \right] \left[\begin{array}{c} h_1^{(k)} \\ h_2^{(k)} \end{array} \right] + \left[\begin{array}{c} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{array} \right] \approx \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$$

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1} (x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2} (x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1} (x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2} (x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

$$\begin{bmatrix} x_1^{(k+1)} \\ x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix}$$

Put this in matrix form

$$\left[\begin{array}{cc} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{array} \right] \left[\begin{array}{c} h_1^{(k)} \\ h_2^{(k)} \end{array} \right] + \left[\begin{array}{c} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{array} \right] \approx \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$$

The matrix

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

is called the Jacobian matrix. Set $h_1^{(k)}$ and $h_2^{(k)}$ be the solution of the linear system

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

then

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_2^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix}$$

is expected to be a better approximation

Put this in matrix form

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} + \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The matrix

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

is called the Jacobian matrix. Set $h_1^{(k)}$ and $h_2^{(k)}$ be the solution of the linear system

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix}$$

Put this in matrix form

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} + \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The matrix

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

is called the Jacobian matrix. Set $h_1^{(k)}$ and $h_2^{(k)}$ be the solution of the linear system

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

then

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix}$$

is expected to be a better approximation.

$$x = \left[\begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

and

$$F(x) = \begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \end{bmatrix}^T$$

The problem can be formulated as solving

$$F(x) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let J(x), where the (i,j) entry is $\frac{\partial f_i}{\partial x_j}(x)$, be the $n \times n$ Jacobian matrix. Then the Newton's iteration is defined as

$$x^{(k+1)} = x^{(k)} + h^{(k)},$$

$$J(x^{(k)})h^{(k)} = -F(x^{(k)}).$$

$$x = \left[\begin{array}{ccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

and

$$F(x) = \begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(x) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let J(x), where the (i,j) entry is $rac{\partial f_i}{\partial x_j}(x)$, be the n imes n Jacobian matrix. Then the Newton's iteration is defined as

$$x^{(k+1)} = x^{(k)} + h^{(k)}.$$

$$J(x^{(k)})h^{(k)} = -F(x^{(k)})$$

$$x = \left[\begin{array}{ccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

and

$$F(x) = \begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(x) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let J(x), where the (i,j) entry is $rac{\partial f_i}{\partial x_j}(x)$, be the n imes n Jacobian matrix. Then the Newton's iteration is defined as

$$x^{(k+1)} = x^{(k)} + h^{(k)},$$

$$J(x^{(k)})h^{(k)} = -F(x^{(k)})$$

$$x = \left[\begin{array}{ccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

and

$$F(x) = \begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(x) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let J(x), where the (i, j) entry is $\frac{\partial f_i}{\partial x_j}(x)$, be the $n \times n$ Jacobian matrix.

$$x^{(k+1)} = x^{(k)} + h^{(k)},$$

where $h^{(k)} \in \mathbb{R}^n$ is the solution of the linear system

$$J(x^{(k)})h^{(k)} = -F(x^{(k)}).$$

□▶ ◆♬▶ ◆토▶ ●토

$$x = \left[\begin{array}{ccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

and

$$F(x) = \begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(x) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let J(x), where the (i,j) entry is $\frac{\partial f_i}{\partial x_j}(x)$, be the $n \times n$ Jacobian matrix. Then the Newton's iteration is defined as

$$x^{(k+1)} = x^{(k)} + h^{(k)},$$

$$J(x^{(k)})h^{(k)} = -F(x^{(k)}).$$

Algorithm (Newton's Method for Systems)

Given a function $F: \mathbb{R}^n \to \mathbb{R}^n$, an initial guess $x^{(0)}$ to the zero of F, and stop criteria M, δ , and ε , this algorithm performs the Newton's iteration to approximate one root of F.

Set
$$k=0$$
 and $h^{(-1)}=e_1$. While $(k < M)$ and $(\parallel h^{(k-1)} \parallel \ge \delta)$ and $(\parallel F(x^{(k)}) \parallel \ge \varepsilon)$ Calculate $J(x^{(k)}) = [\partial F_i(x^{(k)})/\partial x_j]$. Solve the $n \times n$ linear system $J(x^{(k)})h^{(k)} = -F(x^{(k)})$. Set $x^{(k+1)} = x^{(k)} + h^{(k)}$ and $k = k+1$.

End while

Output ("Convergent $x^{(k)}$ ") or ("Maximum number of iterations exceeded")

Let x^* be a solution of G(x) = x. Suppose $\exists \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{x;\|x-x^*\|<\delta\}$ for all i and j.
- (ii) $\partial^2 g_i(x)/(\partial x_j \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial g_i(x^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{x^{(k)}\}$ generated by

$$x^{(k)} = G(x^{(k-1)})$$

converges quadratically to x^* for any $x^{(0)}$ satisfying $\|x^{(0)}-x^*\|_{\infty}<\hat{\delta}$. Moreover,

$$||x^{(k)} - x^*||_{\infty} \le \frac{n^2 M}{2} ||x^{(k-1)} - x^*||_{\infty}^2, \forall k \ge 1.$$

Let x^* be a solution of G(x) = x. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{x;\|x-x^*\|<\delta\}$ for all i and j.
- (ii) $\partial^2 g_i(x)/(\partial x_j \partial x_k)$ is continuous and

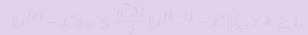
$$\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

- (iii) $\partial g_i(x^*)/\partial x_k = 0$ for each i and k.
- Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{x^{(k)}\}$ generated by

$$x^{(k)} = G(x^{(k-1)})$$

converges quadratically to x^* for any $x^{(0)}$ satisfying $\|x^{(0)}-x^*\|_\infty<\hat{\delta}$ Moreover,



Let x^* be a solution of G(x) = x. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{x;\|x-x^*\|<\delta\}$ for all i and j.
- (ii) $\partial^2 g_i(x)/(\partial x_j \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \le M$$

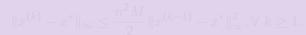
for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial g_i(x^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{x^{(k)}\}$ generated by

$$x^{(k)} = G(x^{(k-1)})$$

converges quadratically to x^* for any $x^{(0)}$ satisfying $||x^{(0)} - x^*||_{\infty} < \hat{\delta}$. Moreover,



Let x^* be a solution of G(x) = x. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{x;\|x-x^*\|<\delta\}$ for all i and j.
- (ii) $\partial^2 g_i(x)/(\partial x_j \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial g_i(x^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{x^{(k)}\}$ generated by

$$x^{(k)} = G(x^{(k-1)})$$

converges quadratically to x^* for any $x^{(0)}$ satisfying $\|x^{(0)}-x^*\|_\infty < \hat{\delta}$. Moreover,

$$||x^{(k)} - x^*||_{\infty} \le \frac{n^2 M}{2} ||x^{(k-1)} - x^*||_{\infty}^2, \forall k \ge 1$$

Let x^* be a solution of G(x) = x. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{x; \|x-x^*\|<\delta\}$ for all i and j.
- (ii) $\partial^2 g_i(x)/(\partial x_j \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \le M$$

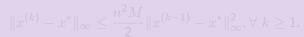
for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial g_i(x^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{x^{(k)}\}$ generated by

$$x^{(k)} = G(x^{(k-1)})$$

converges quadratically to x^* for any $x^{(0)}$ satisfying $||x^{(0)} - x^*||_{\infty} < \hat{\delta}$.



Let x^* be a solution of G(x) = x. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{x;\|x-x^*\|<\delta\}$ for all i and j.
- (ii) $\partial^2 g_i(x)/(\partial x_j \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial g_i(x^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{x^{(k)}\}$ generated by

$$x^{(k)} = G(x^{(k-1)})$$

converges quadratically to x^* for any $x^{(0)}$ satisfying $||x^{(0)} - x^*||_{\infty} < \hat{\delta}$. Moreover,

$$||x^{(k)} - x^*||_{\infty} \le \frac{n^2 M}{2} ||x^{(k-1)} - x^*||_{\infty}^2, \forall k \ge 1.$$

Example

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Nonlinear functions: Let

$$F(x_1, x_2, x_3) = [f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3)]^T,$$

where

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2},$$

 $f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.6$
 $f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}.$

Example

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Nonlinear functions: Let

$$F(x_1, x_2, x_3) = [f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3)]^T,$$

where

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2},$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}.$$

• Nonlinear functions (cont.): The Jacobian matrix J(x) for this system is

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}.$$

• Newton's iteration with initial $x^{(0)} = [0.1, 0.1, -0.1]^T$:

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} - \begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix}.$$

where

$$\begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix} = \left(J(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}) \right)^{-1} F(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)})$$

4 D > 4 D > 4 D > 4 D > 90

• Nonlinear functions (cont.): The Jacobian matrix J(x) for this system is

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}.$$

• Newton's iteration with initial $x^{(0)} = [0.1, 0.1, -0.1]^T$:

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} - \begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix},$$

where

$$\begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix} = \left(J(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}) \right)^{-1} F(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}).$$

• Result:

\overline{k}	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$ x^{(k)} - x^{(k-1)} _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.50003702	0.01946686	-0.52152047	0.422
2	0.50004593	0.00158859	-0.52355711	1.79×10^{-2}
3	0.50000034	0.00001244	-0.52359845	1.58×10^{-3}
4	0.50000000	0.00000000	-0.52359877	1.24×10^{-5}
5	0.50000000	0.00000000	-0.52359877	0

Newton's Methods

- Advantage: quadratic convergence
- ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k \in \mathcal{F}(x_k)$.

Newton's Methods

- Advantage: quadratic convergence
- ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - \star $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - ► Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$\ell_k(x) = f(x_k) + a_k(x - x_k)$

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - ► Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for a $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$ then $a_k = f'(x_k)$

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - \star n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for a $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$.

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - ► Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$.

- Newton's Methods
 - Advantage: quadratic convergence
 - ▶ Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - * n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - \star n scalar functional evaluations of F
 - ★ $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - ► Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$.

The zero of $\ell_k(x)$ is used to give a new approximate for the zero of f(x), that is,

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

The zero of $\ell_k(x)$ is used to give a new approximate for the zero of f(x), that is,

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

The zero of $\ell_k(x)$ is used to give a new approximate for the zero of f(x), that is,

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

In doing this, the identity

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

gives

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

Solving $\ell_k(x) = 0$ yields the secant iteration

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

The zero of $\ell_k(x)$ is used to give a new approximate for the zero of f(x), that is,

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

In doing this, the identity

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

gives

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

Solving $\ell_k(x) = 0$ yields the secant iteration

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

In multiple dimension, the analogue affine model becomes

$$M_k(x) = F(x_k) + A_k(x - x_k),$$

where $x, x_k \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$, and satisfies

$$M_k(x_k) = F(x_k),$$

for any A_k . The zero of $M_k(x)$ is then used to give a new approximate for the zero of F(x), that is,

$$x_{k+1} = x_k - A_k^{-1} F(x_k).$$

The Newton's method chooses

$$A_k = F'(x_k) \equiv J(x_k) =$$
 the Jacobian matrix

and yields the iteration

$$x_{k+1} = x_k - (F'(x_k))^{-1} F(x_k).$$

In multiple dimension, the analogue affine model becomes

$$M_k(x) = F(x_k) + A_k(x - x_k),$$

where $x, x_k \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$, and satisfies

$$M_k(x_k) = F(x_k),$$

for any A_k . The zero of $M_k(x)$ is then used to give a new approximate for the zero of F(x), that is,

$$x_{k+1} = x_k - A_k^{-1} F(x_k).$$

The Newton's method chooses

$$A_k = F'(x_k) \equiv J(x_k) =$$
 the Jacobian matrix

and yields the iteration

In multiple dimension, the analogue affine model becomes

$$M_k(x) = F(x_k) + A_k(x - x_k),$$

where $x, x_k \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$, and satisfies

$$M_k(x_k) = F(x_k),$$

for any A_k . The zero of $M_k(x)$ is then used to give a new approximate for the zero of F(x), that is,

$$x_{k+1} = x_k - A_k^{-1} F(x_k).$$

The Newton's method chooses

$$A_k = F'(x_k) \equiv J(x_k) =$$
the Jacobian matrix

and yields the iteration

$$x_{k+1} = x_k - (F'(x_k))^{-1} F(x_k).$$

When the Jacobian matrix $J(x_k) \equiv F'(x_k)$ is not available, one can require

$$M_k(x_{k-1}) = F(x_{k-1}).$$

Ther

$$F(x_{k-1}) = M_k(x_{k-1}) = F(x_k) + A_k(x_{k-1} - x_k),$$

which gives

$$A_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1})$$

and this is the so-called secant equation. Le

$$h_k = x_k - x_{k-1}$$
 and $y_k = F(x_k) - F(x_{k-1})$.

The secant equation becomes

$$A_k h_k = y_k.$$

When the Jacobian matrix $J(x_k) \equiv F'(x_k)$ is not available, one can require

$$M_k(x_{k-1}) = F(x_{k-1}).$$

Then

$$F(x_{k-1}) = M_k(x_{k-1}) = F(x_k) + A_k(x_{k-1} - x_k),$$

which gives

$$A_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1})$$

and this is the so-called secant equation. Let

$$h_k = x_k - x_{k-1}$$
 and $y_k = F(x_k) - F(x_{k-1})$.

The secant equation becomes

$$A_k h_k = y_k.$$

When the Jacobian matrix $J(x_k) \equiv F'(x_k)$ is not available, one can require

$$M_k(x_{k-1}) = F(x_{k-1}).$$

Then

$$F(x_{k-1}) = M_k(x_{k-1}) = F(x_k) + A_k(x_{k-1} - x_k),$$

which gives

$$A_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1})$$

and this is the so-called secant equation. Let

$$h_k = x_k - x_{k-1}$$
 and $y_k = F(x_k) - F(x_{k-1})$.

The secant equation becomes

$$A_k h_k = y_k.$$

When the Jacobian matrix $J(x_k) \equiv F'(x_k)$ is not available, one can require

$$M_k(x_{k-1}) = F(x_{k-1}).$$

Then

$$F(x_{k-1}) = M_k(x_{k-1}) = F(x_k) + A_k(x_{k-1} - x_k),$$

which gives

$$A_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1})$$

and this is the so-called secant equation. Let

$$h_k = x_k - x_{k-1}$$
 and $y_k = F(x_k) - F(x_{k-1})$.

The secant equation becomes

$$A_k h_k = y_k.$$

When the Jacobian matrix $J(x_k) \equiv F'(x_k)$ is not available, one can require

$$M_k(x_{k-1}) = F(x_{k-1}).$$

Then

$$F(x_{k-1}) = M_k(x_{k-1}) = F(x_k) + A_k(x_{k-1} - x_k),$$

which gives

$$A_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1})$$

and this is the so-called secant equation. Let

$$h_k = x_k - x_{k-1}$$
 and $y_k = F(x_k) - F(x_{k-1})$.

The secant equation becomes

$$A_k h_k = y_k.$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize M_k-M_{k-1} subject to the secant equation. Note

$$M_k(x) - M_{k-1}(x) = F(x_k) + A_k(x - x_k) - F(x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (F(x_k) - F(x_{k-1})) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x_k - x_{k-1}) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x - x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (A_k - A_{k-1})(x - x_{k-1}).$$

For any $x \in \mathbb{R}^n$, we express

$$x - x_{k-1} = \alpha h_k + t_k,$$

for some $lpha \in \mathbb{R}$, $t_k \in \mathbb{R}^n$, and $h_k^T t_k = 0$. Then

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha h_k + t_k) = \alpha (A_k - A_{k-1})h_k + (A_k - A_{k-1})h_k$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize M_k-M_{k-1} subject to the secant equation.

$$M_k(x) - M_{k-1}(x) = F(x_k) + A_k(x - x_k) - F(x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (F(x_k) - F(x_{k-1})) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x_k - x_{k-1}) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x - x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (A_k - A_{k-1})(x - x_{k-1}).$$

For any $x \in \mathbb{R}^n$, we express

$$x - x_{k-1} = \alpha h_k + t_k,$$

for some $\alpha \in \mathbb{R}$, $t_k \in \mathbb{R}^n$, and $h_k^T t_k = 0$. Then

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha h_k + t_k) = \alpha (A_k - A_{k-1})h_k + (A_k - A_k)$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize M_k-M_{k-1} subject to the secant equation. Note

$$M_{k}(x) - M_{k-1}(x) = F(x_{k}) + A_{k}(x - x_{k}) - F(x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (F(x_{k}) - F(x_{k-1})) + A_{k}(x - x_{k}) - A_{k-1}(x - x_{k-1})$$

$$= A_{k}(x_{k} - x_{k-1}) + A_{k}(x - x_{k}) - A_{k-1}(x - x_{k-1})$$

$$= A_{k}(x - x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (A_{k} - A_{k-1})(x - x_{k-1}).$$

For any $x \in \mathbb{R}^n$, we express

$$x - x_{k-1} = \alpha h_k + t_k,$$

for some $\alpha \in \mathbb{R}$, $t_k \in \mathbb{R}^n$, and $h_k^T t_k = 0$. Then

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha h_k + t_k) = \alpha (A_k - A_{k-1})h_k + (A_k - A_{k-1})h_k$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize $M_k - M_{k-1}$ subject to the secant equation. Note

$$M_k(x) - M_{k-1}(x) = F(x_k) + A_k(x - x_k) - F(x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (F(x_k) - F(x_{k-1})) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x_k - x_{k-1}) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

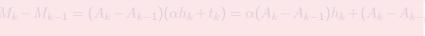
$$= A_k(x - x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (A_k - A_{k-1})(x - x_{k-1}).$$

For any $x \in \mathbb{R}^n$, we express

$$x - x_{k-1} = \alpha h_k + t_k,$$

for some $\alpha \in \mathbb{R}$, $t_k \in \mathbb{R}^n$, and $h_k^T t_k = 0$. Then



However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize M_k-M_{k-1} subject to the secant equation. Note

$$M_k(x) - M_{k-1}(x) = F(x_k) + A_k(x - x_k) - F(x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (F(x_k) - F(x_{k-1})) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x_k - x_{k-1}) + A_k(x - x_k) - A_{k-1}(x - x_{k-1})$$

$$= A_k(x - x_{k-1}) - A_{k-1}(x - x_{k-1})$$

$$= (A_k - A_{k-1})(x - x_{k-1}).$$

For any $x \in \mathbb{R}^n$, we express

$$x - x_{k-1} = \alpha h_k + t_k,$$

for some $\alpha \in \mathbb{R}$, $t_k \in \mathbb{R}^n$, and $h_k^T t_k = \mathbf{0}$. Then

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha h_k + t_k) = \alpha (A_k - A_{k-1})h_k + (A_k - A_{k-1})t_k$$

$$(A_k - A_{k-1})h_k = A_k h_k - A_{k-1}h_k = y_k - A_{k-1}h_k,$$

both y_k and $A_{k-1}h_k$ are old values, we have no control over the first part $(A_k - A_{k-1})h_k$. In order to minimize $M_k(x) - M_{k-1}(x)$, we try to choose A_k so that

$$(A_k - A_{k-1})t_k = 0$$

for all $t_k \in \mathbb{R}^n$, $h_k^T t_k = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = u_k h_k^T$$

$$u_k h_k^T h_k = (A_k - A_{k-1})h_k = y_k - A_{k-1}h_k$$

$$(A_k - A_{k-1})h_k = A_k h_k - A_{k-1}h_k = y_k - A_{k-1}h_k,$$

both y_k and $A_{k-1}h_k$ are old values, we have no control over the first part $(A_k - A_{k-1})h_k$. In order to minimize $M_k(x) - M_{k-1}(x)$, we try to choose A_k so that

$$(A_k - A_{k-1})t_k = 0$$

for all $t_k \in \mathbb{R}^n$, $h_k^T t_k = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = u_k h_k^T$$

$$u_k h_k^T h_k = (A_k - A_{k-1})h_k = y_k - A_{k-1}h_k$$

$$(A_k - A_{k-1})h_k = A_k h_k - A_{k-1}h_k = y_k - A_{k-1}h_k,$$

both y_k and $A_{k-1}h_k$ are old values, we have no control over the first part $(A_k - A_{k-1})h_k$. In order to minimize $M_k(x) - M_{k-1}(x)$, we try to choose A_k so that

$$(A_k - A_{k-1})t_k = 0$$

for all $t_k \in \mathbb{R}^n$, $h_k^T t_k = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = u_k h_k^T$$

$$u_k h_k^T h_k = (A_k - A_{k-1})h_k = y_k - A_{k-1}h_k$$

$$(A_k - A_{k-1})h_k = A_k h_k - A_{k-1}h_k = y_k - A_{k-1}h_k,$$

both y_k and $A_{k-1}h_k$ are old values, we have no control over the first part $(A_k - A_{k-1})h_k$. In order to minimize $M_k(x) - M_{k-1}(x)$, we try to choose A_k so that

$$(A_k - A_{k-1})t_k = 0$$

for all $t_k \in \mathbb{R}^n$, $h_k^T t_k = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = u_k h_k^T$$

for some $u_k \in \mathbb{R}^n$. Then

 $u_k h_k^T h_k = (A_k - A_{k-1})h_k = y_k - A_{k-1}h_k$

$$(A_k - A_{k-1})h_k = A_k h_k - A_{k-1}h_k = y_k - A_{k-1}h_k,$$

both y_k and $A_{k-1}h_k$ are old values, we have no control over the first part $(A_k-A_{k-1})h_k$. In order to minimize $M_k(x)-M_{k-1}(x)$, we try to choose A_k so that

$$(A_k - A_{k-1})t_k = 0$$

for all $t_k \in \mathbb{R}^n$, $h_k^T t_k = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = u_k h_k^T$$

$$u_k h_k^T h_k = (A_k - A_{k-1})h_k = y_k - A_{k-1}h_k$$

$$u_k = \frac{y_k - A_{k-1}h_k}{h_k^T h_k}.$$

$$A_k = A_{k-1} + \frac{(y_k - A_{k-1}h_k)h_k^T}{h_k^T h_k}.$$
 (1)

$$h_{k+1} = x_{k+1} - x_k \implies x_{k+1} = x_k + h_{k+1}$$

$$M_k(x_{k+1}) = 0 \Rightarrow F(x_k) + A_k(x_{k+1} - x_k) = 0 \Rightarrow A_k h_{k+1} = -F(x_k)$$

$$u_k = \frac{y_k - A_{k-1}h_k}{h_k^T h_k}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(y_k - A_{k-1}h_k)h_k^T}{h_k^T h_k}.$$
 (1)

After A_k is determined, the new iterate x_{k+1} is derived from solving $M_k(x)=0$. It can be done by first noting that

$$h_{k+1} = x_{k+1} - x_k \implies x_{k+1} = x_k + h_{k+1}$$

and

$$M_k(x_{k+1}) = 0 \Rightarrow F(x_k) + A_k(x_{k+1} - x_k) = 0 \Rightarrow A_k h_{k+1} = -F(x_k)$$

These formulations give the Broyden's method

$$u_k = \frac{y_k - A_{k-1}h_k}{h_k^T h_k}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(y_k - A_{k-1}h_k)h_k^T}{h_k^T h_k}. (1)$$

After A_k is determined, the new iterate x_{k+1} is derived from solving $M_k(x)=0$. It can be done by first noting that

$$h_{k+1} = x_{k+1} - x_k \implies x_{k+1} = x_k + h_{k+1}$$

and

$$M_k(x_{k+1}) = 0 \Rightarrow F(x_k) + A_k(x_{k+1} - x_k) = 0 \Rightarrow A_k h_{k+1} = -F(x_k)$$

$$u_k = \frac{y_k - A_{k-1}h_k}{h_k^T h_k}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(y_k - A_{k-1}h_k)h_k^T}{h_k^T h_k}.$$
 (1)

After A_k is determined, the new iterate x_{k+1} is derived from solving $M_k(x)=0$. It can be done by first noting that

$$h_{k+1} = x_{k+1} - x_k \implies x_{k+1} = x_k + h_{k+1}$$

and

$$M_k(x_{k+1}) = 0 \Rightarrow F(x_k) + A_k(x_{k+1} - x_k) = 0 \Rightarrow A_k h_{k+1} = -F(x_k)$$

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩

$$u_k = \frac{y_k - A_{k-1}h_k}{h_k^T h_k}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(y_k - A_{k-1}h_k)h_k^T}{h_k^T h_k}.$$
 (1)

After A_k is determined, the new iterate x_{k+1} is derived from solving $M_k(x)=0$. It can be done by first noting that

$$h_{k+1} = x_{k+1} - x_k \implies x_{k+1} = x_k + h_{k+1}$$

and

$$M_k(x_{k+1}) = 0 \Rightarrow F(x_k) + A_k(x_{k+1} - x_k) = 0 \Rightarrow A_k h_{k+1} = -F(x_k)$$

These formulations give the Broyden's method.

$$u_k = \frac{y_k - A_{k-1}h_k}{h_k^T h_k}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(y_k - A_{k-1}h_k)h_k^T}{h_k^T h_k}.$$
 (1)

After A_k is determined, the new iterate x_{k+1} is derived from solving $M_k(x)=0$. It can be done by first noting that

$$h_{k+1} = x_{k+1} - x_k \implies x_{k+1} = x_k + h_{k+1}$$

and

$$M_k(x_{k+1}) = 0 \Rightarrow F(x_k) + A_k(x_{k+1} - x_k) = 0 \Rightarrow A_k h_{k+1} = -F(x_k)$$

These formulations give the Broyden's method.

Algorithm (Broyden's Method)

Given a n-variable nonlinear function $F: \mathbb{R}^n \to \mathbb{R}^n$, an initial iterate x_0 and initial Jacobian matrix $A_0 \in \mathbb{R}^{n \times n}$ (e.g., $A_0 = I$), this algorithm finds the solution for F(x) = 0.

Given x_0 , tolerance TOL, maximum number of iteration M.

Set
$$k = 1$$
.

While
$$k \leq M$$
 and $||x_k - x_{k-1}||_2 \geq TOL$

Solve
$$A_k h_{k+1} = -F(x_k)$$
 for h_{k+1}

Update
$$x_{k+1} = x_k + h_{k+1}$$

Compute
$$y_{k+1} = F(x_{k+1}) - F(x_k)$$

Update

$$A_{k+1} = A_k + \frac{(y_{k+1} - A_k h_{k+1}) h_{k+1}^T}{h_{k+1}^T h_{k+1}} = A_k + \frac{(y_{k+1} + F(x_k)) h_{k+1}^T}{h_{k+1}^T h_{k+1}}$$

$$k = k + 1$$

End While

- LU-factorization: cost $\frac{2}{3}n^3 + O(n^2)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$(B + UV^{T})^{-1} = B^{-1} - B^{-1}U (I + V^{T}B^{-1}U)^{-1} V^{T}B^{-1}$$

$$A_{k}^{-1}$$

$$= \left[A_{k-1} + \frac{(y_{k} - A_{k-1}h_{k})h_{k}^{T}}{h_{k}^{T}h_{k}} \right]^{-1}$$

$$= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \left(1 + h_{k}^{T}A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \right)$$

$$= A_{k-1}^{-1} + \frac{(h_{k} - A_{k-1}^{-1}y_{k})h_{k}^{T}A_{k-1}^{-1}}{h_{k}^{T}A_{k-1}^{-1}y_{k}}.$$

- LU-factorization: cost $\frac{2}{3}n^3 + O(n^2)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$(B + UV^T)^{-1} = B^{-1} - B^{-1}U (I + V^T B^{-1}U)^{-1} V^T B^{-1}$$

$$A_{k}^{-1} = \left[A_{k-1} + \frac{(y_{k} - A_{k-1}h_{k})h_{k}^{T}}{h_{k}^{T}h_{k}} \right]^{-1}$$

$$= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \left(1 + h_{k}^{T}A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \right)^{-1}$$

$$= A_{k-1}^{-1} + \frac{(h_{k} - A_{k-1}^{-1}y_{k})h_{k}^{T}A_{k-1}^{-1}}{h_{k}^{T}A_{k}^{-1}y_{k}}.$$

- LU-factorization: $\cos \frac{2}{3}n^3 + O(n^2)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$(B + UV^{T})^{-1} = B^{-1} - B^{-1}U(I + V^{T}B^{-1}U)^{-1}V^{T}B^{-1}$$

$$A_{k}^{-1} = \left[A_{k-1} + \frac{(y_{k} - A_{k-1}h_{k})h_{k}^{T}}{h_{k}^{T}h_{k}} \right]^{-1}$$

$$= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \left(1 + h_{k}^{T}A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \right)^{-1} h_{k}^{T}A_{k}^{-1}$$

$$= A_{k-1}^{-1} + \frac{(h_{k} - A_{k-1}^{-1}y_{k})h_{k}^{T}A_{k-1}^{-1}}{h_{k}^{T}A_{k}^{-1}, y_{k}}.$$

- LU-factorization: $\cos \frac{2}{3}n^3 + O(n^2)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$(B + UV^{T})^{-1} = B^{-1} - B^{-1}U(I + V^{T}B^{-1}U)^{-1}V^{T}B^{-1}$$

$$A_{k}^{-1} = \left[A_{k-1} + \frac{(y_{k} - A_{k-1}h_{k})h_{k}^{T}}{h_{k}^{T}h_{k}} \right]^{-1}$$

$$= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \left(1 + h_{k}^{T}A_{k-1}^{-1} \frac{y_{k} - A_{k-1}h_{k}}{h_{k}^{T}h_{k}} \right)^{-1} h_{k}^{T}A_{k-1}^{-1}$$

$$= A_{k-1}^{-1} + \frac{(h_{k} - A_{k-1}^{-1}y_{k})h_{k}^{T}A_{k-1}^{-1}}{h_{k}^{T}A_{k}^{-1}, y_{k}}.$$

Newton-based methods

- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1, ..., x_n) = 0$, i = 1, 2, ..., n has a solution at x iff the function g defined by

$$g(x_1, \dots, x_n) = \sum_{i=1}^n [f_i(x_1, \dots, x_n)]^2$$

←□ → ←□ → ← ≧ →

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1, ..., x_n) = 0$, i = 1, 2, ..., n has a solution at x iff the function q defined by

ㅁㅏ ◀畵ㅏ ◀불ㅏ ◀불ㅏ _ 볼 _

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1,...,x_n)=0, i=1,2,...,n$ has a solution at x iff the function g defined by

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution, but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1,...,x_n)=0,\ i=1,2,...,n$ has a solution at x iff the function g defined by

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - ► Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution, but it will usually converge even for poor initial approximations.
- \bullet "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1, ..., x_n) = 0$, i = 1, 2, ..., n has a solution at x iff the function g defined by

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution, but it will usually converge even for poor initial approximations.
- \bullet "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1, ..., x_n) = 0$, i = 1, 2, ..., n has a solution at x iff the function g defined by

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- The Steepest Descent method converges only linearly to the solution, but it will usually converge even for poor initial approximations.
- \bullet "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1,...,x_n)=0$, i=1,2,...,n has a solution at x iff the function g defined by

$$g(x_1,...,x_n) = \sum_{i=1}^n [f_i(x_1,...,x_n)]^2$$

4 D > 4 A > 4 B > 4 B >

- (i) Evaluate g at an initial approximation $x^{(0)}$;
- (ii) Determine a direction from $x^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $x^{(1)}$:
- (iv) Repeat steps (i) through (iii) with $x^{(0)}$ replaced by $x^{(1)}$.

Definition (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(x)$, at x is defined by

$$\nabla g(x) = \left(\frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial g}{\partial x_n}(x)\right).$$

Definition (Directional Derivative)

$$D_v g(x) = \lim_{h \to 0} \frac{g(x + hv) - g(x)}{h} = v^T \nabla g(x).$$

- (i) Evaluate g at an initial approximation $x^{(0)}$;
- (ii) Determine a direction from $x^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $x^{(1)}$;
- (iv) Repeat steps (i) through (iii) with $x^{(0)}$ replaced by $x^{(1)}$.

Definition (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(x)$, at x is defined by

$$\nabla g(x) = \left(\frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial g}{\partial x_n}(x)\right)$$

Definition (Directional Derivative)

The directional derivative of g at x in the direction of v with $||v||_2 = 1$ is defined by

$$D_v g(x) = \lim_{h \to 0} \frac{g(x + hv) - g(x)}{h} = v^T \nabla g(x).$$

- (i) Evaluate g at an initial approximation $x^{(0)}$;
- (ii) Determine a direction from $x^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $x^{(1)}$;
- (iv) Repeat steps (i) through (iii) with $x^{(0)}$ replaced by $x^{(1)}$.

Definition (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(x)$, at x is defined by

$$\nabla g(x) = \left(\frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial g}{\partial x_n}(x)\right).$$

Definition (Directional Derivative)

$$D_v g(x) = \lim_{h \to 0} \frac{g(x + hv) - g(x)}{h} = v^T \nabla g(x).$$

- (i) Evaluate g at an initial approximation $x^{(0)}$;
- (ii) Determine a direction from $x^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $x^{(1)}$;
- (iv) Repeat steps (i) through (iii) with $x^{(0)}$ replaced by $x^{(1)}$.

Definition (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(x)$, at x is defined by

$$\nabla g(x) = \left(\frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial g}{\partial x_n}(x)\right).$$

Definition (Directional Derivative)

$$D_v g(x) = \lim_{h \to 0} \frac{g(x + hv) - g(x)}{h} = v^T \nabla g(x).$$

- (i) Evaluate g at an initial approximation $x^{(0)}$;
- (ii) Determine a direction from $x^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $x^{(1)}$;
- (iv) Repeat steps (i) through (iii) with $x^{(0)}$ replaced by $x^{(1)}$.

Definition (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(x)$, at x is defined by

$$\nabla g(x) = \left(\frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial g}{\partial x_n}(x)\right).$$

Definition (Directional Derivative)

$$D_v g(x) = \lim_{h \to 0} \frac{g(x + hv) - g(x)}{h} = v^T \nabla g(x)$$

Basic idea of steepest descent method:

- (i) Evaluate g at an initial approximation $x^{(0)}$;
- (ii) Determine a direction from $x^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $x^{(1)}$;
- (iv) Repeat steps (i) through (iii) with $x^{(0)}$ replaced by $x^{(1)}$.

Definition (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(x)$, at x is defined by

$$\nabla g(x) = \left(\frac{\partial g}{\partial x_1}(x), \cdots, \frac{\partial g}{\partial x_n}(x)\right).$$

Definition (Directional Derivative)

The directional derivative of g at x in the direction of v with $\parallel v \parallel_2 = 1$ is defined by

$$D_v g(x) = \lim_{h \to 0} \frac{g(x + hv) - g(x)}{h} = v^T \nabla g(x).$$

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(x)$.

• Object: reduce g(x) to its minimal value zero. \Rightarrow for an initial approximation $x^{(0)}$, an appropriate choice for new vector $x^{(1)}$ is

$$x^{(1)} = x^{(0)} - \alpha \nabla g(x^{(0)}), \quad \text{ for some constant } \alpha > 0.$$

• Choose $\alpha > 0$ such that $g(x^{(1)}) < g(x^{(0)})$: define

$$h(\alpha) = g(x^{(0)} - \alpha \nabla g(x^{(0)})),$$

$$h(\alpha^*) = \min_{\alpha} h(\alpha).$$

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(x)$.

• Object: reduce g(x) to its minimal value zero.

 \Rightarrow for an initial approximation $x^{(0)}$, an appropriate choice for new vector $x^{(1)}$ is

$$x^{(1)} = x^{(0)} - \alpha \nabla g(x^{(0)}), \quad \text{for some constant} \quad \alpha > 0.$$

• Choose lpha > 0 such that $g(x^{(1)}) < g(x^{(0)})$: define

$$h(\alpha) = g(x^{(0)} - \alpha \nabla g(x^{(0)})),$$

$$h(\alpha^*) = \min_{\alpha} h(\alpha).$$

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(x)$.

• Object: reduce g(x) to its minimal value zero. \Rightarrow for an initial approximation $x^{(0)}$, an appropriate choice for new vector $x^{(1)}$ is

$$x^{(1)} = x^{(0)} - \alpha \nabla g(x^{(0)}), \quad \text{ for some constant } \alpha > 0.$$

• Choose $\alpha > 0$ such that $g(x^{(1)}) < g(x^{(0)})$: define

$$h(\alpha) = g(x^{(0)} - \alpha \nabla g(x^{(0)})),$$

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(x)$.

• Object: reduce g(x) to its minimal value zero. \Rightarrow for an initial approximation $x^{(0)}$, an appropriate choice for new vector $x^{(1)}$ is

$$x^{(1)} = x^{(0)} - \alpha \nabla g(x^{(0)}),$$
 for some constant $\alpha > 0$.

• Choose $\alpha > 0$ such that $g(x^{(1)}) < g(x^{(0)})$: define

$$h(\alpha) = g(x^{(0)} - \alpha \nabla g(x^{(0)})),$$

$$h(\alpha^*) = \min_{\alpha} h(\alpha).$$

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(x)$.

• Object: reduce g(x) to its minimal value zero. \Rightarrow for an initial approximation $x^{(0)}$, an appropriate choice for new vector $x^{(1)}$ is

$$x^{(1)} = x^{(0)} - \alpha \nabla g(x^{(0)}),$$
 for some constant $\alpha > 0$.

• Choose $\alpha > 0$ such that $g(x^{(1)}) < g(x^{(0)})$: define

$$h(\alpha) = g(x^{(0)} - \alpha \nabla g(x^{(0)})),$$

$$h(\alpha^*) = \min_{\alpha} h(\alpha).$$

• How to find α^* ?

- lacktriangle Solve a root-finding problem $h'(lpha)=0 \; \Rightarrow \;$ Too costly, in general.
- ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ***** Set $\alpha_1 = 0$ to minimize the computation
- \star α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- ***** Choose $\alpha_2 = \alpha_3/2$

• How to find α^* ?

- ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
- ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ***** Set $\alpha_1 = 0$ to minimize the computation
- * α_3 is found with $h(\alpha_3) < h(\alpha_1)$
- ***** Choose $\alpha_2 = \alpha_3/2$

- How to find α^* ?
 - ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
 - ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), P(\alpha_2) = h(\alpha_2), P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- * Set $\alpha_1 = 0$ to minimize the computation
- * α_3 is found with $h(\alpha_3) < h(\alpha_1)$
- ***** Choose $\alpha_2 = \alpha_3/2$.

- How to find α^* ?
 - ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
 - ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ***** Set $\alpha_1 = 0$ to minimize the computation
- * α_3 is found with $h(\alpha_3) < h(\alpha_1)$
- ***** Choose $\alpha_2 = \alpha_3/2$.

- How to find α^* ?
 - ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
 - ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ***** Set $\alpha_1 = 0$ to minimize the computation
- * α_3 is found with $h(\alpha_3) < h(\alpha_1)$
- ***** Choose $\alpha_2 = \alpha_3/2$

- How to find α^* ?
 - ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
 - ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ★ Set $\alpha_1 = 0$ to minimize the computation
- * α_3 is found with $h(\alpha_3) < h(\alpha_1)$
- ***** Choose $\alpha_2 = \alpha_3/2$

- How to find α^* ?
 - ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
 - ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ★ Set $\alpha_1 = 0$ to minimize the computation
- ★ α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- ***** Choose $\alpha_2 = \alpha_3/2$.

- How to find α^* ?
 - ▶ Solve a root-finding problem $h'(\alpha) = 0 \implies$ Too costly, in general.
 - ▶ Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$x^{(1)} = x^{(0)} - \hat{\alpha} \nabla g(x^{(0)}).$$

- ★ Set $\alpha_1 = 0$ to minimize the computation
- ★ α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- ★ Choose $\alpha_2 = \alpha_3/2$.

Example

Use the Steepest Descent method with $x^{(0)} = (0,0,0)^T$ to find a reasonable starting approximation to the solution of the nonlinear system

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Let
$$g(x1, x_2, x_3) = [f_1(x_1, x_2, x_3)]^2 + [f_2(x_1, x_2, x_3)]^2 + [f_3(x_1, x_2, x_3)]^2$$
.

Then
$$\nabla g(x_1, x_2, x_3) \equiv \nabla g(x)$$

$$= \left(2f_1(x)\frac{\partial f_1}{\partial x_1}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_1}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_1}(x), \right.$$

$$2f_1(x)\frac{\partial f_1}{\partial x_2}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_2}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x),$$

$$2f_1(x)\frac{\partial f_1}{\partial x_3}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_3}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_3}(x)$$

Example

Use the Steepest Descent method with $x^{(0)} = (0,0,0)^T$ to find a reasonable starting approximation to the solution of the nonlinear system

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Let
$$g(x1, x_2, x_3) = [f_1(x_1, x_2, x_3)]^2 + [f_2(x_1, x_2, x_3)]^2 + [f_3(x_1, x_2, x_3)]^2$$
.
Then
$$\nabla g(x_1, x_2, x_3) \equiv \nabla g(x)$$

$$= \left(2f_1(x)\frac{\partial f_1}{\partial x_1}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_1}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_1}(x), \right.$$

$$2f_1(x)\frac{\partial f_1}{\partial x_2}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_2}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x),$$

$$2f_1(x)\frac{\partial f_1}{\partial x_3}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_3}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_3}(x)$$

Example

Use the Steepest Descent method with $x^{(0)} = (0,0,0)^T$ to find a reasonable starting approximation to the solution of the nonlinear system

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Let
$$g(x1, x_2, x_3) = [f_1(x_1, x_2, x_3)]^2 + [f_2(x_1, x_2, x_3)]^2 + [f_3(x_1, x_2, x_3)]^2$$
.
Then
$$\nabla g(x_1, x_2, x_3) \equiv \nabla g(x)$$

$$= \left(2f_1(x)\frac{\partial f_1}{\partial x_1}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_1}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_1}(x), \right.$$

$$2f_1(x)\frac{\partial f_1}{\partial x_2}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_2}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x),$$

$$2f_1(x)\frac{\partial f_1}{\partial x_3}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_3}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_3}(x)$$

$$g(x^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(x^{(0)})\|_2 = 419.554$.

$$z = \frac{1}{z_0} \nabla g(x^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T$$

$$g_1 = g(x^{(0)} - \alpha_1 z) = g(x^{(0)}) = 111.975.$$

$$g_3 = g(x^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(x^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(x^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(x^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(x^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(x^{(0)} - \alpha_1 z) = g(x^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(x^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(x^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(x^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(x^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(x^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(x^{(0)} - \alpha_1 z) = g(x^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(x^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(x^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(x^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(x^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(x^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(x^{(0)} - \alpha_1 z) = g(x^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(x^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(x^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(x^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(x^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(x^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(x^{(0)} - \alpha_1 z) = g(x^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(x^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(x^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(x^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(x^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(x^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(x^{(0)} - \alpha_1 z) = g(x^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(x^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(x^{(0)} - \alpha_2 z) = 2.53557.$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(x^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(x^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},$$

$$x^{(1)} = x^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T.$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(x^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1\alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1\alpha_3 + h_3\alpha_3(\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(x^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},$$

$$x^{(1)} = x^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(x^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

$$g_0 = g(x^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

$$x^{(1)} = x^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(x^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1\alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1\alpha_3 + h_3\alpha_3(\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(x^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

$$x^{(1)} = x^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T.$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(x^{(0)}-\alpha z)$ at $\alpha_1=0, \alpha_2=0.5$ and $\alpha_3=1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

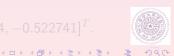
so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(x^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},$$

$$x^{(1)} = x^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T.$$



$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(x^{(0)}-\alpha z)$ at $\alpha_1=0, \alpha_2=0.5$ and $\alpha_3=1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1\alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1\alpha_3 + h_3\alpha_3(\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(x^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},$$

$$x^{(1)} = x^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T.$$

