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These slides are based on Prof. Tsung-Ming Huang(NTNU)'s original slides
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Outline

© Fixed points for functions of several variables

© Newton’s method

© Quasi-Newton methods

@ Steepest Descent Techniques
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Fixed points for functions of several variables

Theorem
Let f: D C R® — R be a function and xg € D.
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Fixed points for functions of several variables

Theorem

Let f : D C R™ — R be a function and xo € D. If all the partial

derivatives of f exist and 3§ > 0 and o > 0 such thatV ||z — zo| < 0
and xz € D,
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Fixed points for functions of several variables

Theorem

Let f : D C R™ — R be a function and xo € D. If all the partial

derivatives of f exist and 3§ > 0 and o > 0 such thatV ||z — zo| < 0
and x € D, we have

Pﬂ@
a’Ej

<a, Vji=12,...,n,
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Fixed points for functions of several variables

Theorem

Let f : D C R™ — R be a function and xo € D. If all the partial

derivatives of f exist and 3 0 > 0 and a > 0 such thatV ||z — xo|| <
and x € D, we have

Pﬂ@
a’L‘j

<a, Vji=12,...,n,

then f is continuous at xg.
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Fixed points for functions of several variables

Theorem

Let f : D C R™ — R be a function and xo € D. If all the partial
derivatives of f exist and 3 0 > 0 and a > 0 such thatV ||z — xo|| <
and x € D, we have

Pﬂ@
a(L‘j

<a, Vji=12,...,n,

then f is continuous at xg.

Definition (Fixed Point)

A function G from D C R" into R™ has a fixed point at p € D if
G(p) =p-.
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Theorem (Contraction Mapping Theorem)
Let D= {(z1, - ,2n)T;a; <x; <b;,Vi=1,...,n} CR™

v
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, - ,2p) ;a; <2 <b;,Vi=1,...,n} CR" Suppose
G : D — R" is a continuous function with G(z) € D whenever z € D.

v
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, - ,2p) ;a; <2 <b;,Vi=1,...,n} CR" Suppose
G : D — R" is a continuous function with G(z) € D whenever z € D.
Then G has a fixed point in D.

v
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, - ,2p) ;a; <2 <b;,Vi=1,...,n} CR" Suppose

G : D — R" is a continuous function with G(z) € D whenever z € D.
Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant
a < 1 exists with

B
‘ gi() < g’ whenever x € D,
n

8.%'j

forj=1,....,nandi=1,...,n.
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, - ,2p) ;a; <2 <b;,Vi=1,...,n} CR" Suppose

G : D — R" is a continuous function with G(z) € D whenever z € D.
Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant
a < 1 exists with

< —, whenever z € D,

0gi(x)
8.%'j

(0%
n

forj=1,....,nandi=1,...,n. Then, forany:c(o) eD,
2®) = Gz, foreach k> 1

converges to the unique fixed point p € D
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, - ,2p) ;a; <2 <b;,Vi=1,...,n} CR" Suppose

G : D — R" is a continuous function with G(z) € D whenever z € D.
Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant
a < 1 exists with

< —, whenever z € D,

0gi(x)
8.%'j

(0%
n

forj=1,....,nandi=1,...,n. Then, forany:c(o) eD,
2®) = Gz, foreach k> 1

converges to the unique fixed point p € D and

k
o'
| 2%) = p [|oo< T | 2® — 2z || .

Wei-Cheng Wang (NTHU) Spring 2011 4/33



Example

Consider the nonlinear system

1
3.’1,‘1 — cos(x2x3) — =

22 — 81(x + 0.1)2 + sinzz + 1.06
10 — 3

e 172 1 20x3 +

2

3

)

0
0,
0
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Example

Consider the nonlinear system

1
3(L’1 — cos(x2x3) — =

=0
2 )
22 —81(z2 +0.1)° +sinz3 +1.06 = 0,
10w — 3
e 4 0ps+ ——— = = 0
@ Fixed-point problem:
Change the system into the fixed-point problem:
1 1
= 3 cos(zox3) + = g1(x1, 22, 13),
I -
Ty = 5\/:51 +sinzz + 1.06 — 0.1 = go(z1, 2, 23),
1 10w — 3
T3 = ——e T2 _ n = g3(z1, 22, 23).

20 60

Let G : R3 — R3 be defined by G(x) = [g1(%), g2(), g3(x)]” .
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@ G has a unique point in D =[-1,1] x [-1,1] x [-1,1]:
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@ G has a unique point in D =[-1,1] x [-1,1] x [-1,1]:
» Existence: V z € D,

1 1
l91(z)| < 5] cos(z223)| + g < 0.5,

1 1
lg2(2)| = '6\/96% +sina3 +1.06 01| < oI+ sin1+1.06 - 0.1 < 0.09,

107r—3< 1€+107r—3
60 — 20 60

_l oo
lgs(z)| = 20° + < 0.61,

it implies that G(x) € D whenever z € D.
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@ G has a unique point in D =[-1,1] x [-1,1] x [-1,1]:
» Existence: V z € D,

1 1
l91(z)| < 5] cos(z223)| + g < 0.5,

1 1
lg2(2)| = '6\/33% +sinas + 1.06 — 0.1‘ < gVI+sinI+1.06-0.1<0.09,

107r—3< 16+107r—3
60 — 20 60

_l oo
lgs(z)| = 20° + < 0.61,

it implies that G(x) € D whenever z € D.
» Uniqueness:

22| = O, —~ =0 d |—| = 07
0 ‘31'2 o Oxs
as well as

9 1 } 1 .

’899; < Slas| - [sin(zzas)| < $sin1 <0281,
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1 1
g_i-z = 5’5‘72‘ | sin(z223)| < 35in1<0281,
2| = a <1 <023
o 9\/x% +sinzs + 1.06 9/0.218
992 | cos x3| 1
dr3| < < 0.119,
93 18\/x§ tsinzg+1.06 18v0.218
E |Z2| ey 1
| T 5p¢ < pe<014
0x1 20 € = 206 < )
893 ‘El‘ - 1
20 = 50 < —e<0.14.
Oz, 20 € =506 <
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1 1
g_i; < §’$2\ -] sin(z223)| < 3 sinl < 0.281,
1
% - 21 < < 0.238,
1 9\/x§ tsinzs +1.06 9V/0218
992 | cos z3] 1
Bl < < 0.119,
31‘3 18\/11% +sinx3 +1.06 184/0.218
993 |x2‘ —T1T 1
F| = S < 5e<014
Oz 20 =206 <
993 |z1] —2172 1
a1 = S5 < —e<0.14.
0 20° ST
These imply that g1, g» and g3 are continuous on D and V x € D,
99| < 0.281, v i, ;.
2
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1 1
g_i; < §’x2\ -] sin(z223)| < 3 sinl < 0.281,
1
% - 21 < < 0.238,
1 9\/x§ tsinzs +1.06 9V/0218
992 | cos z3] 1
Bl < < 0.119,
31‘3 18\/11% +sinx3 +1.06 184/0.218
993 |x2‘ —T1T 1
F| = S < 5e<014
Oy 20° St
993 |z1] —2172 1
a1 = S5 < —e<0.14.
0 20° ST
These imply that g1, g» and g3 are continuous on D and V x € D,
99| < 0.281, v i, ;.
2

Similarly, 0g;/0x; are continuous on D for all 4 and j.
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0 1 . 1.
8—5; < glxz\ - | sin(zaz3)| < 3 sin 1 < 0.281,
0 1
8—92 — |21 < < 0.238,
i 9,/22 +sinzs +1.06 9V0.218
092 | cos z3] 1
= = < < 0.119,
oI 18/22 + sinas + 1.06  18V0.218
893 |.132‘ —T1% 1
CLY < _—e<0.14
0y 20° ST
893 |l’1‘ —x1%2 1
—=| = L2 < — 0.14.
B2 20° ST
These imply that g1, g» and g3 are continuous on D and V z € D,
B
9i| <0281, V i,j.
2

Similarly, g;/0x; are continuous on D for all i and j. Consequently, G
has a unique fixed point in D.
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@ Approximated solution:

» Fixed-point iteration (I):
Choosing 2(® = [0.1,0.1, —0.1]7, the sequence {z(®)} is generated by

e
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@ Approximated solution:
> Fixed-point iteration (I):
Choosing 2(®) = [0.1,0.1, —0.1]7, the sequence {z(¥)} is generated by

1 _ _ 1
xgk) = gcosxgk l)xgk 2 atx 5’
1 1)\ 2 _
P = 9\/(3:(1’“ D) 4 sinal ™ +1.06 - 0.1,
(k) _ 1 gy 10m—3
e 20° 60
> Result:
3 3 3 -
k o o0 2P [|z®) — k=1)||
0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.00944115 -0.52310127 0.423
2 0.49999593 0.00002557 -0.52336331 9.4 x 1073
3 0.50000000 0.00001234 -0.52359814 23 x107*
4 0.50000000 0.00000003 -0.52359847 1.2x107°
5 0.50000000 0.00000002 -0.52359877 3.1x10°7
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@ Approximated solution (cont.):
> Accelerate convergence of the fixed-point iteration:

k 1 k1) (k-1) , 1

x(l ) = 3 cosxg )a:g ) + 5
w _ L mY o kD

o = GV + sin x5 +1.06 — 0.1,
(k) _ 1 gk 10w —3

5 20° 60

as in the Gauss-Seidel method for linear systems.
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@ Approximated solution (cont.):
» Accelerate convergence of the fixed-point iteration:

1 _ _ 1
x(lk) = §cosx(2k l)zzzgk 2 ate 5
(k) N Y0 S (o)
= 3 (+07) +sinaf Y +1.06 - 0.,
O 1 e—rﬁ"):r(z'“) 107 -3
5 20 60
as in the Gauss-Seidel method for linear systems.
> Result:
B o) 1) ) [a® —a® V],
0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.02222979 -0.52304613 0.423
2 0.49997747 0.00002815 -0.52359807 2.2 x 1072
3 0.50000000 0.00000004 -0.52359877 2.8x10°°
4 0.50000000 0.00000000 -0.52359877 3.8x1078
Speing 2011 /7



Newton's method
First consider solving the following system of nonlinear equations:

fi(z1,22) =0,
Ja(x1,22) = 0.
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Newton's method

First consider solving the following system of nonlinear equations:

fi(z1,22) =0,
Ja(x1,22) = 0.

Suppose (x&k),xgk)) is an approximation to the solution of the system
above,
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Newton's method

First consider solving the following system of nonlinear equations:

fi(z1,22) =0,
Ja(x1,22) = 0.

Suppose (xl ,xg )) is an approximation to the solution of the system
above, and we try to compute hgk) and hgk) such that
(g (k) 4 h(k) gk) I hgk)) satisfies the system.
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Newton's method
First consider solving the following system of nonlinear equations:
fi(z1,22) =0,
fa(z1,22) = 0.
Suppose (9:(1 ),xg )) is an approximation to the solution of the system
above, and we try to compute hgk) and hék) such that

(:cgk) IF h(lk), a:gk) T hgk)) satisfies the system. By the Taylor's theorem for
two variables,

0 = fi(a® 1 h{D o® 4 0y
~ fi(a®, (’“>)+h’“)§fl( (0 ) 4 h<k>3f1( () (k)
0 = fo(a® 1 h{D o® 4 0y

0 0
~ o, 0) ¢ MO G0 10 DI 0 100
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Put this in matrix form

k k
%(x& )>$g )) 0o (m1 7x2 ) hgk)
k) (k) Of2(..(K) (k) (k)

+
8x1(x( Ty ) am(ml Ty ) hy

ﬁ(az&’“),xé’“))] [o]
fa(a, ) 0}
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Put this in matrix form
k) (k k) (k
082 2y 2 (), M) ] [ B

s 2% G2

| i ey ] ~[4].

fa(at?, 289) 0

ox1 1> ZE2 0o

The matrix

ofs (- (k) (k)Y @
J(a®,2$) = [ oh(@,2") G

is called the Jacobian matrix.
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Put this in matrix form
k) (k k) (k
282,28y 8A(aM) o) ] [ B

afz( (k) ()) 8f2($gk)’$gk))

o[ A, ] M

£2®), 2{9) 0

ox1 1> ZE2 0o

The matrix

k) (k) ¢ k) (K
I o0y = | 6 ghia”. o)
Lo %(xgk)’xgk)) %(x(k) :E(k))
is called the Jacobian matrix. Set h(lk) and hgk) be the solution of the
linear system
(k) k)
el 1y | == | B |
hy fa(at?), 25?)
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Put this in matrix form
ooy, a8”) 5B (a1, 257) ] [ "

39”1 GO PROIRD )
a—g( 1T ) a—ﬁ(% Ty ) hy

| i ey ] ~[4].

fa(at?, 289) 0

The matrix
Ofr (k) (k)Y Ofi(. (k) (k)
J(:L'gk),wgk)) = [ 5z (T1 5% ) 55, (71 73 ) ]

7 0xo 2
ARINGR RO

is called the Jacobian matrix. Set h(lk) and hgk) be the solution of the
linear system

I, o) [ ! ] o [ fi@l?, 28 ] ,

Ty ,T
P2 o, 2$9)

$gk+1) _ xgk) hgk)
wgk+l) xgk) hgk)
is expected to be a better approximation.
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In general, we solve the system of n nonlinear equations
fizr,-+-,2n) =0,i=1,...,n.
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In general, we solve the system of n nonlinear equations
filx1,--+ ,x,)=0,i=1,...,n. Let

:c:[xl T2 -+ Ip ]T
and .
]

F(z)=[ filz) falx) -+ fal2)
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In general, we solve the system of n nonlinear equations
filx1,--+ ,x,)=0,i=1,...,n. Let
T

and .
I -

F(z)=[ filz) falx) -+ fal2)

The problem can be formulated as solving

F(z)=0, F:R"—R"
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In general, we solve the system of n nonlinear equations
filx1,--+ ,x,)=0,i=1,...,n. Let

:c:[xl o - a:n]T

and .
F(z)=[ filz) falx) -+ fala) ] -
The problem can be formulated as solving
F(z)=0, F:R"—R".

Let J(x), where the (i, 7) entry is g—g{;(a}) be the n x n Jacobian matrix.
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In general, we solve the system of n nonlinear equations
filx1,--+ ,x,)=0,i=1,...,n. Let
T

and
F(z)=[ filz) fae) - falx)]".

The problem can be formulated as solving

F(z)=0, F:R*—>R"

Let J(x), where the (i, 7) entry is gg; (), be the n x n Jacobian matrix.
Then the Newton's iteration is defined as

(k1) — g(k) 4 p(k)
where h() € R™ is the solution of the linear system
J(zFNAk) = — p(z*)).
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Algorithm (Newton's Method for Systems)

Given a function F : R" — R™, an initial guess 2(%) to the zero of F, and
stop criteria M, 9, and ¢, this algorithm performs the Newton's iteration
to approximate one root of F.

Set k =0 and h(-1) = ¢;.

While (k < M) and (|| A%~ ||> 6) and (|| F(z*)) ||> ¢)
Calculate J(z(R)) = [0F; (™)) /0x;].
Solve the n x 7 linear system J(z(M)h(k) = — F((¥).
Set (A1) = £(®) 4+ p(%) and k =k + 1.

End while

Output (“Convergent z(¥)") or
(“Maximum number of iterations exceeded")
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Theorem
Let x* be a solution of G(x) = x.

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 14 / 33



Theorem
Let x* be a solution of G(x) = x. Suppose 3 6 > 0 with
(i) 0gi/0xj is continuous on N5 = {x; ||x — «*|| < 0} for all i and j.
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Theorem
Let x* be a solution of G(x) = x. Suppose 3 § > 0 with

(i) 0gi/0xj is continuous on N5 = {x; ||x — «*|| < 0} for all i and j.
(i) 02gi(z)/(0z;0zy) is continuous and

8zgi(x)
—— <M
‘&c]&rk o

for some M whenever x € Ng for each i, j and k.
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Theorem
Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0gi/0xj is continuous on N5 = {x; ||x — «*|| < 0} for all i and j.
(i) 02gi(z)/(0z;0zy) is continuous and

‘ 8291'(%)

Bscjaxk

for some M whenever x € Ng for each i, j and k.
(iii) Ogi(x*)/0x = 0 for each i and k.
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Theorem
Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0gi/0xj is continuous on N5 = {x; ||x — «*|| < 0} for all i and j.
(i) 02gi(z)/(0z;0zy) is continuous and

‘ 8291'(%)

8xj8:1;k

for some M whenever x € Ng for each i, j and k.
(iii) Ogi(x*)/0x = 0 for each i and k.
Then 3 6 < & such that the sequence {z)Y generated by

converges quadratically to o* for any #(© satisfying ||2(©) — *||o < 4.
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Theorem
Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0gi/0xj is continuous on N5 = {x; ||x — «*|| < 0} for all i and j.
(i) 02gi(z)/(0z;0zy) is continuous and

‘ 8291'(%)

8xj8:1;k

for some M whenever x € Ng for each i, j and k.
(iii) Ogi(x*)/0x = 0 for each i and k.
Then 3 6 < & such that the sequence {z)Y generated by

converges quadratically to o* for any #(© satisfying ||2(©) — *||o < 4.
Moreover,

n2M

12 — 2*l0o < =D — 2|2,V k> 1.
Spring 2011 14/ 33




Example
Consider the nonlinear system

1
3x1 — cos(zax3) — = =

2 0

22 —81(xz2 +0.1)® +sinz3 +1.06 = 0,
1 —

e 172 + 20x3 + M = 0.

3
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Example
Consider the nonlinear system
1
3x1 — cos(zax3) — 5 = 0,
22 —81(xz2 +0.1)® +sinz3 +1.06 = 0,
1077 —
™17 4 20z3 + 0”3 > _ o

@ Nonlinear functions: Let

F(x1,72,73) = [fi(21, 22, 23), fo(21, 22, 23), f3(21, 22, 23)] ",

where
1
fi(z1,20,23) = 31 — cos(xrx3) — 57
fo(w1,22,23) = a3 — 81(zo + 0.1)> 4 sinz3 + 1.06,
10mr — 3
fa(z1,22,23) = € %2 +20z3 + =2
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o Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

3 3 Sin Tox3 To SIN X2x3
J(:L’l, X2, l‘3) = 211 —162(382 -+ 0.1) COS I3
—xpe” T1%2 —dpE e 20
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o Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

3 T3 Sin Tox3 To SIN X2x3
J(x1,22,23) = 211 —162(z2 +0.1) CoS T3
—xpe” T1%2 —dpE e 20

o Newton’s iteration with initial (%) =[0.1,0.1, —0.1]7"

xgk) x(k_l) hgk—l)
xgk) — | G0 | — hgk—l) :
:ng) xgkfl) hgkfl)
where
h(llc—l) B
hgk_l) _ <J(x§k71),xgkfl)’xgkfl))) F($gkfl)’$gkfl)’$gkfl))'
hgk—l)
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@ Result:

B ol 2 2P [a® — a2tV
0 0.10000000 0.10000000 -0.10000000

1 0.50003702 0.01946686 -0.52152047 0.422

2 0.50004593 0.00158859 -0.52355711 1.79 x 102

3 0.50000034 0.00001244 -0.52359845 1.58 x 1073

4 0.50000000 0.00000000 -0.52359877 1.24 x 1072

5 0.50000000 0.00000000 -0.52359877 0
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Quasi-Newton methods

@ Newton's Methods
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Quasi-Newton methods

@ Newton's Methods
» Advantage: quadratic convergence
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Quasi-Newton methods

@ Newton's Methods

» Advantage: quadratic convergence
» Disadvantage: For each iteration, it requires O(n®) + O(n?) + O(n)
arithmetic operations:
* n? partial derivatives for Jacobian matrix — in most situations, the
exact evaluation of the partial derivatives is inconvenient.
* n scalar functional evaluations of F
* O(n?) arithmetic operations to solve linear system.
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Quasi-Newton methods

@ Newton's Methods

» Advantage: quadratic convergence
» Disadvantage: For each iteration, it requires O(n®) + O(n?) + O(n)
arithmetic operations:

* n? partial derivatives for Jacobian matrix — in most situations, the
exact evaluation of the partial derivatives is inconvenient.

* n scalar functional evaluations of F

* O(n®) arithmetic operations to solve linear system.

@ quasi-Newton methods

» Advantage: it requires only n scalar functional evaluations per iteration
and O(n?) arithmetic operations
» Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

() = f(ag) + ap(z — xx)

to approximate the function f(x) at xg.
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Quasi-Newton methods

@ Newton's Methods

» Advantage: quadratic convergence
» Disadvantage: For each iteration, it requires O(n®) + O(n?) + O(n)
arithmetic operations:

* n? partial derivatives for Jacobian matrix — in most situations, the
exact evaluation of the partial derivatives is inconvenient.

* n scalar functional evaluations of F

* O(n®) arithmetic operations to solve linear system.

@ quasi-Newton methods

» Advantage: it requires only n scalar functional evaluations per iteration
and O(n?) arithmetic operations
» Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

U(z) = f(zr) + ar(z — z)

to approximate the function f(x) at . That is, {;(xx) = f(xy) for any
ap € R. If we further require that ('(z;,) = f'(x1), then a, = f'(x1).
Spring 2011 18 / 33



The zero of /(x) is used to give a new approximate for the zero of f(z),

that is, .
Tpt1 = T — mf(wk)

which yields Newton's method.
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The zero of /(x) is used to give a new approximate for the zero of f(z),

that is, .
Th+1 = Tk — mf(mk)

which yields Newton's method.
If f'(x1) is not available, one instead asks the linear model to satisfy

Ek(ltk) = f(xk) and Ek(wkfl) = f(ack,l).
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The zero of /(x) is used to give a new approximate for the zero of f(z),
that is, .
Th+1 = Tk — mf(mk)

which yields Newton's method.
If f'(x1) is not available, one instead asks the linear model to satisfy

Ek(xk) = f(xk) and Ek(wkfl) = f(mkfl).
In doing this, the identity
f(zr-1) = le(zr—1) = f(zr) + an(zr—1 — z1)

gives

_ f=zw) = flae—1)

T — Tk—1
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The zero of /(x) is used to give a new approximate for the zero of f(z),

that is, .
Th+1 = Tk — mf(mk)

which yields Newton's method.
If f'(x1) is not available, one instead asks the linear model to satisfy

Ek(ibk) = f(.%k) and Ek(wkfl) = f(mkfl).
In doing this, the identity
f(@p-1) = le(zr-1) = f(@k) + arp(zr—1 — o)

gives

~ flzk) = f(@p-1)

T — Tk—1

Solving ¢ (z) = 0 yields the secant iteration

Tpt1 = Tk — S
f(wr) — f(r-1)
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In multiple dimension, the analogue affine model becomes
My (z) = F(xg) + Ag(x — xg),
where z,z;, € R™ and A, € R™ ", and satisfies
My(xr) = F(zr),

for any Ay.

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 20/ 33



In multiple dimension, the analogue affine model becomes
My (z) = F(xg) + Ag(x — xg),
where z,z;, € R™ and A, € R™ ", and satisfies
My(xr) = F(zr),

for any Ag. The zero of My(x) is then used to give a new approximate for
the zero of F(x), that is,

Tkl = Tk — A;lF(xk)

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 20/ 33



In multiple dimension, the analogue affine model becomes
My (z) = F(xg) + Ag(x — xg),
where z,z;, € R™ and A, € R™ ", and satisfies
My(xr) = F(zr),

for any Ag. The zero of My(x) is then used to give a new approximate for
the zero of F(x), that is,

Tpt1 = Tk — A;lF(xk).
The Newton's method chooses
A = F'(x1,) = J(x) = the Jacobian matrix
and yields the iteration
The1 = 2k — (F'(ar)) " Flaw)-
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When the Jacobian matrix J(zx) = F’(xy) is not available, one can
require

Mk(xk,]_) = F(Z’k,]_).
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When the Jacobian matrix J(zx) = F’(xy) is not available, one can
require

Mk(mk,]_) = F(xk,]_).

Then
F(zg-1) = Mi(zg-1) = F(zg) + Ap(@p-1 — 7)),
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When the Jacobian matrix J(zx) = F’(xy) is not available, one can
require

]\/[k(mk,l) — F(xk,l).

Then
F(zg-1) = Mi(zg-1) = F(zg) + Ap(@p-1 — 7)),

which gives

Ak(:ﬂk — .%‘kfl) = F(ack) — F(xk,l)

and this is the so-called secant equation.

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 21 /33



When the Jacobian matrix J(zx) = F’(xy) is not available, one can
require

]\/[k(mk,l) — F(xk,l).

Then
F(zg-1) = Mi(zg-1) = F(zg) + Ap(@p-1 — 7)),

which gives

Ak(:ﬂk — .%‘kfl) = F(ack) — F(xk,l)
and this is the so-called secant equation. Let

hi = xp — k-1 and  yp = F(zg) — F(zp-1).
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When the Jacobian matrix J(zx) = F’(xy) is not available, one can
require

]\/[k(l‘kfl) — F(xk,l).

Then
F(zg-1) = Mi(zg-1) = F(zg) + Ap(@p-1 — 7)),

which gives
Az — xp—1) = F(z) — F(28-1)
and this is the so-called secant equation. Let
hp =2 — 21 and  yp = F(xy) — F(op_1).
The secant equation becomes

Aghi = Y.
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However, this secant equation can not uniquely determine Ay.
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However, this secant equation can not uniquely determine Ag. One way of
choosing Ay, is to minimize Mj, — Mj,_1 subject to the secant equation.
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However, this secant equation can not uniquely determine Ag. One way of
choosing Ay, is to minimize Mj, — Mj,_1 subject to the secant equation.
Note

Mi(z) — My—1(z) = F(zg)+ Ap(z — zg) — F(zr—1) — Ak—1(z — 2—1)
(F(zx) — F(zk-1)) + Ax(z — zx) — Ap—1(z — 21
Ag(xp — zp—1) + Ak(z — x) — Ag—1(x — 2§—1)
Ap(z — wp—1) — Ap—1(z — 23-1)

— (Ap— Ap_1)(@ — 1)
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However, this secant equation can not uniquely determine Ag. One way of
choosing Ay, is to minimize Mj, — Mj,_1 subject to the secant equation.
Note

Mi(z) — My—1(z) = F(zg)+ Ap(z — zg) — F(zr—1) — Ak—1(z — 2—1)
(F(zx) — F(zk-1)) + Ax(z — zx) — Ap—1(z — 21
Ag(xp — zp—1) + Ak(z — x) — Ag—1(x — 2§—1)
Ap(z — wp—1) — Ap—1(z — 23-1)

— (Ap— Ap_1)(@ — 1)

For any x € R", we express
r— X1 = Ozhk + tk,

for some a € R, ¢, € R™, and hftk = (),
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However, this secant equation can not uniquely determine Ag. One way of
choosing Ay, is to minimize Mj, — Mj,_1 subject to the secant equation.
Note

Mi(z) — My—1(z) = F(zg)+ Ap(z — zg) — F(zr—1) — Ak—1(z — 2—1)
(F(zx) — F(zk-1)) + Ax(z — zx) — Ap—1(z — 21
Ag(xp — zp—1) + Ak(z — x) — Ag—1(x — 2§—1)
Ap(z — wp—1) — Ap—1(z — 23-1)

— (Ap— Ap_1)(@ — 1)

For any x € R", we express
r— X1 = Ozhk + tk,
for some a € R, ¢, € R™, and hftk = 0. Then

Mk = Mk—l = (Ak = Ak_l)(ahk +tk) = Oé(Ak = Ak_l)hk =F (Ak — Ak—l)tk-
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Since

(Ar — Ak—1)hg = Aghy, — Ag—1hg = yp, — Ag—1hg,

= &
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Since
(Ar — Ak—1)hg = Aghy, — Ag—1hg = yp, — Ag—1hg,

both gy, and Ai_1hy are old values, we have no control over the first part
(Ak — Ak—l)hk-
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Since
(Ar — Ak—1)hg = Aghy, — Ag—1hg = yp, — Ag—1hg,

both gy, and Ai_1hy are old values, we have no control over the first part
(Ax — Ag—1)hg. In order to minimize My (x) — My_1(x), we try to choose
Aj, so that

(Ak = Ak—l)tk =0

for all t;, € R™, h{tk =0.

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 23 /33



Since
(Ar — Ak—1)hg = Aghy, — Ag—1hg = yp, — Ag—1hg,

both gy, and Ai_1hy are old values, we have no control over the first part
(Ax — Ag—1)hg. In order to minimize My (x) — My_1(x), we try to choose
Aj, so that

(Ak = Ak—l)tk =0

for all ¢, € R™, h{tk = 0. This requires that Ay — Aj_1 to be a rank-one
matrix of the form

Ay — Ap_1 = uphi

for some u; € R™.
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Since
(Ar — Ak—1)hg = Aghy, — Ag—1hg = yp, — Ag—1hg,

both gy, and Ai_1hy are old values, we have no control over the first part
(Ax — Ag—1)hg. In order to minimize My (x) — My_1(x), we try to choose
Aj, so that

(Ak = Ak—l)tk =0

for all t, € R", h{tk = 0. This requires that Ay — A;_1 to be a rank-one
matrix of the form

Ak’ - Ak;—l — U]{;hz;
for some ug € R™. Then

uphf by, = (A — Ag—1)hg = Yy — Ap—1hy,
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which gives

_ Yk — Ap_1hg
nThy,

o &
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which gives

o 1T hy
Therefore,

Ap = A1+

_ Yk — Ap_1hg

(yx — Ap—1hi)hi

W,

o
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which gives

_ Yk — Ap_1hg
nThy,

Uk

Therefore,

(yx — Ap—1hi)hi
Whe

Ap = Ag_1 +

After Ay is determined, the new iterate zj 1 is derived from solving
Mk(l’) =0.

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Spring 2011 24 /33



which gives

_ Yk — Ap_1hg
nThy,

Uk

Therefore,

(yx — Ap—1hi)hi
Whe

Ap = Ag_1 +

After Ay is determined, the new iterate zj 1 is derived from solving
My(x) = 0. It can be done by first noting that

hitir1 =zpr1 — 2 =  Tpyr = 2 + by
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which gives

= Y~ Ap_1hg
g T hy,

Therefore,

(yx — Ag—1hg)hl

Ap = Ag—1 +
k k—1 W,

After Ay is determined, the new iterate zj 1 is derived from solving
My(x) = 0. It can be done by first noting that

hitir1 =zpr1 — 2 =  Tpyr = 2 + by
and

My(zk41) =0 = F(ax) + Ap(zrt1 —2x) =0 = Aghgrs = —F(zy)
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which gives

_ Yk~ Ap_1hg

Uf;
hghk

Therefore,

(yx — Ag—1hg)hl

Ap = Ag—1 +
k k—1 W,

After Ay is determined, the new iterate zj 1 is derived from solving
My(x) = 0. It can be done by first noting that

hit1 = Thp1 — T = Thp1 = Tk + hipa
and
My(zk41) =0 = F(ax) + Ap(zrt1 —2x) =0 = Aghgrs = —F(zy)

These formulations give the Broyden's method.
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Algorithm (Broyden's Method)

Given a n-variable nonlinear function F' : R™ — R"™, an initial iterate zg
and initial Jacobian matrix Ag € R™*™ (e.g., Ao = I), this algorithm finds
the solution for F'(x) = 0.

Given xg, tolerance TOL, maximum number of iteration M.
Set k= 1.
While k& <M and ||$k - $k—1”2 > TOL

Solve Akthrl = —F(.’L‘k) for hk+1

Update zp+1 = z + hgt1

Compute ypi1 = F(2k+1) — F(xk)

Update
— Aih e + F e
A = Ayt (Y11 - k1) _ (Y11 - ()P i1
hie1Pk+1 R Pk+1
k=k+1
End While

v
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Solve the linear system Aphyy1 = —F(xy) for hyy1:
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Solve the linear system Aphyy1 = —F(xy) for hyy1:

@ LU-factorization: cost %n3 + O(n?) floating-point operations.
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Solve the linear system Aphyy1 = —F(xy) for hyy1:
@ LU-factorization: cost %n3 + O(n?) floating-point operations.

@ Applying the Shermann-Morrison-Woodbury formula
(B+UVT) ' =B —B WU (I+VT'BU) " VTB!

to (1), we have
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Solve the linear system Aphyy1 = —F(xy) for hyy1:
@ LU-factorization: cost %n3 + O(n?) floating-point operations.

@ Applying the Shermann-Morrison-Woodbury formula
(B+UVT) ' =B —B WU (I+VT'BU) " VTB!
to (1), we have
Al

= |Ap-1+

(yr — Ak—1hk)h;‘f] -
W

. _ — Ap_1hg 1 Yk — Ag—1hg - —
:Al—Alu(l Y P hT A
k—1 k—1 Wy + g ApZy 1Ty kAg-
1 -1
— Al (hs = Aty hi Aty
= g ! :
kA —1Yk
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Steepest Descent Techniques

@ Newton-based methods
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Steepest Descent Techniques

@ Newton-based methods
» Advantage: high speed of convergence once a sufficiently accurate
approximation
» Weakness: an accurate initial approximation to the solution is needed
to ensure convergence.
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Steepest Descent Techniques

@ Newton-based methods
» Advantage: high speed of convergence once a sufficiently accurate
approximation
» Weakness: an accurate initial approximation to the solution is needed
to ensure convergence.
@ The Steepest Descent method converges only linearly to the solution,

but it will usually converge even for poor initial approximations.
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Steepest Descent Techniques

@ Newton-based methods

» Advantage: high speed of convergence once a sufficiently accurate
approximation

» Weakness: an accurate initial approximation to the solution is needed
to ensure convergence.

@ The Steepest Descent method converges only linearly to the solution,
but it will usually converge even for poor initial approximations.
e “Find sufficiently accurate starting approximate solution by using

Steepest Descent method” + " Compute convergent solution by using
Newton-based methods”
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approximation
» Weakness: an accurate initial approximation to the solution is needed
to ensure convergence.

@ The Steepest Descent method converges only linearly to the solution,
but it will usually converge even for poor initial approximations.

e “Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + " Compute convergent solution by using
Newton-based methods”

@ The method of Steepest Descent determines a local minimum for a
multivariable function of g : R™” — R.
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Steepest Descent Techniques

o Newton-based methods
» Advantage: high speed of convergence once a sufficiently accurate
approximation
» Weakness: an accurate initial approximation to the solution is needed
to ensure convergence.

@ The Steepest Descent method converges only linearly to the solution,
but it will usually converge even for poor initial approximations.

e “Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + " Compute convergent solution by using
Newton-based methods”

@ The method of Steepest Descent determines a local minimum for a
multivariable function of g : R™” — R.

@ A system of the form f;(z1,...,2,) =0, i=1,2,...,n has a
solution at z iff the function g defined by

g(z1,...,xy) = Z [fi(z1,... ,xn)]2
i=1

ne n ]
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Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation z(%);
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Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation z(%);
(i) Determine a direction from z(%) that results in a decrease in the value
of g;
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Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation z(%);
(i) Determine a direction from z(%) that results in a decrease in the value
of g;
(iii) l\/go)ve an appropriate distance in this direction and call the new vector
z\l):
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Basic idea of steepest descent method:

(i) Evaluate g at an initial approximation z(%);

(i) Determine a direction from z(%) that results in a decrease in the value
of g;

(iii) Move an appropriate distance in this direction and call the new vector
2z

(iv) Repeat steps (i) through (iii) with (%) replaced by 2(1).
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Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation z(%);
(i) Determine a direction from z(%) that results in a decrease in the value
of g;
(iii) Move an appropriate distance in this direction and call the new vector
2z

(iv) Repeat steps (i) through (iii) with (%) replaced by 2(1).
Definition (Gradient)
If g : R™ — R, the gradient, Vg(z), at z is defined by

Vo) = () @)
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Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation z(%);
(i) Determine a direction from z(%) that results in a decrease in the value

of g;
(iii) Move an appropriate distance in this direction and call the new vector

1).

X 1
(iv) Repeat steps (i) through (iii) with (%) replaced by 2(1).
Definition (Gradient)
If g : R™ — R, the gradient, Vg(x), at z is defined by

99 99
\V4 =(L(2), -, —= _
o) = (@) 5 (@)

Definition (Directional Derivative)

The directional derivative of g at x in the direction of v with || v ||o=1 is
defined by

Dyg(l') _ fILTO g(a: + hz;l) — g(x) _ 'I)Tvg(l').

4
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Theorem

The direction of the greatest decrease in the value of g at x is the
direction given by —Vg(x).
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Theorem

The direction of the greatest decrease in the value of g at x is the
direction given by —Vg(x).

@ Object: reduce g(x) to its minimal value zero.
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Theorem

The direction of the greatest decrease in the value of g at x is the
direction given by —Vg(x).

@ Object: reduce g(x) to its minimal value zero.
= for an initial approximation (%), an appropriate choice for new
vector (1) is

21 =200 —avg(z®),  for some constant a > 0.
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Theorem

The direction of the greatest decrease in the value of g at x is the
direction given by —Vg(x).

@ Object: reduce g(x) to its minimal value zero.
= for an initial approximation (%), an appropriate choice for new
vector (1) is

21 =200 —avg(z®),  for some constant a > 0.

@ Choose o > 0 such that g(z(Y)) < g(z(9)):
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Theorem

The direction of the greatest decrease in the value of g at x is the
direction given by —Vg(x).

@ Object: reduce g(x) to its minimal value zero.
= for an initial approximation (%), an appropriate choice for new
vector (1) is

2 = (0 _ an(:c(o)), for some constant « > 0.

o Choose o > 0 such that g(z(V)) < g(2(®)): define
h(a) = g(a — avg(2'?)),
then find o such that

h(a™) = mcin h(«).
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@ How to find o*7?

o &
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@ How to find o*?
> Solve a root-finding problem h/(a) =0 = Too costly, in general.
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@ How to find o*7?

> Solve a root-finding problem h/(a) =0 = Too costly, in general.
» Choose three number a; < ap < a3, construct quadratic polynomial
P(z) that interpolates h at aj, ap and as, i.e.,

P(al) = h(al), P(OQ) = h(OQ), P(OZ3) = h(a3),

to approximate h.
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@ How to find o*7?

> Solve a root-finding problem h/(a) =0 = Too costly, in general.
» Choose three number a; < ap < a3, construct quadratic polynomial
P(z) that interpolates h at aj, ap and as, i.e.,

P(al) = h(al), P(OQ) = h(ag), P(CM3) = h(a3),

to approximate h. Use the minimum value P(&) in [a1, as] to
approximate h(a*).
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@ How to find o*7?

> Solve a root-finding problem h/(a) =0 = Too costly, in general.
» Choose three number a; < ap < a3, construct quadratic polynomial
P(z) that interpolates h at aj, ap and as, i.e.,

P(al) = h(al), P(OQ) = h(ag), P(CM3) = h(a3),

to approximate h. Use the minimum value P(&) in [a1, as] to
approximate h(a*). The new iteration is

2 = 20 _ 4vg(29),
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@ How to find o*7?

> Solve a root-finding problem h/(a) =0 = Too costly, in general.
» Choose three number a; < ap < a3, construct quadratic polynomial
P(z) that interpolates h at aj, ap and as, i.e.,

P(al) = h(al), P(OQ) = h(ag), P(CM3) = h(a3),

to approximate h. Use the minimum value P(&) in [a1, as] to
approximate h(a*). The new iteration is

2 = 20 _ 4vg(29),

* Set ay = 0 to minimize the computation
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@ How to find o*7?

> Solve a root-finding problem h/(a) =0 = Too costly, in general.
» Choose three number a; < ap < a3, construct quadratic polynomial
P(z) that interpolates h at aj, ap and as, i.e.,

P(al) = h(al), P(OQ) = h(ag), P(CM3) = h(a3),

to approximate h. Use the minimum value P(&) in [a1, as] to
approximate h(a*). The new iteration is

2 = 20 _ 4vg(29),

* Set ay = 0 to minimize the computation
* a3 is found with h(az) < h(a).
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@ How to find o*7?

> Solve a root-finding problem h/(a) =0 = Too costly, in general.
» Choose three number a; < ap < a3, construct quadratic polynomial
P(z) that interpolates h at aj, ap and as, i.e.,

P(al) = h(al), P(OQ) = h(ag), P(CM3) = h(a3),

to approximate h. Use the minimum value P(&) in [a1, as] to
approximate h(a*). The new iteration is

2 = 20 _ 4vg(29),

* Set ay = 0 to minimize the computation
* a3 is found with h(az) < h(a).
* Choose az = as/2.
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Example

Use the Steepest Descent method with z(©) = (0,0,0)7 to find a
reasonable starting approximation to the solution of the nonlinear system

1
fi(z1,22,23) = 3w1 — cos(zxw3) — > =0,
fo(x1, 20, 23) = 7 —81(xa +0.1)% +sinzs + 1.06 = 0,
10m — 3
f3(z1, 22, 23) = e 712 4+ 203 + TFT —0.
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Example

Use the Steepest Descent method with z(©) = (0,0,0)7 to find a

reasonable starting approximation to the solution of the nonlinear system
1

fi(z1,22,23) = 3w1 — cos(zxw3) — > =0,

fa(x1,22,03) = 2} —81(z2 +0.1)% +sinaz + 1.06 = 0,
10m —3

fa(z1,22,23) = e %2 42023 + 7r3 = 0.

Let g(x1, 22, 23) = [f1(21, 22, 23)]? + [f2(21, 22, 23)]? + [f3(21, 22, 23)]°.
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Example

Use the Steepest Descent method with z(®) = (0,0,0)” to find a

reasonable starting approximation to the solution of the nonlinear system
1

fi(z1,22,23) = 3x1 — cos(rax3) — > = 0,

fo(z1,22,23) = 23 —81(z2+0.1)> +sinaz + 1.06 = 0,

107r—3_o
—=o.

f3(x1, X2, .733) = e "% 1 20x3 +

Let g(z1, 22, 23) = [f1(z1, 22, 23))° + [fo(1, 22, 23))° + [f3(1, 22, 23)]°
Then
Vy(z1,22,23) = Vyg(x)

= <2f1( )
2f1(x)

df2 df3
D 1( z) +2f3(z 8x1(x)’

o8 0+ 215(0) 52 @),
20y + 213t )‘%( ))

N (0) +212(0)

D (0) +212(0)

afl()+ 2f2(x) 22

2f1( ) an
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For (9 = [0,0,0]”, we have

g(z@) =111.975 and 2o = |Vg(z(@)||, = 419.554.
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For z(®) = [0,0,0]”, we have
g(z@) =111.975 and 2o = |Vg(z(@)||, = 419.554.
Let

1
z= Z—Vg(w(o)) = [~0.0214514, —0.0193062, 0.999583]" .
0
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For z(®) = [0,0,0]”, we have

g(z@) =111.975 and 2z = || Vg(2)||» = 419.554.
Let

z= Z—lovg(x(o)) = [~0.0214514, —0.0193062, 0.999583]" .
With a3 = 0, we have

g1 = g(2® — a1 2) = g(2(®) = 111.975.
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For z(®) = [0,0,0]”, we have
g(z@) =111.975 and 2z = || Vg(2)||» = 419.554.
Let
z= Z—lovg(x(‘”) = [~0.0214514, —0.0193062, 0.999583]" .
With a3 = 0, we have
g1 = g(z9 — a12) = g(2(9) = 111.975.
Let a3 = 1 so that

93 = 9(2® — azz) = 93.5649 < g;.
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For z(®) = [0,0,0]”, we have

g(2®)=111.975 and zo = |Vg(z(®)|, = 419.554.
Let

z= Z—lovg(x(‘”) = [~0.0214514, —0.0193062, 0.999583]" .
With a3 = 0, we have

g1 = g(z9 — a12) = g(2(9) = 111.975.
Let a3 = 1 so that
g3 = g(z© — a3z2) = 93.5649 < g.

Set ap = a3/2 = 0.5.
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For (9 = [0,0,0]”, we have
g(z@) =111.975 and 2o = |Vg(z(@)||, = 419.554.
Let

1
z= Z—Vg(w(o)) = [~0.0214514, —0.0193062, 0.999583]" .
0

With a3 = 0, we have
g1 = g(z9 — a12) = g(2(9) = 111.975.
Let a3 = 1 so that
g3 = g(z© — a3z2) = 93.5649 < g.
Set ap = a3/2 = 0.5. Thus

g2 = g(z® — ayz) = 2.53557.
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hza(a — az)

that interpolates g(z(®) — az) at a3 = 0,a3 = 0.5 and a3 = 1 as follows
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hza(a — a3)
that interpolates g(z(®) — az) at a3 = 0,a3 = 0.5 and a3 = 1 as follows

92 =P(az) = g1 + hiaz = Iy = 92; 9L _ 218878,
2

g3 = P(Oé3) =g1 + hias + h3a3(a3 = OQ) = h3 = 400.937.
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hza(a — a3)
that interpolates g(z(®) — az) at a3 = 0,a3 = 0.5 and a3 = 1 as follows

g2 = P(az) = g1 + hias = hy = 92; 9L _ 18878,
2

g3 = P(Oé3) =g1 + hias + h3a3(a3 = OQ) = h3 = 400.937.

Thus
P(a) = 111.975 — 218.878c + 400.937c(«x — 0.5)
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hza(a — az)

that interpolates g(z(®) — az) at a3 = 0,a3 = 0.5 and a3 = 1 as follows

g2 = P(az) = g1 + hias = hy = 92; 9L _ 18878,
2

93 = P(a3) = g1 + hiaz + hzasz(az — az) = hz = 400.937.
Thus
P(a) = 111.975 — 218.878a + 400.937a(a — 0.5)
so that
0= P'(cp) = —419.346 + 801.87209 = ap = 0.522959
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hza(a — az)

that interpolates g(z(®) — az) at a3 = 0,a3 = 0.5 and a3 = 1 as follows

g2 = P(az) = g1 + hias = hy = 92; 9L _ 18878,
2

93 = P(a3) = g1 + hiaz + hzasz(az — az) = hz = 400.937.
Thus
P(a) = 111.975 — 218.878c + 400.937c(«x — 0.5)
so that
0= P'(cp) = —419.346 + 801.87209 = ap = 0.522959
Since

9o = (2@ — agz) = 2.32762 < min{g1, g3},
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hza(a — a)
that interpolates g(x(o) —az)at a; = 0,2 = 0.5 and a3 =1 as follows

92 — g1
0%
g3 = P(Oé3) =91+ hiasz + h3043(0z3 = 042) = hsz = 400.937.

g2 = P(az) = g1 + hiaa = h1 = = —218.878,

Thus
P(a) = 111.975 — 218.878a + 400.937a(a — 0.5)

so that

0 = P'(ap) = —419.346 + 801.8720p = ap = 0.522959
Since

g0 = g(z© — agz) = 2.32762 < min{g1, g3},

we set

M) = 20 — a5z = [0.0112182,0.0100964, —0.522741]" .
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