function output = Solve_System(N,omega) h = 1/N; x = [0:h:1]'; y = [0:h:1]'; % Solve the nonlinear system by Newton's method % The initial value f = zeros(N+1); u = zeros(N+1); for j = 2:N for i = 2:N f(i,j) = sin(pi*x(i))*sin(pi*y(j)); u(i,j) = (-1/(2*pi^2))*f(i,j); end end tmax = 20; kmax = 1000; tol = 1.0E-13; % error bound F = zeros(N+1); t = 0; while (ttol) rtmp = 0; for j = 2:N for i = 2:N vGS = ((1/h^2)*(v(i-1,j)+v(i+1,j)+v(i,j-1)+v(i,j+1))+F(i,j))/((4/h^2)+3*u(i,j)^2); vtmp = v(i,j)+omega*(vGS-v(i,j)); rtmp = max(rtmp, abs(((4/h^2)+3*u(i,j)^2)*(vtmp-v(i,j)))); v(i,j) = vtmp; end end rmax = rtmp; k = k+1; end u = u+v; if norm(v)