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Bisection Method
Idea

fib) +

If f(x) € Cla, b] and f(a)f(b) <0, then 3 c € (a, b) such that f(c) =0.
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Bisection method algorithm

Given f(x) defined on (a, b), the maximal number of iterations M, and
stop criteria § and ¢, this algorithm tries to locate one root of f(x).

Compute u = f(a), v=1f(b),and e=b—a
If sign(u) = sign(v), then stop
For k=1,2,... M
e=e/2,c=a+e w="f(c)
If |e] <0 or |w| < ¢, then stop
If sign(w) # sign(u)
b=c, v=w
Else
a=c,u=w
End If
End For
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Let {c,} be the sequence of numbers produced. The algorithm should
stop if one of the following conditions is satisfied.

© the iteration number k > M,
Q |ck —ck-1] <6, or
Q |f(«)| <e.
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Let {c,} be the sequence of numbers produced. The algorithm should
stop if one of the following conditions is satisfied.

© the iteration number k > M,

Q |ck —ck-1] <6, or

Q |f(ck)| <e.
Let [ao0, bo], [a1, b1], - - . denote the successive intervals produced by the
bisection algorithm.
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Let {c,} be the sequence of numbers produced. The algorithm should
stop if one of the following conditions is satisfied.

© the iteration number k > M,
Q |ck — k1] <6, or
Q |f(«)| <e.

Let [ao0, bo], [a1, b1], - - . denote the successive intervals produced by the
bisection algorithm. Then

a=a<a<a<---<b=0>b
= {an} and {b,} are bounded

= |im a, and lim b, exist
n—oo n—o0
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Since

1
by —a1 = E(bo—ao)
1
by —ay = (bl—al)— (o—ao)
1
b,—a, = 2n(bO_aO)
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Since

1
bl—a]_ = E(bo—ao)
1
by —a; = (bl—al)— 2(bo —20)
1
b,,—a,, = 2n(bo—ao)
hence
lim b, — | | bn = li j; b =0
n|—>ngo _n|—>nc]>oan_nl—>m( n)_n|—>ngo2"( 0_30)— '
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Since

1
bi —a1 = E(bo — ag)
1
by —a = (bl—al)— 2(bo —20)
1
bo—an — 2n(b0 - 30)
hence
lim b, — | I b, = i l b =0
n|—>ngo _n|—>nc]>oan_nl—>m( n)—n|_>r202n(0_30)— '
Therefore
lim a, = lim b, = z.
n—o0 n—oo
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Since

1
by —a1 = E(bo—ao)
by—a = 2(by—a1) = +(bo— a0)
2 32—21 31—40 a0
1
by —a, = E(bo—ao)
hence
lim b li = lim (b =i lb =0
n|—>rgo n_n|—>n<loan_nl—>n;o( n_an)_nl—>ngo2”( 0_30)— '
Therefore
lim a, = lim b, = z.
n—oo n—oo

Since f is a continuous function, we have that

n—o00 n—o0

nI|_>n;O f(an) = 1"(nli_>rrc1>o ap) =1f(z) and lim f(b,) = f(lim b,) = f(2).
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On the other hand,

f(an)f(by) <0
= nI|_>rr;O f(an)f(bn) = f?(z2) <0
= f(z)=0
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On the other hand,

f(an)f(by) <0
= nll_)h;n)O f(an)f(bn) = f?(z2) <0
= f(z)=0

Therefore, the limit of the sequences {a,} and {b,} is a zero of f in [a, b].
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On the other hand,

f(an)f(by) <0
= nll_)h;n)O f(an)f(bn) = f?(z2) <0
= f(z)=0

Therefore, the limit of the sequences {a,} and {b,} is a zero of f in [a, b].
Let ¢, = %(an + bp).
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On the other hand,

f(an)f(by) <0
= nIl_)hgo f(an)f(bn) = f?(z2) <0
= f(z)=0

Therefore, the limit of the sequences {a,} and {b,} is a zero of f in [a, b].
Let ¢, = %(a,, + bp). Then

. 1
|z —ca] = ‘nll_>nc1>oa,,—§(an+b,,)|

3 Lm0 o] + 5 im0 =21 |

max{‘nli)ngoa,,— b,,‘,|nli_>n;oa,,—a,,‘}

IN

IN

1
’bn - a,,] = E’bo — ao|.

This proves the following theorem.
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Theorem

Let {[a,, b,|} denote the intervals produced by the bisection algorithm.
Then lim a, and lim b, exist, are equal, and represent a zero of f(x). If
n— o0 n—oo0

1
z= lim a,= lim b, and c¢,= =(an+ bn),
n—oo n—oo
then |
|z — cn| < E(bo—ao).
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Theorem

Let {[a,, b,|} denote the intervals produced by the bisection algorithm.

Then |lim a, and i
n—oo n—o0

1
z= lim a,= lim b, and c¢,= =(an+ bn),
n—o0 n—o0 2

then

1
]z—c,,]ﬁz—n(bo—ao).

m b, exist, are equal, and represent a zero of f(x). If

Remark
{cn} converges to z with the rate of O(27").
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Example

How many steps should be taken to compute a root of
f(x) = x3 +4x2 — 10 = 0 on [1, 2] with relative error 10737
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Example

How many steps should be taken to compute a root of
f(x) = x3 +4x2 — 10 = 0 on [1, 2] with relative error 10737

solution: Seek an n such that

2=l <1072 = |z—c <z x 1073

2]
Since z € [1,2], it is sufficient to show
|z —cp| <1073,
That is, we solve
27"2-1)<107% = —nlogyp2 < -3

which gives n > 10. O
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Fixed-Point Iteration
Definition

x is called a fixed point of a given function f if f(x) = x.

= &
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Fixed-Point Iteration

Definition

x is called a fixed point of a given function f if f(x) = x.

Root-finding problems and fixed-point problems
e Find x* such that f(x*) = 0.
Let g(x) = x — f(x). Then g(x*) = x* — f(x*) = x*.
= x* is a fixed point for g(x).
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Fixed-Point Iteration

Definition
x is called a fixed point of a given function f if f(x) = x.

Root-finding problems and fixed-point problems
e Find x* such that f(x*) = 0.
Let g(x) = x — f(x). Then g(x*) = x* — f(x*) = x*.
= x* is a fixed point for g(x).
e Find x* such that g(x*) = x*.
Define f(x) = x — g(x) so that f(x*) = x* — g(x*) =x* —x* =0
= x* is a zero of f(x).
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Example

The function g(x) = x2 — 2, for —2 < x < 3, has fixed points at x = —1
and x = 2 since

g(-1)=(-12-2=-1 and g(2)=22-2=2.

y=x-2

L I ST Y- NN
t—t—t—t——

RN /'23x
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Theorem (Existence and uniqueness)

Q Ifg € Cla, b] such that a < g(x) < b for all x € [a, b], then g has a
fixed point in [a, b].

r=gpT

¥ =)
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Theorem (Existence and uniqueness)

Q Ifg € Cla, b] such that a < g(x) < b for all x € [a, b], then g has a
fixed point in [a, b].

Q If, in addition, g'(x) exists in (a, b) and there exists a positive
constant M < 1 such that |g'(x)| < M < 1 for all x € (a, b). Then
the fixed point is unique.

r=gpT
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Proof

Existence:

o If g(a) = aor g(b) = b, then a or b is a fixed point of g and we are
done.
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Proof

Existence:

o If g(a) = aor g(b) = b, then a or b is a fixed point of g and we are
done.

@ Otherwise, it must be g(a) > a and g(b) < b.
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Proof

Existence:

o If g(a) = aor g(b) = b, then a or b is a fixed point of g and we are
done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(x) = g(x) — x is continuous on [a, b], with

h(a) =g(a) —a>0 and h(b)=g(b)—b<0.
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Proof

Existence:

o If g(a) = aor g(b) = b, then a or b is a fixed point of g and we are
done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(x) = g(x) — x is continuous on [a, b], with

h(a) =g(a) —a>0 and h(b)=g(b)—b<0.

By the Intermediate Value Theorem, 3 x* € [a, b] such that
h(x*) = 0.
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Proof

Existence:

o If g(a) = aor g(b) = b, then a or b is a fixed point of g and we are

done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(x) = g(x) — x is continuous on [a, b], with

h(a) =g(a) —a>0 and h(b)=g(b)—b<0.

By the Intermediate Value Theorem, 3 x* € [a, b] such that
h(x*) = 0. That is

gix*)—x" =0 = g(x*)=x"

Hence g has a fixed point x* in [a, b].
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Proof

Uniqueness:
Suppose that p # g are both fixed points of g in [a, b].
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Proof

Uniqueness:
Suppose that p # g are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists £ between p and g such that

£(€) = gp)—gla) _pP—a_,
P—q P—q
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Proof

Uniqueness:
Suppose that p # g are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists £ between p and g such that

1.

g\p)— &\9 p—q
o EP)=8@) _p-q_
pP—q pP—q
However, this contradicts to the assumption that |g’(x)| < M < 1 for all x
in [a, b]. Therefore the fixed point of g is unique. O]

Wei-Cheng Wang ( Sol. of Eq. in one variable January 3, 2002 14 / 68



Example
Show that the following function has a unique fixed point.

g(x)=(x*-1)/3, xe[-1,1].

Solution: The Extreme Value Theorem implies that

. 1
i g(x) =g(0) = —3,
= g(+£1) =0.

(Jhax g(x) = g(+1)

That is g(x) € [-1,1], V x € [-1,1].
Moreover, g is continuous and

2x

2
£ = —1.1).
= _3,vxe( ,1)

lg'(x)| =

By above theorem, g has a unique fixed point in [—1,1].
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Let p be such unique fixed point of g. Then

2
pc—1
p=glp)="—75— = p>—3p—1=0

> p=,(3-VD)

3 (33 +v13).5( + vi3))
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Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xp and generate
{xic}rZo by

Xk+1 = g(Xk), k > 0.

{xk} may not converge, e.g., g(x) = 3x. However, when the sequence
converges, say,
lim x, = x¥,
k—00
then, since g is continuous,
g(x*)=g(lim xx) = lim g(xk) = lim xx41 = x™.
k—00 k—00 k—o00

That is, x* is a fixed point of g.
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Fixed-point iteration

Given xp, tolerance TOL, maximum number of iteration M.

Set i =1 and x = g(xo).

While i < M and |x — x| > TOL
Seti=i+1, xp=xand x = g(xp).

End While
.
’ y=ux y y=x
(P2 P3) y=8W

(1. p2) Ps = 8(p)
P2 = 8(p) (P2 Py P2=28(p) (P2 P2
P3 = &(p2) (Po P1)
P = 8(py) (pr.p1) (P> P1) P = 8lpo) (P, P1)

Y=gl
Py P3 P2 Po Do P P2 e

(a)
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Example
The equation

x3+4x>-10=0

has a unique root in [1,2]. Change the equation to the fixed-point form
x = g(x).

Q) x=gi(x)=x—f(x)=x—x3—4x>+10 J

(b) x = g2(x) = (12 — 4x)"/2 J

X X

1/2
x}=10-4x® = X2:E—4X = x::I:(E—4x>
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(c) x = ga(x) = 1 (10— x3)"/?

1
4x2 =10 — x3 = X = j:§ (10 _ X3)1/2

(d) X :g4(x) _ (4_}'__0)()1/2

2 10 \'/?

3 2
(e) x =g5(x) = x — >%318_X10

f(x)
'(x)

x = gs(x) = x —
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Results of the fixed-point iteration with initial point xp = 1.5

n (a) ) (c) () (e)
0 L5 1.5 15 15 1.5
1 —0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 —469.7 (=8.65)!12 1.345458374 1.364957015 1.365230014
4 1.03 x 108 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012

10 1.365410062 1.365230014

15 1.365223680 1.365230013

20 1.365230236

25 1.365230006

30 1.365230013
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Theorem (Fixed-point Theorem)

Let g € [a, b] be such that g(x) € [a, b] for all x € [a, b]. Suppose that g’
exists on (a, b) and that 3 k with 0 < k < 1 such that

lg'(x)| < k, V x € (a, b).
Then, for any number xq in [a, b],

Xp = g(Xn-1), n>1,

converges to the unique fixed point x in [a, b].
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Proof:

By the assumptions, a unique fixed point exists in [a, b]. Since
g([a, b]) C [a, b], {xn}52, is defined and x, € [a, b] for all n > 0. Using
the Mean Values Theorem and the fact that |g'(x)| < k, we have

X = xa| = |g(xn-1) — &(x)| = |g’(§,,)||x — Xp—1| < k|x = xp-1],
where &, € (a, b). It follows that
|xn — x| < k|xp—1 — x| < k2]X,,_2 —x| <+ < Kk"|xp — x|. (1)

Since 0 < k < 1, we have

lim k" =0
n—o0
and
lim |[x, — x| < lim k"|xp — x| = 0.
n—o0 n—o0
Hence, {x,}52, converges to x. [
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Corollary
If g satisfies the hypotheses of above theorem, then

|x — xn| < k"max{xo —a,b— xo}

and

n

1—k

|xn — x| < |x1 — xo|, V n>1.

Proof: From (1),
|xn — x| < k"|xo0 — x| < k" max{xp — a,b — x0}.
For n > 1, using the Mean Values Theorem,

[Xn+1 = Xn| = |g(xn) — g(xn—1)| < klxn — xn—1| < -+ < k"|x1 — xol.
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Thus, for m > n>1,

|Xm - Xn| = |Xm —Xm—1+Xm—1— "+ Xny1 — Xn|
< |Xm - Xm—1| + |Xm—1 - Xm—2| 4+ |Xn+1 - Xn|
< K™ Hxg — xo| + k™2 x1 — xo0| + - + k"|x1 — X0
= K'x1—xo| (L+k+k*+---+ k™ "1,
It implies that
m—n—1 )
el = Jim b ol < fim K=ol S W
j=0
< K" |X1—X0|ij |X1—X0|
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Example

For previous example,

f(x) = x> +4x> —10 = 0.

For g1(x) = x — x> — 4x2 + 10, we have
g(1)=6 and g(2)=-12,
so g1([1,2]) € [1,2]. Moreover,

gi(x)=1-3x2-8x = |gi(x)|>1Vxe][12]

e DOES NOT guarantee to converge or not
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For g3(x) = 3(10 — xH2 ¥ x e [1,1.5],
3
gh(x) = —Zx2(1o —x3)7Y2 <0, Vxell1,15],
so g3 is strictly decreasing on [1,1.5] and
1<1.28~ g3(1.5) < g3(x) < g3(1) =15, V x € [1,1.5].
On the other hand,

g503)| < |g5(1.5)| ~ 0.66, ¥ x € [1, 15]

Hence, the sequence is convergent to the fixed point.
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For ga(x) = 1/10/(4 + x), we have

@SQ [vxe[lz] ~ a2 (1.2

Moreover,

<0.15, ¥V x €[1,2].

409 = | Zsres | < T

The bound of |g;(x)| is much smaller than the bound of |g5(x)|, which
explains the more rapid convergence using ga.
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Newton's method

Suppose that f : R — R and f € C?[a, b], i.e., f exists and is continuous.
If f(x*) =0 and x* = x + h where h is small, then by Taylor's theorem

0=f(x*) = Flx+h)
= FG)+ P Oh+ S (R +
— () + F O+ O(FR).

1
gf”’(x)h3 4.

Since h is small, O(h?) is negligible. It is reasonable to drop O(h?) terms.
This implies

f(x)

f(x)+ f'(x)h~0 and hm_f/(x)’ if f'(x)#0.
Hence )
X
X+h7X_f/(X)

is a better approximation to x*.
January 3, 2002 29 / 68



This sets the stage for the Newton-Rapbson’s method, which starts with
an initial approximation xp and generates the sequence {x,}7°, defined by

f (xn)
Xn+1 = Xn — f/(Xn).

Since the Taylor's expansion of f(x) at x is given by

1
f(x) = f(xk) + ' (xx)(x — xk) + Ef”(xk)(x — X )P
At xi, one uses the tangent line
y =0(x) = f(xk) + ' (xx)(x — x«)

to approximate the curve of f(x) and uses the zero of the tangent line to
approximate the zero of f(x).
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Newton's Method
Given xp, tolerance TOL, maximum number of iteration M.
Set i=1and x = xp — f(x0)/f'(x0).
While i < M and |x — x| > TOL
Seti=i+1 x=xand x =xy— f(x0)/f"(x0)-
End While

Slope f'(p)) y=f@x)

(p1.f(py)

Slope f*(po)

P x
(o F(P0)
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Three stopping-technique inequalities

(a)- |xn— xn-1] <,
|Xn _Xn—1’

b).

(b) PN

(c). If(xn)| <e.

<e, xp#0,

Note that Newton's method for solving f(x) =0

f(xn)

X"H:X"_f’(x)’ for n>1
n

is just a special case of functional iteration in which

g(x) =x— ;(();))
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Example

The following table shows the convergence behavior of Newton's method
applied to solving f(x) = x> — 1 = 0. Observe the quadratic convergence
rate.

Xn len] = |1 — x4
2.0 1

1.25 0.25

1.025 2.5e-2

1.0003048780488 | 3.048780488e-4
1.0000000464611 | 4.64611e-8
1.0 0

1B W NP OIS
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Theorem

Assume f(x*) =0, f'(x*) # 0 and f(x), f'(x) and f”(x) are continuous
on N.(x*). Then if xo is chosen sufficiently close to x*, then

{XnJrl = Xp — ;(();:)) } — x*.

Proof: Define

Find an interval [x* — §,x* + d] such that
g(Ix" — 6,x" + 8]) C [x* — 6,x" + 9]
and
lg'(x)| < k<1, Vxe(x*—§x*+0).
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Since f' is continuous and f'(x*) # 0, it implies that 3 d; > 0 such that
f'(x) #0V x € [x* — d1,x* + 1] C [a, b]. Thus, g is defined and
continuous on [x* — d1, x* + d1]. Also

f'(x)f'(x) = F(x)f"(x f(x)f"(x
o) =1 - PP~ A () _ FF()
[#/(x)] [#/(x)]
for x € [x* — 81, x* + d1]. Since " is continuous on [a, b], we have g’ is
continuous on [x* — d1, x* + 01].
By assumption f(x*) =0, so

()P (x")

/ * _f —
e ="l =

Since g’ is continuous on [x* — d1, x* + d1] and g'(x*) =0, 3 § with
0 <0 <01 and k € (0,1) such that

lg'(x)] < k, V x € [x* —d,x* +6].
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Claim: g([x* — 0, x* +d]) C [x* — 0, x* + 4].
If x € [x* — 4§, x* + ], then, by the Mean Value Theorem, 3 £ between x
and x* such that

lg(x) — g(x")] = lg"(&)Ix — x7].
It implies that
o= lglx) —g(x) =1g'(€)lIx — x|
< kjx —x¥| < |x = x¥| < 0.

lg(x) — x

Hence, g([x* — d,x* +6]) C [x* — 0, x* + 4].
By the Fixed-Point Theorem, the sequence {x,}>°, defined by

f(xn—
Xn = g(Xn—1) = Xn-1 — f/((xn 11)), for n>1,
o
converges to x* for any xg € [x* — d, x* + ). 0
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Example

When Newton's method applied to f(x) = cos x with starting point
xo = 3, which is close to the root 5 of f, it produces
x1 = —4.01525, xp = —4.8526, - - - , which converges to another root —37“.

y = cos(x)
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Secant method

Disadvantage of Newton's method

In many applications, the derivative f'(x) is very expensive to compute, or
the function f(x) is not given in an algebraic formula so that f’(x) is not
available.

By definition,
f(x) — f(x,—
f(xn_1) = lim M
X—=Xp—1 X — Xp—1
Letting x = x,_2, we have

f(xn—2) — f(Xn—-1) _ f(xn-1) — f(x,,_z)‘

Xp—2 — Xn—1 Xp—1 — Xp—2

f'(xn—1) ~

Using this approximation for f’(x,—1) in Newton's formula gives

f n— n—1 " ~An—
2y = xp_y — [O01)(Xn1 = Xn2)

f(anl) - f(Xn72)
which is called the Secant method.
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From geometric point of view, we use a secant line through x, 1 and x, >
instead of the tangent line to approximate the function at the point x,_1.
The slope of the secant line is

f(xn—1) — f(xn—2)

Xp—1 — Xp—2

Sp—1 =

and the equation is
M(x) = f(xn—1) + sp—1(x — xn—1).

The zero of the secant line

f(xn— 1 — Xp—
= e — (Xn 1) — X, 1 — f(Xn_]_) Xn—1 Xn—2

Sn—1 f(xn—1) — f(xn—2)

is then used as a new approximate x,.
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Secant Method
Given xp, x1, tolerance TOL, maximum number of iteration M.
Set i =2; yo = f(x0)iy1 = f(x1);
x=x1—y1(x1 — x0)/(y1 — Y0)-
While i < M and |x — x3| > TOL
Seti=i+1; x0 =x1;y0 = y1; %1 = x; 1 = f(x);
x=x1—y1(x1 — x0)/(y1 — y0)-
End While

y=fx
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Method of False Position )

@ Choose initial approximations xg and x; with f(xg)f(x1) < 0.
Q x; = x1 — f(x1)(x1 — x0)/(f(x1) — f(x0))
© Decide which secant line to use to compute x3:

If f(x2)f(x1) <0, then x; and x» bracket a root, i.e.,

x3 =x — f(x2)(x2 — x1)/(f(x2) — f(x1))

Else, xg and x> bracket a root, i.e.,

x3 = x2 — f(x2)(x2 — x0)/(f(x2) — f(x0))
End if
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Method of False Position

Given xg, x1, tolerance TOL, maximum number of iteration M.
Set i =2; yo=f(x0);y1 = f(xa); x=x1 — y1(xa — x0)/(x1 — Y0)-
While i < M and |x — x1| > TOL

Seti=i+1;y="f(x).

If y-y1 <0, then set xop = x1; Yo = ¥1.

Set x1 = x;y1 = y; x = x1 — y1(>a — x0)/(y1 — Y0)-
End While

Yy
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Error analysis for iterative methods

Definition

Let {x,} — x*. If there are positive constants ¢ and « such that

li |Xn+1 _X*| _

n— 00 ‘xn—x*|a ’

then we say the rate of convergence is of order a.

We say that the rate of convergence is
Q linearifa=1land 0 < c < 1.
@ superlinear if
|| |Xn+1 _ X*| .

=0;

n—o00 |xn —x*|

© quadratic if o = 2.
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Suppose that {x,}72, and {X,}°2 are linearly and quadratically
convergent to x*, respectively, with the same constant ¢ = 0.5. For
simplicity, suppose that

- ~c and M
|xn — x*| |Xp — x*|?

~ C.

These imply that

|xn — x| = ¢|xp—1 — x| = c2|xn_2 — x|~ xg — x|,

4

El
!
X
2

clxn_1 — x|~ c [c|52,,_2 - x”‘|2]2 = 3%y — x*

~
~

. 4 .
S [cl$n—s — x*[]" = |3 — x*[?
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Remark

Quadratically convergent sequences generally converge much more quickly
thank those that converge only linearly.

Theorem

Let g € Cla, b] with g([a, b]) C [a, b]. Suppose that g’ is continuous on
(a, b) and 3 k € (0,1) such that

lg'(x)| < k, V x € (a, b).
If g'(x*) # 0, then for any xo € [a, b], the sequence
Xn = g(xp-1), for n>1

converges only linearly to the unique fixed point x* in [a, b].
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Proof:

o By the Fixed-Point Theorem, the sequence {x,}52, converges to x*.

@ Since g’ exists on (a, b), by the Mean Value Theorem, 3 &, between

X, and x* such that
Xnr1 — X* = g(xn) — &(x*) = &'(£n) (0 — X7).

o {xp}p > x* = {&)152,—x*
@ Since g’ is continuous on (a, b), we have

lim g'(¢n) = &'(x").

n—o0
@ Thus,
it M = lim |g'(¢&)| = |g'(x")|.
n—oo |xp — x*’ n—»00 n

Hence, if g’(x*) # 0, fixed-point iteration exhibits linear
convergence.
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Theorem

Let x* be a fixed point of g and | be an open interval with x* € I.
Suppose that g'(x*) =0 and g" is continuous with

lg”(x)| < M, ¥ x €l

Then 3 6 > 0 such that

{xn =8(xn-1)}721 — x* for xp € [x* — §,x" + 4]

at least quadratically. Moreover,

M ..
|Xpt1 — X¥| < ?|x,, — x*|2, for sufficiently large n.
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Proof:

@ Since g'(x*) = 0 and g’ is continuous on /, 3 § such that
[x* —0,x* + 6] C | and

g ()| < k<1, Vxe[x"—§x"+4].
@ In the proof of the convergence for Newton's method, we have
{xn}ro C [x* — 0, x* 4 4].

o Consider the Taylor expansion of g(x,) at x*

Yo = 80) = 80¢) 480N~ x) + EX (e

g"(¢)

= x"+ 5 (xn — x*)?,

where £ lies between x, and x*.
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@ Since
lg'(x)| < k<1, VxeE[x"—dx*+]
and
g([x" —d,x* +4]) C [x" — 6,x" + 4],

it follows that {x,}>2, converges to x*.

o But &, is between x, and x* for each n, so {{,}7° also converges to
x* and

) X _ X* /! X* M

o ban—xl g _ M

n—o0 ‘X,,—X”“2 - 2 2

o It implies that {x,}>2 is quadratically convergent to x* if
g"(x*) #0 and

M -
|Xn41 — x| < ?|x,, — x*|?, for sufficiently large n. O
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For Newton's method,

R g P P _ AP
16 A A ) I (6% I (I B9) 2

It follows that g’(x*) = 0. Hence Newton's method is locally quadratically
convergent.
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Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, " Numerical analysis”
Let x* denote the exact solution of f(x) = 0, ex = xx — x* be the errors at
the k-th step. Then

k41 = Xkp1 — X"
= XKk — f(Xk) f(xkg — flz)_(:_l) _ X*
1 § .
= FOx) — FOa1) [(xk—1 — x*)F(xk) — (xk — x*)F (xk—1)]
1

= f(xk) — (Xk_l) (ek—lf(Xk) = ekf(xk_l))
1

<e_kf(xk) — o fa1) Xk — Xk—1 )
= €k€k-1 :

Xk — Xk—1 f(xk) — F(xk—1)
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éf(xk)— Ekl—l f(xk)

To estimate the numerator
Xk —Xk—1

, we apply the Taylor's theorem

1
Fw) = F(x" + &) = F(x7) + £/(<ex + SF"(<")ec + O(e5),

to get
1 1
—f(xk) = f/(x*) + =" (x")ex + O(e,%).
€K 2
Similarly,
1 1( % 1 1 % 2
——f(xk—1) = F/(x*) + =" (x*)ex—1 + O(ex_1)-
€k—1 2
Hence
") — ——F () = 2 (e — 1) (x")
& k E—_ k1) = (& k—1 .
Since X — Xx_1 = ex — ex_1 and
Xk — Xk—1 1

Fxe) = Fow1)  Fx)
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we have

€k — €k—1 . f’(X*)

%(ek — ex_1)f"(x*) 1 )

€k+1 ~  Ek€k—1 (
= Cekek_l (2)
To estimate the convergence rate, we assume
~ o
|en+1] = mlex|®,
where n > 0 and « > 0 are constants, i.e.,

’ek-l—l’ 1

as k — 0.
nlex|*

Then |ex| = n]ex—1|® which implies |ex_1| = 7~1/*|ex|'/*. Hence (2) gives
nlel* ~ Cleln ™/ le /= C7lyta x et ot

: _ 1.
Since |ex| — 0 as k — o0, and C~1n'*a is a nonzero constant,

1++5
o = 2

~ 1.62.

1
l-a+—-—=0
a
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This result implies that C~171*& — 1 and
o f'//(X*) 062
— Chta = | ———= .
e <2,~(X*)
In summary, we have shown that
lek+1] = nlek|®, o=~ 1.62,

that is, the rate of convergence is superlinear.
Rate of convergence:

@ secant method: superlinear
@ Newton's method: quadratic

@ bisection method: linear

Wei-Cheng Wang ( Sol. of Eq. in one variable January 3, 2002 54 / 68



Each iteration of method requires
@ secant method: one function evaluation

@ Newton's method: two function evaluation, namely, f(xx) and f'(xx).
= two steps of secant method are comparable to one step of
Newton's method. Thus

3+65
lekra| ~ nlexi1]|” ~ 771+a|ek’ 2= 771+a|ek|2'62'

= secant method is more efficient than Newton's method.

Remark

Two steps of secant method would require a little more work than one
step of Newton's method.
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Accelerating convergence
Aitken's A? method

@ Accelerate the convergence of a sequence that is linearly convergent.

@ Suppose {yn}7, is a linearly convergent sequence with limit y.
Construct a sequence {§,}°2, that converges more rapidly to y than

{Yn}(rio:O'

For n sufficiently large,

Ynt1 =Y _ Ynt2 =Y
Yn—Y Ynt1 — Y

Then

Vrt1 = ¥)> = otz — ¥)(vn — ¥),

SO

Y21 = 2Ynt1y + Y2 & YoroYn — Vni2 + Ya)y + ¥2
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and

(Yn+2 + Yn — 2Yn41)Y R Yni2Yn — Y3+1-

Solving for y gives

Yn+2Yn — Y,%.H
Yn+2 — 2Yn+1 + Yn
YnYnt2 = 2YnYnt1 + Y2 — Y2 4 2YnYnt1 — Y21
Ynt2 — 2¥n+1 + Yn

yn(yn+2 - 2yn+1 +Yn) B (yn+1 - yn)2

(Yn+2 - Yn+1) - ()/n+1 - Yn)

(Ynt1 = ¥n)?

Yni2 — Yn+1) - (yn+1 - yn).

Q

y

- yn_(

Aitken's A2 method
(_Vn+1 - yn)2 . (3)
(yn+2 — )/n+1) - (}/n+1 - Yn)
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Example

The sequence {y, = cos(1/n)}°°; converges linearly to y = 1.

Yn

Yn

0.54030
0.87758
0.94496
0.96891
0.98007
0.98614
0.98981

~NOo ok WD B+

0.96178
0.98213
0.98979
0.99342
0.99541

o {yn}52, converges more rapidly to y =1 than {y,}%2;.
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Definition
For a given sequence {y,}°°, the forward difference Ay, is defined by

AYn = Yn+1 — Yn, for n>0.

Higher powers of A are defined recursively by

Aky, = A(AK1y,), for k> 2.

The definition implies that

A%y, = A(Ynt1 — Yn) = AYps1 — AYn = (Va2 — Ynr1) — Vnt1 — Yn)-

So the formula for y, in (3) can be written as

A 2
Vn=VYn— —(Aé/;,), , for n>0.

Wei-Cheng Wang ( Sol. of Eq. in one variable January 3, 2002 59 / 68



Theorem
Suppose {yn}7>o — y linearly and

lim Yl =

n—oo yn —y

< 1.

Then {yn}°2 — y faster than {yn}52, in the sense that

lim Y=

n—o0 yn —y

=0.

@ Aitken’s A2 method constructs the terms in order:

o, n=8(n), y2=80n). So={A%0n0), ys=2g()
9 ={8%}(n),

= Assume |Jp — y| < |y2 — y|
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o Steffensen’s method constructs the terms in order:

w9 =y, YO = g({9), YO = g(y(,

yél) = {82}, yl( Y=g, Y =g,

Steffensen’s method (To find a solution of y = g(y))

Given yp, tolerance TOL, maximum number of iteration M.

Set i = 1.

While i < M
Set y1 = g(%0); y2 = 8(11); ¥ = yo — (1 — %0)*/(y2 — 21 + y0)-
If |y — yo| < Tol, then STOP.
Seti=i+1, ypp=y.

End While

Theorem

Suppose that x = g(x) has the solution x* with g'(x*) # 1. If 3§ >0
such that g € C3[x* — 6, x* + 8], then Steffensen’s method gives quadratic
convergence for any xp € [x* — 6, x* 4 ¢].

v
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Zeros of polynomials and Miiller's method

e Horner's method:

Let
P(x) = ao+aix+ ax?+ -+ ap_1x" L+ apx”
= ap+x(ar+x(a+---+x(an—1+anx)---))
If
by, = ap,
by = ak+ bkrixo, for k=n—-1n-2...,10,
then
bo = ao + bixo = ap + (a1 + baxo) X0 = - - - = P(xp).
Consider

Q(x) = by + box + -+ + bpx" 7L,
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Then

bo + (x — x0)Q(x) = by + (x — xp) (bl + box + -+ + b,,x”_l)
= (bo — bixo) + (b1 — boxo)x + -+ + (bp—1 — bnxo)x" "1 + bpx"

= ap+aix+ -+ apx" = P(x).
Differentiating P(x) with respect to x gives
P'(x)=Q(x)+(x—x)Q(x) and P'(x)= Q(x).

Use Newton-Raphson method to find an approximate zero of P(x):

P(x)
Xk+1 :Xk—m, \V/k:07172,
Similarly, let
¢hn = bp=ap,
ck = b+ ckr1xx, for k=n—1,n—2,...,1,
then ¢ = Q(xk).
January 3, 2002
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Horner's method (Evaluate y = P(xp) and z = P'(xp))
Set y = an; z = a,.
Forj=n—-1,n-2,...,1

Set y = aj + yx0; z = y + 2x0.
End for
Set y = ag + yxo.

If xpy is an approximate zero of P, then

P(x) = (x—xn)Q(x) + bo = (x — xn) Q(x) + P(xn)
~ (x —xn)Q(x) = (x — X1)Qu(x).

So x — &1 is an approximate factor of P(x) and we can find a second
approximate zero of P by applying Newton's method to Qi(x). The
procedure is called deflation.
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e Miiller's method for complex root:

Theorem

If z=a+ ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of P(x) and
(x? — 2ax + a® + b?)™ is a factor of P(x).

Secant method: Given pg and py,
determine py as the intersection
of the x-axis with the line through

(Po. f(po)) and (pu, f(p1)).

y

Po P \ p X
f
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e Miiller's method for complex root:

Theorem

If z=a+ ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of P(x) and
(x? — 2ax + a® + b?)™ is a factor of P(x).

Secant method: Given pg and py,
determine py as the intersection and p», determine ps by the

of the x-axis with the line through ;.10 cection of the x-axis with the
(Po; f(po)) and (p1., f(p1)). parabola through (po, (po)),

y (p1,f(p1)) and (p2, f(p2))-

y

= S

t t =
Po P ? P;\ X
f
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Let
P(x) = a(x — p2)? + b(x — p2) + ¢

that passes through (po, f(po)), (p1,f(p1)) and (p2, f(p2)). Then

f(po) = a(po— p2)* + b(po — Pz)
f(p1) = a(pr—p2)’ + b(pr — p2) + ¢,
f(p2) = a(p2—p2)*+ b(p2 — Pz) c=c.
It implies that
c = f(p),

p — (po=p2)*[F(p1) = F(p2)] = (1 = p2)* [F(p0) = F(p2)]
(Po — p2)(p1 — P2)(Po — p1)
_ (pL=p2) [f(Po) — f(P2)] — (Po — p2) [f(P1) — f(p2)]
(Po — p2)(p1r — P2)(pPo — p1) .

)
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To determine p3, a zero of P, we apply the quadratic formula to P(x) =0
and get

Choose

= po +
L + sgn(b)V'b? — dac

such that the denominator will be largest and result in p3 selected as the
closest zero of P to ps.
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Miiller's method (Find a solution of f(x) = 0)

Given po, p1, p2; tolerance TOL; maximum number of iterations M
Set hy = p1 — po; h2 = p2 — p1;
b1 = (f(p1) — f(po))/h1; 62 = (f(p2) — f(p1))/ b2
d= (52 = 51)/(h2 a4 hl); i=3.
While i < M
Set b= 1095 + hod; D = +/ b% — 4f(p2)d
If [b— D| < |b+ D|, then set E = b+ D else set E =b— D.
Set h= —2f(p2)/E; p=p2+ h.
If |h| < TOL, then STOP.
Set po = p1; p1 = p2; p2 = p; h1 = p1 — po; h2 = p2 — p1;
b1 = (f(p1) = f(po))/h1; 62 = (f(p2) — (p1))/ h2;
d= (52 —51)/(h2—|— hl); i =1i-+1.
End while
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