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Bisection Method

Idea

If f (x) ∈ C [a, b] and f (a)f (b) < 0, then ∃ c ∈ (a, b) such that f (c) = 0.
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Bisection method algorithm

Given f (x) defined on (a, b), the maximal number of iterations M, and
stop criteria δ and ε, this algorithm tries to locate one root of f (x).

Compute u = f (a), v = f (b), and e = b − a
If sign(u) = sign(v), then stop
For k = 1, 2, . . . ,M

e = e/2, c = a + e, w = f (c)
If |e| < δ or |w | < ε, then stop
If sign(w) 6= sign(u)

b = c , v = w
Else

a = c , u = w
End If

End For
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Let {cn} be the sequence of numbers produced. The algorithm should
stop if one of the following conditions is satisfied.

1 the iteration number k > M,

2 |ck − ck−1| < δ, or

3 |f (ck)| < ε.

Let [a0, b0], [a1, b1], . . . denote the successive intervals produced by the
bisection algorithm. Then

a = a0 ≤ a1 ≤ a2 ≤ · · · ≤ b0 = b

⇒ {an} and {bn} are bounded

⇒ lim
n→∞

an and lim
n→∞

bn exist
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Since

b1 − a1 =
1

2
(b0 − a0)

b2 − a2 =
1

2
(b1 − a1) =

1

4
(b0 − a0)

...

bn − an =
1

2n
(b0 − a0)

hence

lim
n→∞

bn − lim
n→∞

an = lim
n→∞

(bn − an) = lim
n→∞

1

2n
(b0 − a0) = 0.

Therefore
lim
n→∞

an = lim
n→∞

bn ≡ z .

Since f is a continuous function, we have that

lim
n→∞

f (an) = f ( lim
n→∞

an) = f (z) and lim
n→∞

f (bn) = f ( lim
n→∞

bn) = f (z).
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On the other hand,

f (an)f (bn) ≤ 0

⇒ lim
n→∞

f (an)f (bn) = f 2(z) ≤ 0

⇒ f (z) = 0

Therefore, the limit of the sequences {an} and {bn} is a zero of f in [a, b].
Let cn = 1

2(an + bn). Then

|z − cn| =
∣∣ lim
n→∞

an −
1

2
(an + bn)

∣∣
=

∣∣1
2

[
lim
n→∞

an − bn

]
+

1

2

[
lim
n→∞

an − an
] ∣∣

≤ max
{∣∣ lim

n→∞
an − bn

∣∣, ∣∣ lim
n→∞

an − an
∣∣}

≤ |bn − an| =
1

2n
|b0 − a0|.

This proves the following theorem.
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Theorem

Let {[an, bn]} denote the intervals produced by the bisection algorithm.
Then lim

n→∞
an and lim

n→∞
bn exist, are equal, and represent a zero of f (x). If

z = lim
n→∞

an = lim
n→∞

bn and cn =
1

2
(an + bn),

then

|z − cn| ≤
1

2n
(b0 − a0) .

Remark

{cn} converges to z with the rate of O(2−n).
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Example

How many steps should be taken to compute a root of
f (x) = x3 + 4x2 − 10 = 0 on [1, 2] with relative error 10−3?

solution: Seek an n such that

|z − cn|
|z |

≤ 10−3 ⇒ |z − cn| ≤ |z | × 10−3.

Since z ∈ [1, 2], it is sufficient to show

|z − cn| ≤ 10−3.

That is, we solve

2−n(2− 1) ≤ 10−3 ⇒ −n log10 2 ≤ −3

which gives n ≥ 10.
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Fixed-Point Iteration

Definition

x is called a fixed point of a given function f if f (x) = x .

Root-finding problems and fixed-point problems

Find x∗ such that f (x∗) = 0.
Let g(x) = x − f (x). Then g(x∗) = x∗ − f (x∗) = x∗.
⇒ x∗ is a fixed point for g(x).

Find x∗ such that g(x∗) = x∗.
Define f (x) = x − g(x) so that f (x∗) = x∗ − g(x∗) = x∗ − x∗ = 0
⇒ x∗ is a zero of f (x).

Wei-Cheng Wang (Department of MathematicsNational TsingHua University)Sol. of Eq. in one variable January 3, 2002 10 / 68



university-logo

Fixed-Point Iteration

Definition

x is called a fixed point of a given function f if f (x) = x .

Root-finding problems and fixed-point problems

Find x∗ such that f (x∗) = 0.
Let g(x) = x − f (x). Then g(x∗) = x∗ − f (x∗) = x∗.
⇒ x∗ is a fixed point for g(x).

Find x∗ such that g(x∗) = x∗.
Define f (x) = x − g(x) so that f (x∗) = x∗ − g(x∗) = x∗ − x∗ = 0
⇒ x∗ is a zero of f (x).

Wei-Cheng Wang (Department of MathematicsNational TsingHua University)Sol. of Eq. in one variable January 3, 2002 10 / 68



university-logo

Fixed-Point Iteration

Definition

x is called a fixed point of a given function f if f (x) = x .

Root-finding problems and fixed-point problems

Find x∗ such that f (x∗) = 0.
Let g(x) = x − f (x). Then g(x∗) = x∗ − f (x∗) = x∗.
⇒ x∗ is a fixed point for g(x).

Find x∗ such that g(x∗) = x∗.
Define f (x) = x − g(x) so that f (x∗) = x∗ − g(x∗) = x∗ − x∗ = 0
⇒ x∗ is a zero of f (x).

Wei-Cheng Wang (Department of MathematicsNational TsingHua University)Sol. of Eq. in one variable January 3, 2002 10 / 68



university-logo

Example

The function g(x) = x2 − 2, for −2 ≤ x ≤ 3, has fixed points at x = −1
and x = 2 since

g(−1) = (−1)2 − 2 = −1 and g(2) = 22 − 2 = 2.
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Theorem (Existence and uniqueness)

1 If g ∈ C [a, b] such that a ≤ g(x) ≤ b for all x ∈ [a, b], then g has a
fixed point in [a, b].

2 If, in addition, g ′(x) exists in (a, b) and there exists a positive
constant M < 1 such that |g ′(x)| ≤ M < 1 for all x ∈ (a, b). Then
the fixed point is unique.
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Proof

Existence:

If g(a) = a or g(b) = b, then a or b is a fixed point of g and we are
done.

Otherwise, it must be g(a) > a and g(b) < b. The function
h(x) = g(x)− x is continuous on [a, b], with

h(a) = g(a)− a > 0 and h(b) = g(b)− b < 0.

By the Intermediate Value Theorem, ∃ x∗ ∈ [a, b] such that
h(x∗) = 0. That is

g(x∗)− x∗ = 0 ⇒ g(x∗) = x∗.

Hence g has a fixed point x∗ in [a, b].
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Proof

Uniqueness:
Suppose that p 6= q are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists ξ between p and q such that

g ′(ξ) =
g(p)− g(q)

p − q
=

p − q

p − q
= 1.

However, this contradicts to the assumption that |g ′(x)| ≤ M < 1 for all x
in [a, b]. Therefore the fixed point of g is unique.
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Example

Show that the following function has a unique fixed point.

g(x) = (x2 − 1)/3, x ∈ [−1, 1].

Solution: The Extreme Value Theorem implies that

min
x∈[−1,1]

g(x) = g(0) = −1

3
,

max
x∈[−1,1]

g(x) = g(±1) = 0.

That is g(x) ∈ [−1, 1], ∀ x ∈ [−1, 1].
Moreover, g is continuous and

|g ′(x)| =

∣∣∣∣2x

3

∣∣∣∣ ≤ 2

3
, ∀ x ∈ (−1, 1).

By above theorem, g has a unique fixed point in [−1, 1].
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Let p be such unique fixed point of g . Then

p = g(p) =
p2 − 1

3
⇒ p2 − 3p − 1 = 0

⇒ p =
1

2
(3−

√
13).

Wei-Cheng Wang (Department of MathematicsNational TsingHua University)Sol. of Eq. in one variable January 3, 2002 16 / 68
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Fixed-point iteration or functional iteration

Given a continuous function g , choose an initial point x0 and generate
{xk}∞k=0 by

xk+1 = g(xk), k ≥ 0.

{xk} may not converge, e.g., g(x) = 3x . However, when the sequence
converges, say,

lim
k→∞

xk = x∗,

then, since g is continuous,

g(x∗) = g( lim
k→∞

xk) = lim
k→∞

g(xk) = lim
k→∞

xk+1 = x∗.

That is, x∗ is a fixed point of g .
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Fixed-point iteration

Given x0, tolerance TOL, maximum number of iteration M.
Set i = 1 and x = g(x0).
While i ≤ M and |x − x0| ≥ TOL

Set i = i + 1, x0 = x and x = g(x0).
End While
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Example

The equation

x3 + 4x2 − 10 = 0

has a unique root in [1, 2]. Change the equation to the fixed-point form
x = g(x).

(a) x = g1(x) ≡ x − f (x) = x − x3 − 4x2 + 10

(b) x = g2(x) =
(
10
x − 4x

)1/2

x3 = 10− 4x2 ⇒ x2 =
10

x
− 4x ⇒ x = ±

(
10

x
− 4x

)1/2
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(c) x = g3(x) = 1
2

(
10− x3

)1/2
4x2 = 10− x3 ⇒ x = ±1

2

(
10− x3

)1/2
(d) x = g4(x) =

(
10
4+x

)1/2

x2(x + 4) = 10 ⇒ x = ±
(

10

4 + x

)1/2

(e) x = g5(x) = x − x3+4x2−10
3x2+8x

x = g5(x) ≡ x − f (x)

f ′(x)
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Results of the fixed-point iteration with initial point x0 = 1.5
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Theorem (Fixed-point Theorem)

Let g ∈ [a, b] be such that g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose that g ′

exists on (a, b) and that ∃ k with 0 < k < 1 such that

|g ′(x)| ≤ k, ∀ x ∈ (a, b).

Then, for any number x0 in [a, b],

xn = g(xn−1), n ≥ 1,

converges to the unique fixed point x in [a, b].
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Proof:
By the assumptions, a unique fixed point exists in [a, b]. Since
g([a, b]) ⊆ [a, b], {xn}∞n=0 is defined and xn ∈ [a, b] for all n ≥ 0. Using
the Mean Values Theorem and the fact that |g ′(x)| ≤ k , we have

|x − xn| = |g(xn−1)− g(x)| = |g ′(ξn)||x − xn−1| ≤ k |x − xn−1|,

where ξn ∈ (a, b). It follows that

|xn − x | ≤ k |xn−1 − x | ≤ k2|xn−2 − x | ≤ · · · ≤ kn|x0 − x |. (1)

Since 0 < k < 1, we have

lim
n→∞

kn = 0

and

lim
n→∞

|xn − x | ≤ lim
n→∞

kn|x0 − x | = 0.

Hence, {xn}∞n=0 converges to x .
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Corollary

If g satisfies the hypotheses of above theorem, then

|x − xn| ≤ kn max{x0 − a, b − x0}

and

|xn − x | ≤ kn

1− k
|x1 − x0|, ∀ n ≥ 1.

Proof: From (1),

|xn − x | ≤ kn|x0 − x | ≤ kn max{x0 − a, b − x0}.

For n ≥ 1, using the Mean Values Theorem,

|xn+1 − xn| = |g(xn)− g(xn−1)| ≤ k |xn − xn−1| ≤ · · · ≤ kn|x1 − x0|.
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Thus, for m > n ≥ 1,

|xm − xn| = |xm − xm−1 + xm−1 − · · ·+ xn+1 − xn|
≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|
≤ km−1|x1 − x0|+ km−2|x1 − x0|+ · · ·+ kn|x1 − x0|
= kn|x1 − x0|

(
1 + k + k2 + · · ·+ km−n−1) .

It implies that

|x − xn| = lim
m→∞

|xm − xn| ≤ lim
m→∞

kn|x1 − x0|
m−n−1∑
j=0

k j

≤ kn|x1 − x0|
∞∑
j=0

k j =
kn

1− k
|x1 − x0|.
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Example

For previous example,

f (x) = x3 + 4x2 − 10 = 0.

For g1(x) = x − x3 − 4x2 + 10, we have

g1(1) = 6 and g1(2) = −12,

so g1([1, 2]) * [1, 2]. Moreover,

g ′1(x) = 1− 3x2 − 8x ⇒ |g ′1(x)| ≥ 1 ∀ x ∈ [1, 2]

• DOES NOT guarantee to converge or not
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For g3(x) = 1
2(10− x3)1/2, ∀ x ∈ [1, 1.5],

g ′3(x) = −3

4
x2(10− x3)−1/2 < 0, ∀ x ∈ [1, 1.5],

so g3 is strictly decreasing on [1, 1.5] and

1 < 1.28 ≈ g3(1.5) ≤ g3(x) ≤ g3(1) = 1.5, ∀ x ∈ [1, 1.5].

On the other hand,

|g ′3(x)| ≤ |g ′3(1.5)| ≈ 0.66, ∀ x ∈ [1, 1.5]

Hence, the sequence is convergent to the fixed point.
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For g4(x) =
√

10/(4 + x), we have√
10

6
≤ g4(x) ≤

√
10

5
, ∀ x ∈ [1, 2] ⇒ g4([1, 2]) ⊆ [1, 2]

Moreover,

|g ′4(x)| =

∣∣∣∣ −5√
10(4 + x)3/2

∣∣∣∣ ≤ 5√
10(5)3/2

< 0.15, ∀ x ∈ [1, 2].

The bound of |g ′4(x)| is much smaller than the bound of |g ′3(x)|, which
explains the more rapid convergence using g4.
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Newton’s method
Suppose that f : R→ R and f ∈ C 2[a, b], i.e., f ′′ exists and is continuous.
If f (x∗) = 0 and x∗ = x + h where h is small, then by Taylor’s theorem

0 = f (x∗) = f (x + h)

= f (x) + f ′(x)h +
1

2
f ′′(x)h2 +

1

3!
f ′′′(x)h3 + · · ·

= f (x) + f ′(x)h + O(h2).

Since h is small, O(h2) is negligible. It is reasonable to drop O(h2) terms.
This implies

f (x) + f ′(x)h ≈ 0 and h ≈ − f (x)

f ′(x)
, if f ′(x) 6= 0.

Hence

x + h = x − f (x)

f ′(x)

is a better approximation to x∗.
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This sets the stage for the Newton-Rapbson’s method, which starts with
an initial approximation x0 and generates the sequence {xn}∞n=0 defined by

xn+1 = xn −
f (xn)

f ′(xn)
.

Since the Taylor’s expansion of f (x) at xk is given by

f (x) = f (xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)2 + · · · .

At xk , one uses the tangent line

y = `(x) = f (xk) + f ′(xk)(x − xk)

to approximate the curve of f (x) and uses the zero of the tangent line to
approximate the zero of f (x).
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Newton’s Method

Given x0, tolerance TOL, maximum number of iteration M.
Set i = 1 and x = x0 − f (x0)/f ′(x0).
While i ≤ M and |x − x0| ≥ TOL

Set i = i + 1, x0 = x and x = x0 − f (x0)/f ′(x0).
End While
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Three stopping-technique inequalities

(a). |xn − xn−1| < ε,

(b).
|xn − xn−1|
|xn|

< ε, xn 6= 0,

(c). |f (xn)| < ε.

Note that Newton’s method for solving f (x) = 0

xn+1 = xn −
f (xn)

f ′(xn)
, for n ≥ 1

is just a special case of functional iteration in which

g(x) = x − f (x)

f ′(x)
.

Wei-Cheng Wang (Department of MathematicsNational TsingHua University)Sol. of Eq. in one variable January 3, 2002 32 / 68



university-logo

Example

The following table shows the convergence behavior of Newton’s method
applied to solving f (x) = x2 − 1 = 0. Observe the quadratic convergence
rate.

n xn |en| ≡ |1− xn|
0 2.0 1
1 1.25 0.25
2 1.025 2.5e-2
3 1.0003048780488 3.048780488e-4
4 1.0000000464611 4.64611e-8
5 1.0 0
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Theorem

Assume f (x∗) = 0, f ′(x∗) 6= 0 and f (x), f ′(x) and f ′′(x) are continuous
on Nε(x∗). Then if x0 is chosen sufficiently close to x∗, then{

xn+1 = xn −
f (xn)

f ′(xn)

}
→ x∗.

Proof: Define

g(x) = x − f (x)

f ′(x)
.

Find an interval [x∗ − δ, x∗ + δ] such that

g([x∗ − δ, x∗ + δ]) ⊆ [x∗ − δ, x∗ + δ]

and

|g ′(x)| ≤ k < 1, ∀ x ∈ (x∗ − δ, x∗ + δ).
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Since f ′ is continuous and f ′(x∗) 6= 0, it implies that ∃ δ1 > 0 such that
f ′(x) 6= 0 ∀ x ∈ [x∗ − δ1, x∗ + δ1] ⊆ [a, b]. Thus, g is defined and
continuous on [x∗ − δ1, x∗ + δ1]. Also

g ′(x) = 1− f ′(x)f ′(x)− f (x)f ′′(x)

[f ′(x)]2
=

f (x)f ′′(x)

[f ′(x)]2
,

for x ∈ [x∗ − δ1, x∗ + δ1]. Since f ′′ is continuous on [a, b], we have g ′ is
continuous on [x∗ − δ1, x∗ + δ1].
By assumption f (x∗) = 0, so

g ′(x∗) =
f (x∗)f ′′(x∗)

|f ′(x∗)|2
= 0.

Since g ′ is continuous on [x∗ − δ1, x∗ + δ1] and g ′(x∗) = 0, ∃ δ with
0 < δ < δ1 and k ∈ (0, 1) such that

|g ′(x)| ≤ k, ∀ x ∈ [x∗ − δ, x∗ + δ].
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Claim: g([x∗ − δ, x∗ + δ]) ⊆ [x∗ − δ, x∗ + δ].
If x ∈ [x∗ − δ, x∗ + δ], then, by the Mean Value Theorem, ∃ ξ between x
and x∗ such that

|g(x)− g(x∗)| = |g ′(ξ)||x − x∗|.

It implies that

|g(x)− x∗| = |g(x)− g(x∗)| = |g ′(ξ)||x − x∗|
≤ k |x − x∗| < |x − x∗| < δ.

Hence, g([x∗ − δ, x∗ + δ]) ⊆ [x∗ − δ, x∗ + δ].
By the Fixed-Point Theorem, the sequence {xn}∞n=0 defined by

xn = g(xn−1) = xn−1 −
f (xn−1)

f ′(xn−1)
, for n ≥ 1,

converges to x∗ for any x0 ∈ [x∗ − δ, x∗ + δ].
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Example

When Newton’s method applied to f (x) = cos x with starting point
x0 = 3, which is close to the root π

2 of f , it produces
x1 = −4.01525, x2 = −4.8526, · · · , which converges to another root −3π

2 .

5 4 3 2 1 0 1 2 3 4 5
1. 5

0

1.5

x
0

 

y  = c os ( x)  

x *  
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Secant method

Disadvantage of Newton’s method

In many applications, the derivative f ′(x) is very expensive to compute, or
the function f (x) is not given in an algebraic formula so that f ′(x) is not
available.

By definition,

f ′(xn−1) = lim
x→xn−1

f (x)− f (xn−1)

x − xn−1
.

Letting x = xn−2, we have

f ′(xn−1) ≈ f (xn−2)− f (xn−1)

xn−2 − xn−1
=

f (xn−1)− f (xn−2)

xn−1 − xn−2
.

Using this approximation for f ′(xn−1) in Newton’s formula gives

xn = xn−1 −
f (xn−1)(xn−1 − xn−2)

f (xn−1)− f (xn−2)
,

which is called the Secant method.
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From geometric point of view, we use a secant line through xn−1 and xn−2
instead of the tangent line to approximate the function at the point xn−1.
The slope of the secant line is

sn−1 =
f (xn−1)− f (xn−2)

xn−1 − xn−2

and the equation is

M(x) = f (xn−1) + sn−1(x − xn−1).

The zero of the secant line

x = xn−1 −
f (xn−1)

sn−1
= xn−1 − f (xn−1)

xn−1 − xn−2
f (xn−1)− f (xn−2)

is then used as a new approximate xn.
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Secant Method

Given x0, x1, tolerance TOL, maximum number of iteration M.
Set i = 2; y0 = f (x0); y1 = f (x1);

x = x1 − y1(x1 − x0)/(y1 − y0).
While i ≤ M and |x − x1| ≥ TOL

Set i = i + 1; x0 = x1; y0 = y1; x1 = x ; y1 = f (x);
x = x1 − y1(x1 − x0)/(y1 − y0).

End While
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Method of False Position

1 Choose initial approximations x0 and x1 with f (x0)f (x1) < 0.

2 x2 = x1 − f (x1)(x1 − x0)/(f (x1)− f (x0))

3 Decide which secant line to use to compute x3:
If f (x2)f (x1) < 0, then x1 and x2 bracket a root, i.e.,

x3 = x2 − f (x2)(x2 − x1)/(f (x2)− f (x1))

Else, x0 and x2 bracket a root, i.e.,

x3 = x2 − f (x2)(x2 − x0)/(f (x2)− f (x0))

End if
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Method of False Position

Given x0, x1, tolerance TOL, maximum number of iteration M.
Set i = 2; y0 = f (x0); y1 = f (x1); x = x1 − y1(x1 − x0)/(y1 − y0).
While i ≤ M and |x − x1| ≥ TOL

Set i = i + 1; y = f (x).
If y · y1 < 0, then set x0 = x1; y0 = y1.
Set x1 = x ; y1 = y ; x = x1 − y1(x1 − x0)/(y1 − y0).

End While
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Error analysis for iterative methods

Definition

Let {xn} → x∗. If there are positive constants c and α such that

lim
n→∞

|xn+1 − x∗|
|xn − x∗|α

= c,

then we say the rate of convergence is of order α.

We say that the rate of convergence is

1 linear if α = 1 and 0 < c < 1.

2 superlinear if

lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= 0;

3 quadratic if α = 2.
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Suppose that {xn}∞n=0 and {x̃n}∞n=0 are linearly and quadratically
convergent to x∗, respectively, with the same constant c = 0.5. For
simplicity, suppose that

|xn+1 − x∗|
|xn − x∗|

≈ c and
|x̃n+1 − x∗|
|x̃n − x∗|2

≈ c .

These imply that

|xn − x∗| ≈ c |xn−1 − x∗| ≈ c2|xn−2 − x∗| ≈ · · · ≈ cn|x0 − x∗|,

and

|x̃n − x∗| ≈ c |x̃n−1 − x∗|2 ≈ c
[
c|x̃n−2 − x∗|2

]2
= c3|x̃n−2 − x∗|4

≈ c3
[
c |x̃n−3 − x∗|2

]4
= c7|x̃n−3 − x∗|8

≈ · · · ≈ c2n−1|x̃0 − x∗|2n .
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Remark

Quadratically convergent sequences generally converge much more quickly
thank those that converge only linearly.

Theorem

Let g ∈ C [a, b] with g([a, b]) ⊆ [a, b]. Suppose that g ′ is continuous on
(a, b) and ∃ k ∈ (0, 1) such that

|g ′(x)| ≤ k , ∀ x ∈ (a, b).

If g ′(x∗) 6= 0, then for any x0 ∈ [a, b], the sequence

xn = g(xn−1), for n ≥ 1

converges only linearly to the unique fixed point x∗ in [a, b].
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Proof:

By the Fixed-Point Theorem, the sequence {xn}∞n=0 converges to x∗.

Since g ′ exists on (a, b), by the Mean Value Theorem, ∃ ξn between
xn and x∗ such that

xn+1 − x∗ = g(xn)− g(x∗) = g ′(ξn)(xn − x∗).

∵ {xn}∞n=0 → x∗ ⇒ {ξn}∞n=0 → x∗

Since g ′ is continuous on (a, b), we have

lim
n→∞

g ′(ξn) = g ′(x∗).

Thus,

lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= lim
n→∞

|g ′(ξn)| = |g ′(x∗)|.

Hence, if g ′(x∗) 6= 0, fixed-point iteration exhibits linear
convergence.
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Theorem

Let x∗ be a fixed point of g and I be an open interval with x∗ ∈ I .
Suppose that g ′(x∗) = 0 and g ′′ is continuous with

|g ′′(x)| < M, ∀ x ∈ I .

Then ∃ δ > 0 such that

{xn = g(xn−1)}∞n=1 → x∗ for x0 ∈ [x∗ − δ, x∗ + δ]

at least quadratically. Moreover,

|xn+1 − x∗| < M

2
|xn − x∗|2, for sufficiently large n.
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Proof:

Since g ′(x∗) = 0 and g ′ is continuous on I , ∃ δ such that
[x∗ − δ, x∗ + δ] ⊂ I and

|g ′(x)| ≤ k < 1, ∀ x ∈ [x∗ − δ, x∗ + δ].

In the proof of the convergence for Newton’s method, we have

{xn}∞n=0 ⊂ [x∗ − δ, x∗ + δ].

Consider the Taylor expansion of g(xn) at x∗

xn+1 = g(xn) = g(x∗) + g ′(x∗)(xn − x∗) +
g ′′(ξ)

2
(xn − x∗)2

= x∗ +
g ′′(ξ)

2
(xn − x∗)2,

where ξ lies between xn and x∗.
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Since

|g ′(x)| ≤ k < 1, ∀ x ∈ [x∗ − δ, x∗ + δ]

and

g([x∗ − δ, x∗ + δ]) ⊆ [x∗ − δ, x∗ + δ],

it follows that {xn}∞n=0 converges to x∗.

But ξn is between xn and x∗ for each n, so {ξn}∞n=0 also converges to
x∗ and

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2

=
|g ′′(x∗)|

2
<

M

2
.

It implies that {xn}∞n=0 is quadratically convergent to x∗ if
g ′′(x∗) 6= 0 and

|xn+1 − x∗| < M

2
|xn − x∗|2, for sufficiently large n.
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For Newton’s method,

g(x) = x − f (x)

f ′(x)
⇒ g ′(x) = 1− f ′(x)

f ′(x)
+

f (x)f ′′(x)

(f ′(x))2
=

f (x)f ′′(x)

(f ′(x))2

It follows that g ′(x∗) = 0. Hence Newton’s method is locally quadratically
convergent.
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Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, ”Numerical analysis”
Let x∗ denote the exact solution of f (x) = 0, ek = xk − x∗ be the errors at
the k-th step. Then

ek+1 = xk+1 − x∗

= xk − f (xk)
xk − xk−1

f (xk)− f (xk−1)
− x∗

=
1

f (xk)− f (xk−1)
[(xk−1 − x∗)f (xk)− (xk − x∗)f (xk−1)]

=
1

f (xk)− f (xk−1)
(ek−1f (xk)− ek f (xk−1))

= ekek−1

(
1
ek

f (xk)− 1
ek−1

f (xk−1)

xk − xk−1
· xk − xk−1

f (xk)− f (xk−1)

)
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To estimate the numerator
1
ek

f (xk )− 1
ek−1

f (xk )

xk−xk−1
, we apply the Taylor’s theorem

f (xk) = f (x∗ + ek) = f (x∗) + f ′(x∗)ek +
1

2
f ′′(x∗)e2k + O(e3k ),

to get
1

ek
f (xk) = f ′(x∗) +

1

2
f ′′(x∗)ek + O(e2k ).

Similarly,

1

ek−1
f (xk−1) = f ′(x∗) +

1

2
f ′′(x∗)ek−1 + O(e2k−1).

Hence
1

ek
f (xk)− 1

ek−1
f (xk−1) ≈ 1

2
(ek − ek−1)f ′′(x∗).

Since xk − xk−1 = ek − ek−1 and

xk − xk−1
f (xk)− f (xk−1)

→ 1

f ′(x∗)
,
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we have

ek+1 ≈ ekek−1

(
1
2(ek − ek−1)f ′′(x∗)

ek − ek−1
· 1

f ′(x∗)

)
=

1

2

f ′′(x∗)

f ′(x∗)
ekek−1

≡ Cekek−1 (2)

To estimate the convergence rate, we assume

|ek+1| ≈ η|ek |α,

where η > 0 and α > 0 are constants, i.e.,

|ek+1|
η|ek |α

→ 1 as k →∞.

Then |ek | ≈ η|ek−1|α which implies |ek−1| ≈ η−1/α|ek |1/α. Hence (2) gives

η|ek |α ≈ C |ek |η−1/α|ek |1/α =⇒ C−1η1+
1
α ≈ |ek |1−α+

1
α .

Since |ek | → 0 as k →∞, and C−1η1+
1
α is a nonzero constant,

1− α +
1

α
= 0 =⇒ α =

1 +
√

5

2
≈ 1.62.
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This result implies that C−1η1+
1
α → 1 and

η → C
α

1+α =

(
f ′′(x∗)

2f ′(x∗)

)0.62

.

In summary, we have shown that

|ek+1| = η|ek |α, α ≈ 1.62,

that is, the rate of convergence is superlinear.
Rate of convergence:

secant method: superlinear

Newton’s method: quadratic

bisection method: linear
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Each iteration of method requires

secant method: one function evaluation

Newton’s method: two function evaluation, namely, f (xk) and f ′(xk).
⇒ two steps of secant method are comparable to one step of
Newton’s method. Thus

|ek+2| ≈ η|ek+1|α ≈ η1+α|ek |
3+
√
5

2 ≈ η1+α|ek |2.62.

⇒ secant method is more efficient than Newton’s method.

Remark

Two steps of secant method would require a little more work than one
step of Newton’s method.
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Accelerating convergence

Aitken’s ∆2 method

Accelerate the convergence of a sequence that is linearly convergent.

Suppose {yn}∞n=0 is a linearly convergent sequence with limit y .
Construct a sequence {ŷn}∞n=0 that converges more rapidly to y than
{yn}∞n=0.

For n sufficiently large,

yn+1 − y

yn − y
≈ yn+2 − y

yn+1 − y
.

Then

(yn+1 − y)2 ≈ (yn+2 − y)(yn − y),

so

y2
n+1 − 2yn+1y + y2 ≈ yn+2yn − (yn+2 + yn)y + y2
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and

(yn+2 + yn − 2yn+1)y ≈ yn+2yn − y2
n+1.

Solving for y gives

y ≈
yn+2yn − y2

n+1

yn+2 − 2yn+1 + yn

=
ynyn+2 − 2ynyn+1 + y2

n − y2
n + 2ynyn+1 − y2

n+1

yn+2 − 2yn+1 + yn

=
yn(yn+2 − 2yn+1 + yn)− (yn+1 − yn)2

(yn+2 − yn+1)− (yn+1 − yn)

= yn −
(yn+1 − yn)2

(yn+2 − yn+1)− (yn+1 − yn)
.

Aitken’s ∆2 method

ŷn = yn −
(yn+1 − yn)2

(yn+2 − yn+1)− (yn+1 − yn)
. (3)
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Example

The sequence {yn = cos(1/n)}∞n=1 converges linearly to y = 1.

n yn ŷn
1 0.54030 0.96178
2 0.87758 0.98213
3 0.94496 0.98979
4 0.96891 0.99342
5 0.98007 0.99541
6 0.98614
7 0.98981

{ŷn}∞n=1 converges more rapidly to y = 1 than {yn}∞n=1.
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Definition

For a given sequence {yn}∞n=0, the forward difference ∆yn is defined by

∆yn = yn+1 − yn, for n ≥ 0.

Higher powers of ∆ are defined recursively by

∆kyn = ∆(∆k−1yn), for k ≥ 2.

The definition implies that

∆2yn = ∆(yn+1 − yn) = ∆yn+1 −∆yn = (yn+2 − yn+1)− (yn+1 − yn).

So the formula for ŷn in (3) can be written as

ŷn = yn −
(∆yn)2

∆2yn
, for n ≥ 0.
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Theorem

Suppose {yn}∞n=0 → y linearly and

lim
n→∞

yn+1 − y

yn − y
< 1.

Then {ŷn}∞n=0 → y faster than {yn}∞n=0 in the sense that

lim
n→∞

ŷn − y

yn − y
= 0.

Aitken’s ∆2 method constructs the terms in order:

y0, y1 = g(y0), y2 = g(y1), ŷ0 = {∆2}(y0), y3 = g(y2),

ŷ1 = {∆2}(y1), . . . .

⇒ Assume |ŷ0 − y | < |y2 − y |
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Steffensen’s method constructs the terms in order:

y
(0)
0 ≡ y0, y

(0)
1 = g(y

(0)
0 ), y

(0)
2 = g(y

(0)
1 ),

y
(1)
0 = {∆2}(y

(0)
0 ), y

(1)
1 = g(y

(1)
0 ), y

(1)
2 = g(y

(1)
1 ), . . . .

Steffensen’s method (To find a solution of y = g(y))

Given y0, tolerance TOL, maximum number of iteration M.
Set i = 1.
While i ≤ M

Set y1 = g(y0); y2 = g(y1); y = y0 − (y1 − y0)2/(y2 − 2y1 + y0).
If |y − y0| < Tol , then STOP.
Set i = i + 1; y0 = y .

End While

Theorem

Suppose that x = g(x) has the solution x∗ with g ′(x∗) 6= 1. If ∃ δ > 0
such that g ∈ C 3[x∗ − δ, x∗ + δ], then Steffensen’s method gives quadratic
convergence for any x0 ∈ [x∗ − δ, x∗ + δ].
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Zeros of polynomials and Müller’s method
• Horner’s method:
Let

P(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1 + anxn

= a0 + x (a1 + x (a2 + · · ·+ x (an−1 + anx) · · · ))

If

bn = an,

bk = ak + bk+1x0, for k = n − 1, n − 2, . . . , 1, 0,

then

b0 = a0 + b1x0 = a0 + (a1 + b2x0) x0 = · · · = P(x0).

Consider

Q(x) = b1 + b2x + · · ·+ bnxn−1.
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Then

b0 + (x − x0)Q(x) = b0 + (x − x0)
(
b1 + b2x + · · ·+ bnxn−1)

= (b0 − b1x0) + (b1 − b2x0)x + · · ·+ (bn−1 − bnx0)xn−1 + bnxn

= a0 + a1x + · · ·+ anxn = P(x).

Differentiating P(x) with respect to x gives

P ′(x) = Q(x) + (x − x0)Q ′(x) and P ′(x0) = Q(x0).

Use Newton-Raphson method to find an approximate zero of P(x):

xk+1 = xk −
P(xk)

Q(xk)
, ∀ k = 0, 1, 2, . . . .

Similarly, let

cn = bn = an,

ck = bk + ck+1xk , for k = n − 1, n − 2, . . . , 1,

then c1 = Q(xk).
Wei-Cheng Wang (Department of MathematicsNational TsingHua University)Sol. of Eq. in one variable January 3, 2002 63 / 68



university-logo

Horner’s method (Evaluate y = P(x0) and z = P ′(x0))

Set y = an; z = an.
For j = n − 1, n − 2, . . . , 1

Set y = aj + yx0; z = y + zx0.
End for
Set y = a0 + yx0.

If xN is an approximate zero of P, then

P(x) = (x − xN)Q(x) + b0 = (x − xN)Q(x) + P(xN)

≈ (x − xN)Q(x) ≡ (x − x̂1)Q1(x).

So x − x̂1 is an approximate factor of P(x) and we can find a second
approximate zero of P by applying Newton’s method to Q1(x). The
procedure is called deflation.
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• Müller’s method for complex root:

Theorem

If z = a + ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z̄ = a− bi is also a zero of multiplicity m of P(x) and
(x2 − 2ax + a2 + b2)m is a factor of P(x).

Secant method: Given p0 and p1,
determine p2 as the intersection
of the x-axis with the line through
(p0, f (p0)) and (p1, f (p1)).

Müller’s method: Given p0, p1

and p2, determine p3 by the
intersection of the x-axis with the
parabola through (p0, f (p0)),
(p1, f (p1)) and (p2, f (p2)).
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Let

P(x) = a(x − p2)2 + b(x − p2) + c

that passes through (p0, f (p0)), (p1, f (p1)) and (p2, f (p2)). Then

f (p0) = a(p0 − p2)2 + b(p0 − p2) + c ,

f (p1) = a(p1 − p2)2 + b(p1 − p2) + c ,

f (p2) = a(p2 − p2)2 + b(p2 − p2) + c = c .

It implies that

c = f (p2),

b =
(p0 − p2)2 [f (p1)− f (p2)]− (p1 − p2)2 [f (p0)− f (p2)]

(p0 − p2)(p1 − p2)(p0 − p1)
,

a =
(p1 − p2) [f (p0)− f (p2)]− (p0 − p2) [f (p1)− f (p2)]

(p0 − p2)(p1 − p2)(p0 − p1)
.
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To determine p3, a zero of P, we apply the quadratic formula to P(x) = 0
and get

p3 − p2 =
2c

b ±
√

b2 − 4ac
.

Choose

p3 = p2 +
2c

b + sgn(b)
√

b2 − 4ac

such that the denominator will be largest and result in p3 selected as the
closest zero of P to p2.
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Müller’s method (Find a solution of f (x) = 0)

Given p0, p1, p2; tolerance TOL; maximum number of iterations M
Set h1 = p1 − p0; h2 = p2 − p1;
δ1 = (f (p1)− f (p0))/h1; δ2 = (f (p2)− f (p1))/h2;
d = (δ2 − δ1)/(h2 + h1); i = 3.

While i ≤ M

Set b = δ2 + h2d ; D =
√

b2 − 4f (p2)d .
If |b − D| < |b + D|, then set E = b + D else set E = b − D.
Set h = −2f (p2)/E ; p = p2 + h.
If |h| < TOL, then STOP.
Set p0 = p1; p1 = p2; p2 = p; h1 = p1 − p0; h2 = p2 − p1;
δ1 = (f (p1)− f (p0))/h1; δ2 = (f (p2)− f (p1))/h2;
d = (δ2 − δ1)/(h2 + h1); i = i + 1.

End while
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