Newton's method

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

September 27, 2010

T.M. Huang (Taiwan Normal Univ.)

Newton's method

(日) (四) (三) (三) (三)

Suppose that $f : \mathbb{R} \to \mathbb{R}$ and $f \in C^2[a, b]$, i.e., f'' exists and is continuous. If $f(x^*) = 0$ and $x^* = x + h$ where h is small, then by Taylor's theorem

$$0 = f(x^*) = f(x+h)$$

= $f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \cdots$
= $f(x) + f'(x)h + O(h^2).$

Since h is small, $O(h^2)$ is negligible. It is reasonable to drop $O(h^2)$ terms. This implies

$$f(x) + f'(x)h \approx 0$$
 and $h \approx -\frac{f(x)}{f'(x)}$, if $f'(x) \neq 0$.

Hence

$$x+h=x-\frac{f(x)}{f'(x)}$$

is a better approximation to x^* .

This sets the stage for the Newton-Rapbson's method, which starts with an initial approximation x_0 and generates the sequence $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Since the Taylor's expansion of f(x) at x_k is given by

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 + \cdots$$

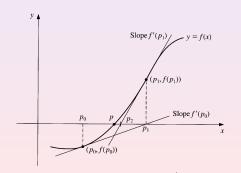
At x_k , one uses the tangent line

$$y = \ell(x) = f(x_k) + f'(x_k)(x - x_k)$$

to approximate the curve of f(x) and uses the zero of the tangent line to approximate the zero of f(x).

Newton's Method

Given x_0 , tolerance *TOL*, maximum number of iteration *M*. Set i = 1 and $x = x_0 - f(x_0)/f'(x_0)$. While $i \le M$ and $|x - x_0| \ge TOL$ Set i = i + 1, $x_0 = x$ and $x = x_0 - f(x_0)/f'(x_0)$. End While



Problem

The equation $f(x) \equiv x^2 - 10 \cos x = 0$ has two solutions ± 1.3793646 . Use Newton's method to approximate the solutions with initial values ± 25 .

Requirements

- Write two MATLAB functions, said fun_f and fun_df, to compute the values of f and f', respectively.
- **2** Implement the Newton's algorithm as a MATLAB function:
 - Input arguments: fun_f, fun_df, initial value
 - Output arguments: approximated solution of the equation

