Problem 3 : (i) p = -1/2 %% PS: In this case (-1
Exact_1 = 1.717157287525381 h = 0.005 => Exact_2 = 1.8 Numerical : h = 0.01 => S_98 = 1.717224277756064 h = 0.005 => S_198 = 1.800047369313522 Order : Order = log_2((S_98-Exact_1)/(S_198-Exact_2)) Numerical Order = 0.4999979553633133 Order of convergence : O(h^(1/2)) --------------------------------------------------- (ii) p = 1/2 Exact integral = 2/3 Numerical : h = 0.01 => S_100 = 0.6665854820667237 h = 0.005 => S_200 = 0.6666379635700298 h = 0.0025 => S_400 = 0.6666565185891514 Order : Order = log_2((S_100-S_200)/(S_200-S_400)) Numerical Order = 1.499999558029851 Order of convergence : O(h^(3/2)) --------------------------------------------------- (iii) p = 5/2 Exact integral = 2/7 Numerical : h = 0.01 => S_100 = 2.857142837421070 h = 0.005 => S_200 = 2.857142855372715 h = 0.0025 => S_400 = 2.857142856984712 Order : Order = log_2((S_100-S_200)/(S_200-S_400)) Numerical Order = 3.477195416857635 Order of convergence : O(h^(7/2))