which results in the linear equations

$$u(x_i) = x_i^2 + \frac{1}{12} \left[e^{x_i} u(0) + 4e^{\left|x_i - \frac{1}{4}\right|} u\left(\frac{1}{4}\right) + 2e^{\left|x_i - \frac{1}{2}\right|} u\left(\frac{1}{2}\right) + 4e^{\left|x_i - \frac{3}{4}\right|} u\left(\frac{3}{4}\right) + e^{\left|x_i - 1\right|} u(1) \right].$$

The 5×5 linear system has solutions u(0) = -1.234286, $u\left(\frac{1}{4}\right) = -0.9507292$, $u\left(\frac{1}{2}\right) = -0.9507292$ -0.7659400, $u\left(\frac{3}{4}\right) = -0.5844737$, and u(1) = -0.4484975.

Exercise Set 6.2, page 368

	(a) none	(b) Interchange rows 2 and 3.
	(c) none	(d) Interchange rows 1 and 2.
2.	The following row interchanges are required for these systems.	

(b) none

The following row interchanges are required for these systems.

- (d) none (c) none
- The following row interchanges are required for these systems.
 - (a) Interchange rows 1 and 2. (b) Interchange rows 1 and 3.
 - (c) Interchange rows 1 and 2, then interchange rows 2 and 3.
 - (d) Interchange rows 1 and 2.

(a) none

- 4. The following row interchanges are required for these systems.
 - (a) Interchange rows 2 and 3. (b) Interchange rows 1 and 3.
 - (c) Interchange rows 1 and 3, then interchange rows 2 and 3.
 - (d) Interchange rows 1 and 2.
- 5. The following row interchanges are required for these systems.
 - (a) Interchange rows 1 and 3, then interchange rows 2 and 3.
 - (b) Interchange rows 2 and 3.
 - (c) Interchange rows 2 and 3.
 - (d) Interchange rows 1 and 3, then interchange rows 2 and 3.

- 6. The following row interchanges are required for these systems.
 - (a) Interchange rows 2 and 3.
- (b) none
- (c) Interchange rows 1 and 2, then interchange rows 2 and 3.
- (d) none
- 7. The following row interchanges are required for these systems.
 - (a) Interchange rows 1 and 2, and columns 1 and 3, then interchange rows 2 and 3, and columns 2 and 3.
 - (b) Interchange rows 1 and 2, and columns 1 and 3, then interchange rows 2 and 3.
 - (c) Interchange rows 1 and 2, and columns 1 and 3, then interchange rows 2 and 3.
 - (d) Interchange rows 1 and 2, and columns 1 and 2, then interchange rows 2 and 3; and columns 2 and 3.
- 8. The following row interchanges are required for these systems.
 - (a) Interchange rows 1 and 2, and columns 1 and 3.
 - (b) Interchange rows 1 and 2, and columns 1 and 2, then interchange rows 2 and 3.
 - (c) Interchange rows 1 and 3, and columns 1 and 2, then interchange rows 2 and 3, and columns 2 and 3.
 - (d) Interchange rows 1 and 2.
- 9. Gaussian elimination with three-digit chopping arithmetic gives the following results.

(a)
$$x_1 = 30.0, x_2 = 0.990$$

(b)
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.142$$

(c)
$$x_1 = 0.206, x_2 = 0.0154, x_3 = -0.0156, x_4 = -0.716$$

(d)
$$x_1 = 0.828, x_2 = -3.32, x_3 = 0.153, x_4 = 4.91$$

10. Gaussian elimination with three-digit chopping arithmetic gives the following results.

(a)
$$x_1 = 1.00, x_2 = 9.98$$

(b)
$$x_1 = 12.0, x_2 = 0.492, x_3 = -9.78$$

(c)
$$x_1 = -8.25, x_2 = -8.00, x_3 = -0.0339, x_4 = 0.0566$$

(d)
$$x_1 = 1.33, x_2 = -4.66, x_3 = -4.04, x_4 = -1.66$$

11. Gaussian elimination with three-digit rounding arithmetic gives the following results.

(a)
$$x_1 = -10.0$$
, $x_2 = 1.01$

(b)
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

(c)
$$x_1 = 0.185, x_2 = 0.0103, x_3 = -0.0200, x_4 = -1.12$$

(d)
$$x_1 = 0.799, x_2 = -3.12, x_3 = 0.151, x_4 = 4.56$$

- 12. Gaussian elimination with three-digit rounding arithmetic gives the following results.
 - (a) $x_1 = 1.00, x_2 = 10.0$

(b)
$$x_1 = 12.0, x_2 = 0.499, x_3 = -1.98$$

- (c) $x_1 = 0.0896, x_2 = -0.0639, x_3 = -0.0361, x_4 = 0.0467$
- (d) $x_1 = 1.35, x_2 = -4.73, x_3 = -4.07, x_4 = -1.65$
- 13. Gaussian elimination with partial pivoting and three-digit chopping arithmetic gives the following results.
 - (a) $x_1 = 10.0, x_2 = 1.00$

(b)
$$x_1 = -0.163, x_2 = 9.98, x_3 = 0.142$$

- (c) $x_1 = 0.177$, $x_2 = -0.0072$, $x_3 = -0.0208$, $x_4 = -1.18$
- (d) $x_1 = 0.777, x_2 = -3.10, x_3 = 0.161, x_4 = 4.50$
- 14. Gaussian elimination with partial pivoting gives the following results.
 - (a) $x_1 = 1.00, x_2 = 9.98$

(b)
$$x_1 = 12.0, x_2 = 0.504, x_3 = -9.78$$

- (c) $x_1 = 0.0928, x_2 = -0.0631, x_3 = -0.0356, x_4 = 0.0468$
- (d) $x_1 = 1.33, x_2 = -4.66, x_3 = -4.04, x_4 = -1.66$
- 15. Gaussian elimination with partial pivoting and three-digit rounding arithmetic gives the following results.
 - (a) $x_1 = 10.0, x_2 = 1.00$

(b)
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

- (c) $x_1 = 0.178$, $x_2 = 0.0127$, $x_3 = -0.0204$, $x_4 = -1.16$
- (d) $x_1 = 0.845, x_2 = -3.37, x_3 = 0.182, x_4 = 5.07$
- 16. Gaussian elimination with partial pivoting and three-digit chopping arithmetic gives the following results.
 - (a) $x_1 = 1.00, x_2 = 10.0$

(b)
$$x_1 = 12.0, x_2 = 0.499, x_3 = -1.98$$

- (c) $x_1 = 0.0927, x_2 = -0.0631, x_3 = -0.0362, x_4 = 0.0465$
- (d) $x_1 = 1.35, x_2 = -4.73, x_3 = -4.07, x_4 = -1.65$
- 17. Gaussian elimination with scaled partial pivoting and three-digit chopping arithmetic gives the following results.
 - (a) $x_1 = 10.0, x_2 = 1.00$

(b)
$$x_1 = -0.163, x_2 = 9.98, x_3 = 0.142$$

- (c) $x_1 = 0.171, x_2 = 0.0102, x_3 = -0.0217, x_4 = -1.27$
- (d) $x_1 = 0.687, x_2 = -2.66, x_3 = 0.117, x_4 = 3.59$

- 18. Gaussian elimination with scaled partial pivoting gives the following results.
 - (a) $x_1 = 1.00, x_2 = 9.98$

(b)
$$x_1 = 0.993, x_2 = 0.500, x_3 = -1.00$$

- (c) $x_1 = 0.0930, x_2 = -0.0631, x_3 = -0.0359, x_4 = 0.0467$
- (d) $x 1 = 1.33, x_2 = -4.66, x_3 = -4.04, x_4 = -1.66$
- 19. Gaussian elimination with scaled partial pivoting and three-digit rounding arithmetic gives the following results.
 - (a) $x_1 = 10.0, x_2 = 1.00$

(b)
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

- (c) $x_1 = 0.180, x_2 = 0.0128, x_3 = -0.0200, x_4 = -1.13$
- (d) $x_1 = 0.783, x_2 = -3.12, x_3 = 0.147, x_4 = 4.53$
- 20. Gaussian elimination with scaled partial pivoting and three-digit chopping arithmetic gives the following results.
 - (a) $x_1 = 1.00, x_2 = 10.0$

(b)
$$x_1 = 1.03, x_2 = 0.502, x_3 = -1.01$$

- (c) $x_1 = 0.0927, x_2 = -0.0630, x_3 = -0.0360, x_4 = 0.0467$
- (d) $x_1 = 1.35, x_2 = -4.73, x_3 = -4.07, x_4 = -1.65$
- 21. Using Algorithm 6.1 in Maple with Digits:=10 gives
 - (a) $x_1 = 10.00000000, x_2 = 1.000000000$
 - (b) $x_1 = 0.000000033, x_2 = 10.00000001, x_3 = 0.1428571429$
 - (c) $x_1 = 0.1768252958, x_2 = 0.0126926913, x_3 = -0.0206540503, x_4 = -1.182608714$
 - (d) $x_1 = 0.7883937842, x_2 = -3.125413672, x_3 = 0.1675965951, x_4 = 4.557002521$
- 22. Using Algorithm 6.1 in Maple with Digits:=10 gives
 - (a) $x_1 = 1.0000000000, x_2 = 10.0000000000$
 - (b) $x_1 = 1.000000300, x_2 = 0.500000001, x_3 = -1.000000306$
 - (c) $x_1 = 0.0927610467, x_2 = -0.06299433926, x_3 = -0.03624582267, x_4 = 0.04670801939$
 - (d) $x_1 = 1.349448559, x_2 = -4.677987755, x_3 = -4.032893779, x_4 = -1.656637732$
- 23. Using Algorithm 6.2 in Maple with Digits:=10 gives
 - (a) $x_1 = 10.00000000, x_2 = 1.000000000$
 - (b) $x_1 = 0.0000000000, x_2 = 10.00000000, x_3 = 0.142857142$
 - (c) $x_1 = 0.1768252975, x_2 = 0.0126926909, x_3 = -0.0206540502, x_4 = -1.182608696$
 - (d) $x_1 = 0.7883937863, x_2 = -3.125413680, x_3 = 0.1675965980, x_4 = 4.557002510$

- 24. Using Algorithm 6.2 in Maple with Digits:=10 gives
 - (a) $x_1 = 1.0000000000, x_2 = 10.0000000000$
 - (b) $x_1 = 1.000000300, x_2 = 0.500000001, x_3 = -1.000000306$
 - (c) $x_1 = 0.09276104704, x_2 = -0.06299433961, x_3 = -0.03624582264, x_4 = 0.04670801938$
 - (d) $x_1 = 1.349448559, x_2 = -4.677987755, x_3 = -4.032893779, x_4 = -1.656637732$
- 25. Using Algorithm 6.3 in Maple with Digits:=10 gives
 - (a) $x_1 = 10.00000000, x_2 = 1.000000000$
 - (b) $x_1 = 0.0000000000, x_2 = 10.00000000, x_3 = 0.1428571429$
 - (c) $x_1 = 0.1768252977, x_2 = 0.0126926909, x_3 = -0.0206540501, x_4 = -1.182608693$
 - (d) $x_1 = 0.7883937842, x_2 = -3.125413672, x_3 = 0.1675965952, x_4 = 4055700252$
- 26. Using Algorithm 6.3 in Maple with Digits:=10 gives
 - (a) $x_1 = 1.0000000000, x_2 = 10.0000000000$
 - (b) $x_1 = 1.000000000, x_2 = 0.500000000, x_3 = -1.0000000000$
 - (c) $x_1 = 0.09276104705, x_2 = -0.06299433961, x_3 = -0.03624582264, x_4 = 0.04670801938$
 - (d) $x_1 = 1.349448559, x_2 = -4.677987755, x_3 = -4.032893779, x_4 = -1.656637732$
- 27. Using Gaussian elimination with complete pivoting gives:
 - (a) $x_1 = 9.98, x_2 = 1.00$

- (b) $x_1 = 0.0724, x_2 = 10.0, x_3 = 0.0952$
- (c) $x_1 = 0.161, x_2 = 0.0125, x_3 = -0.0232, x_4 = -1.42$
- (d) $x_1 = 0.719, x_2 = -2.86, x_3 = 0.146, x_4 = 4.00$
- 28. Gaussian elimination with complete pivoting gives the following results.
 - (a) $x_1 = 1.00, x_2 = 9.98$

- (b) $x_1 = 0.982, x_2 = 0.500, x_3 = -0.994$
- (c) $x_1 = 0.0933, x_2 = -0.0631, x_3 = -0.0360, 0.0464$
- (d) $x_1 = 1.33, x_2 = -4.66, x_3 = -4.04, x_4 = -1.65$
- 29. Using Gaussian elimination with complete pivoting and three-digit rounding arithmetic gives:
 - (a) $x_1 = 10.0, x_2 = 1.00$

- (b) $x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$
- (c) $x_1 = 0.179, x_2 = 0.0127, x_3 = -0.0203, x_4 = -1.15$
- (d) $x_1 = 0.874, x_2 = -3.49, x_3 = 0.192, x_4 = 5.33$

30. Gaussian elimination with complete pivoting and three-digit rounding gives the following results.

(a)
$$x_1 = 10.0, x_2 = 1.00$$
 (b) $x_1 = 10.0, x_2 = 1.00$

(c)
$$x_1 = 0.0926, x_2 = -0.0629, x_3 = -0.0361, x_4 = 0.0466$$

(d)
$$x_1 = 1.33, x_2 = -4.68, x_3 = -4.06, x_4 = -1.65$$

- 31. The only system which does not require row interchanges is (a), where $\alpha = 6$.
- 32. Change Algorithm 6.2 as follows:

Add to STEP 1.

$$NCOL(i) = i$$

Replace STEP 3 with the following.

Let p and q be the smallest integers with $i \leq p, q \leq n$ and

$$|a(NROW(p), NCOL(q))| = \max_{i \le k, j \le n} |a(NROW(k), NCOL(j))|.$$

Add to STEP 4.

$$A(NROW(p), NCOL(q)) = 0$$

Add to STEP 5.

If
$$NCOL(q) \neq NCOL(i)$$
 then set

$$NCOPY = NCOL(i);$$

$$NCOL(i) = NCOL(q);$$

$$NCOL(q) = NCOPY.$$

Replace STEP 7 with the following.

Set

$$m(\textit{NROW}(j), \textit{NCOL}(i)) = \frac{a(\textit{NROW}(j), \textit{NCOL}(i))}{a(\textit{NROW}(i), \textit{NCOL}(i))}.$$

Replace in STEP 8:

$$m(NROW(j), i)$$
 by $m(NROW(j), NCOL(i))$

Replace in STEP 9:

$$a(NROW(n), n)$$
 by $a(NROW(n), NCOL(n))$

Replace STEP 10 with the following.

Set

$$X(\mathit{NCOL}(n)) = \frac{a(\mathit{NROW}(n), n+1)}{a(\mathit{NROW}(n), \mathit{NCOL}(n))}.$$

Replace STEP 11 with the following.

Set

$$X(NCOL(i)) = \frac{a(NROW(i), n+1) - \sum_{j=i+1}^{n} a(NROW(i), NCOL(j)) \cdot X(NCOL(j))}{A(NROW(i), NCOL(i))}.$$

Replace STEP 12 with the following.

OUTPUT ('
$$X(', NCOL(i), ') = ', X(NCOL(i))$$
 for $i = 1, ..., n$).

- 33. Using the Complete Pivoting Algorithm in Maple with Digits:=10 gives
 - (a) $x_1 = 10.00000000, x_2 = 1.0000000000$
 - (b) $x_1 = 0.0000000000, x_2 = 10.00000000, x_3 = 0.1428571429$
 - (c) $x_1 = 0.1768252974, x_2 = 0.01269269087, x_3 = -0.02065405015, x_4 = -1.182608697$
 - (d) $x_1 = 0.17883937840, x_2 = -3.125413669, x_3 = 0.1675965971, x_4 = 4.557002516$
- 34. Using the Complete Pivoting Algorithm in Maple with Digits:=10 gives
 - (a) $x_1 = 1.0000000000, x_2 = 10.0000000000$
 - (b) $x_1 = 1.000000001, x_2 = 0.5000000000, x_3 = -1.000000001$
 - (c) $x_1 = 0.09276104701, x_2 = -0.06299433960, x_3 = -0.03624582267, x_4 = 0.04670801937$
 - (d) $x_1 = 1.349448557, x_2 = -4.677987750, x_3 = -4.032893778, x_4 = -1.656637732$

Exercise Set 6.3, page 378

- 1. Determine if the matrices are nonsingular, and if so, find the inverse.
 - (a) The matrix is singular.

(b)
$$\begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{5}{8} & -\frac{1}{8} & -\frac{1}{8} \\ \frac{1}{8} & -\frac{5}{8} & \frac{3}{8} \end{bmatrix}$$

(c) The matrix is singular.

(d)
$$\begin{bmatrix} \frac{1}{4} & 0 & 0 & 0 \\ -\frac{3}{14} & \frac{1}{7} & 0 & 0 \\ \frac{3}{28} & -\frac{11}{7} & 1 & 0 \\ -\frac{1}{2} & 1 & -1 & 1 \end{bmatrix}$$

- 2. Determine if the matrices are nonsingular, and if so, find the inverse.
 - (a)

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ -1 & 4 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 1 & -\frac{1}{2} \\ \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ -\frac{1}{10} & \frac{3}{5} & -\frac{1}{10} \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{5}{8} & -\frac{1}{8} & -\frac{1}{8} \\ \frac{1}{8} & -\frac{5}{8} & \frac{3}{8} \end{bmatrix}$$