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16.

17.

18.

19.

Exercise Set 4.9

e) 7.103932, 2 + 172 £) 1.428074, 1(e2 + 1) —e
2 2

Gaussian quadrature with n =m = p = 3 gives:
(a) 5.206442 (b) 0.08333333 (¢) 0.07166667

(d) 0.08333333 (e) 6.928161 () 1.474577

Algorithm 4.6 with n = m = p = 4 gives the first listed value. The second is from Algorithm
4.6 withn=m=p=>5.

(a) 5.206447, 5.206447 (b) 0.08333333,0.08333333  (c) 0.07142857,0.07142857

(d) 0.08333333,0.08333333  (e) 6.934912,6.934801 (f) 1.476207, 1.476246

Gaussian quadrature with n = m = p = 4 gives 3.0521250. The exact result is 3.0521249.

The approximation 20.41887 requires 125 functional evaluations.

Exercise Set 4.9, page 245

1.

The Composite Simpson’s rule gives:

(a) 0.5284163 (b) 4.266654 (c) 0.4329748 (d) 0.8802210
The Composite Simpson’s Rule gives:

(a) 1.076163 (b) 20.07458

The Composite Simpson’s rule gives:

(a) 0.4112649 (b) 0.2440679 (c) 0.05501681 (d) 0.2903746

The Composite Simpson’s Rule gives:

(a) 1.1107218 with n = 16 (b) 0.58904782 with n = 12

The escape velocity is approximately 6.9450 mi/s.
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6. The polynomial L, (z) has n distinct zeros in [0,00). Let &1, ...,z be the n distinct zeros of

L, and define, for each i = 1,...,n,
/ -z H "1"])
(zi — :BJ)
J#l

Let P(z) be any polynomial of degree n — 1 or less, and let P,,_;(z) be the (n— 1)th Lagrange
polynomial for P on the nodes z1, ..., ,. As in the proof of Theorem 4.7,

oo} fo'e) n
/ P(z)e ™ dz = / P, 1(zx)e ™ dz = Zcm-P(xi),
0 0 prt
so the quadrature formula is exact for polynomials of degree n — 1 or less.
If P(z) has degree 2n — 1 or less, then P(z) can be divided by the nth Laguerre polynomial
L, (x) to obtain
P(z) = Q(z)Ln(z) + R(z),
where Q(z) and R(z) are both polynomials of degree less than n. As in proof of Theorem 4.7,
the orthogonality of the Laguerre polynomials on [0, co) implies that

n—1
=0
for some constants d;.
Thus,
o] oo n—1 o]
/ e *P(zx) dz = / ZdiL,-(x)Ln(m)e_‘” d:c-}—/ e *R(z) dz
0 0 =0 0
n—1 0o n
- Y4 / Li@)La(@)e ™" dz+ 3 eniR(z:)
i=0 0 i=1
=0+ Z Cn,iR(:L‘i) = Z Cn’,LR(.Tz)
i=1 i=1
But,
P(z;) = Q(x:) Ln(x:) + R(zi) = 0+ R(z;) = R(zs),
S0

oo n .
/ e *P(z) dz = ch,iP(mi).
0 i=1
Hence the quadrature formula has degree of precision 2n — 1.

7. (a) / f(z) dz ~ 0.8535534 £(0.5857864) + 0.1464466 f(3.4142136)

(b) / e~ f(2) dz ~ 0.7110930 £(0.4157746)+0.2785177 £(2.2942804)+0.0103893 f(6.2899451)
0

8. For n = 2 we have 0.9238795. For n = 3 we have 0.9064405.
9. For n = 2 we have 2.9865139. For n = 3 we have 2.9958198.



Direct Methods for Solving Linear
Systems

Exercise Set 6.1, page 356

1.

(a) Intersecting lines with solution z; = zg = 1.

(b) One line, so there is an infinite number of solutions with zs = —g- — %ml‘
(c) One line, so there is an infinite number of solutions with z, = —1z;.
(d) Intersecting lines with solution z; = %— and zp = — 4.

(a) Intersecting lines whose solution is 1 = z2 = 0.

(b) Parallel lines, so there is no solution.

(¢) Three lines in the plane that do not intersect at a common point.

(d) Two planes in space which intersect in a line with z; = —%xz and z3 = %wz + 1.

Gaussian elimination gives the following solutions.

(a) 1 =1.0, 22 = —0.98, 3 =2.9 (b) 1 =11, e = —1.1, 23 = 2.9

Gaussian elimination gives the following solutions.

(a) 1 = —-0.70,22 = 1.1,23 = 2.9 (b) 3 = —0.88,z2 = 0.74,23 = 3.0

Gaussian elimination gives the following solutions.

(a) =1 =1.1875,29 = 1.8125,x3 = 0.875 with one row interchange required
(b) z1 = —1,22 = 0,23 = 1 with no interchange required

(¢) z1 =1.5,29 = 2,23 = —1.2,24 = 3 with no interchange required

(d) No unique solution

Gaussian elimination gives the following solutions.

(a) 1 = —4, zo = —8, x3 = —6 with one row interchange required

(b) z; = %2—, To = -—%, T3 = %,m =1 with one row interchange required

¢) z1 =13, g = 8, x3 = 8,4 = 5 with one row interchange required.
g

(d) 1 = -1, 22 =2, 3 = 0,24 = 1 with one row interchange required.

147
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7. Gaussian elimination with DIGITS:=10 gives the following solutions:

(a) 21 = —227.0769, x5 = 476.9231, z3 = —177.6923;
(b) 1 = 1.001291, 25 = 1, x5 = 1.00155;

(c) z1 = —0.03174600, zo = 0.5952377, o3 = —2.380951, x4 = 2.777777;

(d) 1 = 1.918129, z, = 1.964912, x5 = —0.9883041, 24 = —3.192982,25 = —1.134503.

8. Gaussian elimination with DIGITS:=10 gives the following solutions:

11.

(a) 1 = 0.9798657720, o = 4.281879191, w3 = 17.48322147;
(b) 1 = 6.461447620, xo = 8.394321092, z3 = —0.01347368618;
(c) 71 = 1.349448559, xo = —4.67798776, 3 = —4.032893779, x4 = —1.656637732;

(d) 1 = 13.49999998, xo = —11.5000000000, x3 = 23.75000003, =4 = 121.5000003,z5 =
97.75000025.

(a) When a = —1/3, there is no solution.
(b) When « = 1/3, there is an infinite number of solutions with z; = z2 + 1.5, and x3 is

arbitrary.
(¢) If o # £1/3, then the unique solution is
T = _3 and 2 = =3
T 201+ 3a) 27 2(1+43a)
(a) a=1 (b) a=-1

() z1=-1/1-a),za =123 =1/(1 — )

Suppose 21, ..., z,, is a solution to the linear system (6.1).
(i) The new system becomes

Eq :a1121 + a1222 + ... + 10T, = by
E; :ha;1x1 + Aajpxo + ... + AainZTn = Ab;

E, :ap121 + oo + ... + Qpn®y = b,.

Clearly, z1,...,z! satisfies this system. Conversely, if z7,...,z}, satisfies the new system, di-
1 n 1 n

viding E; by A shows z7, ..., z} also satisfies (6.1).

(i) The new system becomes

Eq :a11721 +a1222 + ... + G1n%n = by
E; :(a“ + )\ajl)xl -+ (aig + )\ajz).'b‘g + ...+ (am + )\ajn)xn =b; + /\bj

Ep :an1 1 + Gn2T2 + ... + GunTpn = bp.
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12.

13.

14.

15.

Clearly, z}, ..., z,, satisfies all but possibly the ith equation. Multiplying E; by A gives

/\G,jliﬂll + Aajgx’z + ...+ )\ajnx; = )\bj

which can be subtracted from E; in the new system results in the system (6.1). Thus, 1, ..., 2,
satisfies the new system. Conversely, if 7, ..., 2} is a solution to the new system, then all but
possibly E; of (6.1) are satisfied by 7, ..., z}. Multiplying E; of the new system by —X\ gives

* *
—Aaj1z] — Aajors — ... — Aajn®, = —Abj.

Adding this to E; in the new system produces E; of (6.1). Thus, z7,...,z} is a solution of
(6.1).

(iii) The new system and the old system have the same set of equations to satisfy. Thus, they
have the same solution set.

Change Algorithm 6.1 as follows:

STEP1 Fori=1,...,ndo STEPS 2, 3, and 4.

STEP 4 Forj=1,...,i—1,i+1,...,n do STEPS 5 and 6.
STEP 8 Fori=1,...,nset & = Qi nt1/Gii-

In addition, delete STEP 9.

The Gauss-Jordan method gives the following results.

(a) 1 =0.98,29 = —0.98, 23 = 2.9
(b) Iy = 1.1,:132 = ——1.0, T3 — 2.9

The Gauss-Jordan method with single precision arithmetic gives the following solutions.

(a) z1 = —227.0787, x5 = 476.9262, z3 = —177.6934

(b) z; = 1.000036, z = 0.9999991, x5 = 0.9986052

(c) =1 = —0.03177120, z5 = 0.5955572, 3 = —2.381768, x4 = 2.778329

(d) 71 = 1918129, 25 = 1.964912, x5 = —0.9883036, 24 = —3.192982, x5 = —1.134503

The results for are listed in the following table. (The abbreviations M/D and A/S are used
for multiplications/divisions and additions/subtractions, respectively.)

Gaussian elimination  Gauss-Jordan

n  M/D A/S M/D  A/S
3 17 11 21 12
10 430 375 595 495

50 44150 42875 64975 62475
100 343300 338250 509950 499950
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16. (a) The Gaussian elimination procedure requires
2n® + 3n? — 5n
(2n (? ) Multiplications/Divisions
and
n® —n . .
Additions/Subtractions.

The additional elimination steps are:
Fori=n,n—-1,...,2

forj=1,...,i—1,
Q534 n+41

set  ajnt1 = Qjnt1 —
Qi
This requires
n(n — 1) Multiplications/Divisions
and )
n(n —
(T) Additions/Subtractions.
Solving for
T = Qi nt1
Qi

requires n divisions. Thus, the totals are

3 2
oy 3~ _5n Multiplications/Divisions
3 2 6
and 3 9
n n”_bn Additions/Subtractions.

32 6
(b) The results are listed in the following table. In this table the abbreviations M/D and
A/S are used for Multiplications/Divisions and for Additions/Subtractions, respectively.

Gauss-Jordan Hybrid

Gaussian Elimination
n M/D A/S M/D A/S M/D A/S
3 17 11 21 12 20 11
10 430 375 595 495 475 375
64975 62475 45375 42875

50 44150 42875
100 343300 338250 509950 499950 348250 338250
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17. The Gaussian-Elimination—Gauss-Jordan hybrid method gives the following results.

(a) z1 =1.0,z0 = —0.98,23 = 2.9 (b) z1 =1.0,20 = —1.0,23 = 2.9

18. The Gauss-Jordan hybrid method with single-precision arithmetic gives the following solutions.

(a) —227.0788, 476.9262, —177.6934 (b) 0.9990999, 0.9999991, 0.9986052

(¢) —0.03177060, 0.5955554, —2.381768, 2.778329
(d) z; = 1.918126, zo = 1.964916, x5 = —0.9883027, x4 = —3.192982, x5 = —1.134503

19. (a) There is sufficient food to satisfy the average daily consumption.
(b) We could add 200 of species 1, or 150 of species 2, or 100 of species 3, or 100 of species 4.

(c) Assuming none of the increases indicated in part (b) was selected, species 2 could be
increased by 650, or species 3 could be increased by 150, or species 4 could be increased
by 150.

(d) Assuming none of the increases indicated in parts (b) or (c) were selected, species 3 could
be increased by 150, or species 4 could be increased by 150.

20. (a) For the Trapezoidal rule m =n =1, o = 0, 1 = 1 so that for 4 = 0 and 1, we have

w(z;) = f(z;) +/0 K(z;,t)u(t) dt
= @) + g (K i, 0)u(0) + K (o, 1u(1)].

Substituting for x; gives the desired equations.

(b) Wehaven=4,h=%,xozo,mlzi,xz=%,x3=%, and T4 = 1, so
h 1 1
u(z;) =f(x;) + 3 K(z;,0)u(0) + 2K | x;, 1)4\ 32
1 1 3 3
+2K (a?i, 5) u (—2—> +2K (xi_, 1) (Z) + K (x;, l)u(l)],
for i = 0,1,2,3,4. This gives
1 :
u(z;) = :cf+—8— [e“u(o) + 2elvi—%ly, (%) + 2el®i— 3y, (—;—) + 2eli—tly (i—) + e'“‘”u(l)] )

for each i = 1,...,4. The 5 x 5 linear system has solution u(0) = —1.154255, u (1) =
—0.9093298, u (1) = —0.7153145, u (2) = —0.5472949, and u(1) = —0.3931261.

(¢) The Composite Simpson’s rule gives

/01 K (zi, tyu(t) dt =§ [K(a:i,())u(()) +AK (m i) u G) 19K (l %) y <_;_) N
4K (9: %) u (%) + K(z;, l)u(l)],
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which results in the linear equations

5 1 . 1 1 3
u(z;) = xf—l-ﬁ e"u(0) + delm=ily (Z) + 2el=i=3ly (5) + del=—ily (Z) + e'“‘”u(l)} .

The 5 x 5 linear system has solutions u(0) = —1.234286, u (%) = —0.9507292, u (%) =
—0.7659400, u (2) = —0.5844737, and u(1) = —0.4484975.

Exercise Set 6.2, page 368

1. The following row interchanges are required for these systems.
(a) none (b) Interchange rows 2 and 3.

(¢c) none (d) Interchange rows 1 and 2.

2. The following row interchanges are required for these systems.
(a) none (b) none

(c) none (d) none

3. The following row interchanges are required for these systems.

(a) Interchange rows 1 and 2. (b) Interchange rows 1 and 3.

(c) Interchange rows 1 and 2, then interchange rows 2 and 3.

(d) Interchange rows 1 and 2.

4. The following row interchanges are required for these systems.

(a) Interchange rows 2 and 3. (b) Interchange rows 1 and 3.

(c¢) Interchange rows 1 and 3, then interchange rows 2 and 3.

(d) Interchange rows 1 and 2.

5. The following row interchanges are required for these systems.

(a) Interchange rows 1 and 3, then interchange rows 2 and 3.
(b) Interchange rows 2 and 3.
(c¢) Interchange rows 2 and 3.

(d) Interchange rows 1 and 3, then interchange rows 2 and 3.
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