28

13.

14.

where £(z) is between x and p. Since f(™) is continuous, let

(m)
i - L)
Then f(z) = (z — p)™q(x) and
(m)
lim ¢(z) = ! '(p) # 0.
z—p m!
1t
l-&l-ﬂ;l;—' =0.75 and |po—p|=0.5,
|p'n - p|
then

[P — pl = (0.75)" D 2|pg — p|*".
To have |p, — p| < 1078 requires that n > 3.

Let e, = p, —p. If

i Lol o 0,

n—00 [en‘a

then for sufficiently large values of n, |e,41| = Ale,|*. Thus,
len| & Men1|® and |ep—1] ~ A7V % e,V
Using the hypothesis gives
Alen]® ~ lenta| = Cienl)‘wl/ﬂenll/aa

S0
|€n a C)\—l/a—llenll+l/a.

Since the powers of |e,,| must agree,

S

1+

=~ 1.62.
2

a=1+4+1/a and o=

Exercise Set 2.5

The number « is the golden ratio that appeared in Exercise 16 of section 1.3.
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1.

The results are listed in the following table.

(a) (b) (c) (d)

po 0.258684 0.907859 0.548101 0.731385
p1 0.257613 0.909568 0.547915 0.736087
P2 0.257536  0.909917 0.547847 0.737653
Pz 0.257531 0.909989 0.547823 0.738469
Da  0.257530 0.910004 0.547814 0.738798
ps 0.257530 0.910007 0.547810 0.738958




Solutions of Equations of One Variable

2. Newton’s Method gives pg = —0.1828876 and pg = —0.183387.
3. Steffensen’s method gives p(()l) = 0.826427.

4. Steffensen’s method gives p(()l) = 2.152905 and p((,z) = 1.873464.

5. Steffensen’s method gives p&o) = 1.5.

6. Steffensen’s method gives péo) = 1.73205.

7. For g(z) = \/—1_—{——% and pg = 1, we have p3 = 1.32472.
8. For g(xz) = 2% and pp = 1, we have p3 = 0.64119.
9. For g(z) = 0.5(z + 2) and py = 0.5, we have ps = 1.73205.
10. For g(z) = % and pg = 2.5, we have ps = 2.92401774.
11. (a) For g(z) = (2 — €* + 2?) /3 and po = 0, we have p3 = 0.257530.
(b) For g(z) = 0.5(sinz + cosz) and po = 0, we have py = 0.704812.

(c) With po = 0.25, ps = 0.910007572.
(d) With po = 0.3, ps = 0.469621923.

12. (a) For g(z) =2 +sinz and py = 2, we have py = 2.55419595.
(b) For g(z) = v/2x + 5 and pp = 2, we have p; = 2.09455148.

(c) With g(z) = 1/% and po = 1, we have ps = 0.910007574.
(d) With g(z) = cosz, and py = 0, we have py = 0.739085133.

13. Aitken’s A? method gives:

(a) 1o = 0.045 (b) po = 0.0363

14. (a) A positive constant A exists with

A= lim l—f’ﬁ_l__pl
n—co |py — pl|®
Hence,
lim |EntlZP 'pl g Pt =Pl ety =0
n—co | pp — P n—co |py — p|*
and
n—oo pn —p

(b) One example is p, = —=.
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15. We have
[Pnt1 = Dol _ |Prar =P+ D —pul _|Por1—p 1'
|pn — D [Pn — Dl Pn— D ’
SO
Ml@i:ﬁﬂzlm,&ﬂ;ﬁ_qu
n—oo |p, — p| n—co | P — P
16.

ﬁn —D A (6n + 6n+1) - 26n + 6716n+1 — 26n()\ - ]-) - 63;,

Pn —DP - ()‘ - 1)2 + A (57& + 6n+1) - 2611 + 5n6n+1

17. (a) First use the Taylor series for e® to show that

1
_ £, .n+1
<" >

Pn—pP=

where £ is between 0 and 1. This implies that for large values of n we have

Pn+1 *P‘ _ elé1¢2) <1
Pn— P n+2
(b)

n DPn Dn

0 1 3

1 2 2.75

2 25 2.72

3 26 2.71875

4 2.7083 2.7183

5 2.716 2.7182870

6 2.71805 2.7182823

7 2.7182539 2.7182818

8 2.7182787 2.7182818

9 2.7182815
10  2.7182818
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1. (a) For py = 1, we have pes = 2.69065.

(b) For po = 1, we have ps = 0.53209; for pg = —1, we have ps = —0.65270; and for py = —3,
we have p3 = —2.87939.

(¢c) For pg =1, we have ps = 1.32472.
(d) For pg = 1, we have py = 1.12412; and for py = 0, we have pg = —0.87605.

(e) For pg = 0, we have pg = —0.47006; for po = —1, we have p, = —0.88533; and for
po = —3, we have py = —2.64561.



