where $\xi(x)$ is between x and p. Since $f^{(m)}$ is continuous, let

$$q(x) = \frac{f^{(m)}(\xi(x))}{m!}.$$

Then $f(x) = (x - p)^m q(x)$ and

$$\lim_{x \to p} q(x) = \frac{f^{(m)}(p)}{m!} \neq 0.$$

13. If

$$\frac{|p_{n+1} - p|}{|p_n - p|^3} = 0.75$$
 and $|p_0 - p| = 0.5$,

then

$$|p_n - p| = (0.75)^{(3^n - 1)/2} |p_0 - p|^{3^n}.$$

To have $|p_n - p| \le 10^{-8}$ requires that $n \ge 3$.

14. Let $e_n = p_n - p$. If

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \lambda > 0,$$

then for sufficiently large values of n, $|e_{n+1}| \approx \lambda |e_n|^{\alpha}$. Thus,

$$|e_n| \approx \lambda |e_{n-1}|^{\alpha}$$
 and $|e_{n-1}| \approx \lambda^{-1/\alpha} |e_n|^{1/\alpha}$.

Using the hypothesis gives

$$\lambda |e_n|^{\alpha} \approx |e_{n+1}| \approx C|e_n|\lambda^{-1/\alpha}|e_n|^{1/\alpha},$$

so

$$|e_n|^{\alpha} \approx C\lambda^{-1/\alpha - 1}|e_n|^{1+1/\alpha}$$
.

Since the powers of $|e_n|$ must agree,

$$\alpha = 1 + 1/\alpha$$
 and $\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.62$.

The number α is the golden ratio that appeared in Exercise 16 of section 1.3.

Exercise Set 2.5, page 86

1. The results are listed in the following table.

	(a)	(b)	(c)	(d)
\hat{p}_0	0.258684	0.907859	0.548101	0.731385
\hat{p}_1	0.257613	0.909568	0.547915	0.736087
\hat{p}_2	0.257536	0.909917	0.547847	0.737653
\hat{p}_3	0.257531	0.909989	0.547823	0.738469
\hat{p}_4	0.257530	0.910004	0.547814	0.738798
\hat{p}_5	0.257530	0.910007	0.547810	0.738958

- 2. Newton's Method gives $p_6 = -0.1828876$ and $\hat{p}_6 = -0.183387$.
- 3. Steffensen's method gives $p_0^{(1)} = 0.826427$.
- 4. Steffensen's method gives $p_0^{(1)} = 2.152905$ and $p_0^{(2)} = 1.873464$.
- 5. Steffensen's method gives $p_1^{(0)} = 1.5$.
- 6. Steffensen's method gives $p_2^{(0)} = 1.73205$.
- 7. For $g(x) = \sqrt{1 + \frac{1}{x}}$ and $p_0 = 1$, we have $p_3 = 1.32472$.
- 8. For $g(x) = 2^{-x}$ and $p_0 = 1$, we have $p_3 = 0.64119$.
- 9. For $g(x) = 0.5(x + \frac{3}{x})$ and $p_0 = 0.5$, we have $p_4 = 1.73205$.
- 10. For $g(x) = \frac{5}{\sqrt{x}}$ and $p_0 = 2.5$, we have $p_3 = 2.92401774$.
- 11. (a) For $g(x) = (2 e^x + x^2)/3$ and $p_0 = 0$, we have $p_3 = 0.257530$.
 - (b) For $g(x) = 0.5(\sin x + \cos x)$ and $p_0 = 0$, we have $p_4 = 0.704812$.
 - (c) With $p_0 = 0.25$, $p_4 = 0.910007572$.
 - (d) With $p_0 = 0.3$, $p_4 = 0.469621923$.
- 12. (a) For $g(x) = 2 + \sin x$ and $p_0 = 2$, we have $p_4 = 2.55419595$.
 - (b) For $g(x) = \sqrt[3]{2x+5}$ and $p_0 = 2$, we have $p_2 = 2.09455148$.
 - (c) With $g(x) = \sqrt{\frac{e^x}{3}}$ and $p_0 = 1$, we have $p_3 = 0.910007574$.
 - (d) With $g(x) = \cos x$, and $p_0 = 0$, we have $p_4 = 0.739085133$.
- 13. Aitken's Δ^2 method gives:

(a)
$$\hat{p}_{10} = 0.0\overline{45}$$

(b)
$$\hat{p}_2 = 0.0363$$

14. (a) A positive constant λ exists with

$$\lambda = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}}.$$

Hence,

$$\lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} \right| = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} \cdot |p_n - p|^{\alpha - 1} = \lambda \cdot 0 = 0$$

and

$$\lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p} = 0.$$

(b) One example is $p_n = \frac{1}{n^n}$.

15. We have

$$\frac{|p_{n+1} - p_n|}{|p_n - p|} = \frac{|p_{n+1} - p + p - p_n|}{|p_n - p|} = \left| \frac{p_{n+1} - p}{p_n - p} - 1 \right|,$$

$$\lim_{n \to \infty} \frac{|p_{n+1} - p_n|}{|p_n - p|} = \lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} - 1 \right| = 1.$$

 \mathbf{so}

16.

$$\frac{\hat{p}_n - p}{p_n - p} = \frac{\lambda \left(\delta_n + \delta_{n+1}\right) - 2\delta_n + \delta_n \delta_{n+1} - 2\delta_n (\lambda - 1) - \delta_n^2}{(\lambda - 1)^2 + \lambda \left(\delta_n + \delta_{n+1}\right) - 2\delta_n + \delta_n \delta_{n+1}}$$

17. (a) First use the Taylor series for e^x to show that

$$p_n - p = -\frac{1}{(n+1)!}e^{\xi}x^{n+1},$$

where ξ is between 0 and 1. This implies that for large values of n we have

$$\left| \frac{p_{n+1} - p}{p_n - p} \right| = \left| \frac{e^{(\xi_1 - \xi_2)}}{n+2} \ x \right| \le 1.$$

(b)			
, ,	n	p_n	\hat{p}_n
	0	1	3
	1	2	2.75
	2	2.5	$2.7\overline{2}$
	3	$2.\overline{6}$	2.71875
	4	$2.708\overline{3}$	$2.718\overline{3}$
	5	$2.71\overline{6}$	2.7182870
	6	$2.7180\overline{5}$	2.7182823
	7	2.7182539	2.7182818
	8	2.7182787	2.7182818
	9	2.7182815	
	10	2.7182818	

Exercise Set 2.6, page 96

- 1. (a) For $p_0 = 1$, we have $p_{22} = 2.69065$.
 - (b) For $p_0 = 1$, we have $p_5 = 0.53209$; for $p_0 = -1$, we have $p_3 = -0.65270$; and for $p_0 = -3$, we have $p_3 = -2.87939$.
 - (c) For $p_0 = 1$, we have $p_5 = 1.32472$.
 - (d) For $p_0 = 1$, we have $p_4 = 1.12412$; and for $p_0 = 0$, we have $p_8 = -0.87605$.
 - (e) For $p_0 = 0$, we have $p_6 = -0.47006$; for $p_0 = -1$, we have $p_4 = -0.88533$; and for $p_0 = -3$, we have $p_4 = -2.64561$.