Exercise Set 2.2, page 61
1. For the value of z under consideration we have
(a) z=0B+z—-2)*e2*=3+2-22>< f(z) =0
_ AN\ 1/2
(b)xz(ﬁ%—i) s2?=z+3-2"s f(x)=0
1/2
©@a=(52) e+ =a+36 1) =0

x_3z4+2a:2+3
4344 -1

o4zt +42® —z=32"+222 +3 & f(z) =0
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2. (a) pa=110782 (b) ps=0.987506; (c) ps = 1.12364; (d) py = 1.12412;
(b) Part (d) gives the best answer since |ps — ps| is the smallest for (d).

3. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does
not converge.

4. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.

5. With g(z) = (322 + 3)%/* and py = 1, ps = 1.94332 is accurate to within 0.01.

6. With g(z) = /1 + £ and pp = 1, we have py = 1.324.

7. Since ¢'(z) = 1cos %, g is continuous and ¢’ exists on [0, 27]. Further, ¢’(x) = 0 only when
z =7, so that g(0) = g(21) = 7 < g(z) =< g(n) =7+ 1 and |¢/(z)| < §, for 0 < z < 2m.
Theorem 2.2 implies that a unique fixed point p exists in [0, 27]. With k = i and pg = 7, we
have p; =7+ % Corollary 2.4 implies that

k™ 2 /(1\"
pn =l < 7= Ip1 —pol = 3 (4)

For the bound to be less than 0.1, we need n > 4. However, ps = 3.626996 is accurate to
within 0.01.

8. Using po = 1 gives p12 = 0.6412053. Since |¢/(z)| =27"In2 < 0.551 on [%,1] with k = 0.551,
Corollary 2.4 gives a bound of 16 iterations.

9. For po = 1.0 and g(z) = 0.5(z + 2), we have v/3 ~ ps = 1.73205.
10. For g(z) = 5/y/x and py = 2.5, we have p14 = 2.92399.

11.  (a) With [0,1] and pg = 0, we have pg = 0.257531.
(b) With [2.5,3.0] and po = 2.5, we have py7 = 2.690650.
(¢) With [0.25,1] and po = 0.25, we have p14 = 0.909999.
(d) With [0.3,0.7] and po = 0.3, we have p3g = 0.469625.
(e) With [0.3,0.6] and pp = 0.3, we have psg = 0.448059.
(f) With [0,1] and pp = 0, we have pg = 0.704812.
12. The inequalities in Corollary 2.4 give |p, — p| < k™ max(po — a,b — po). We want
"> In(1075) — In(max(pg — a,b — po)).
Ink

(a) Using g(z) = 2 + sinz we have k = 0.9899924966 so that with py = 2 we have n >
In(0.00001)/In k = 1144.663221. However, our tolerance is met with pg3 = 2.5541998.

(b) Using g(z) = ¥/2z +5 we have k = 0.1540802832 so that with pp = 2 we have n >
In(0.00001)/In k = 6.155718005. However, our tolerance is met with ps = 2.0945503.

k™ max(py — a,b—po) < 107> so we need

(c) Using g(z) = /% and the interval [0, 1] we have k = 0.4759448347 so that with po = 1

we have n > In(0.00001)/In k = 15.50659829. However, our tolerance is met with pi2 =
0.91001496.
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(d) Using g(x) = cosz and the interval [0, 1] we have k = 0.8414709848 so that with po =0
we have n > In(0.00001)/In k > 66.70148074. However, our tolerance is met with p3p =
0.73908230.

13. For g(x) = (222 — 10cos z)/(3x), we have the following:
po =3 = pg = 3.16193; po = —3 = ps = —3.16193.
For g(z) = arccos(—0.1z2), we have the following:

po=1= pi; = 1.96882; po=—1=>py; = —1.96882.

14. For g(z) = 1/tanz — (1/z) + = and po = 4, we have py = 4.493409.
15. With g(z) = % arcsin (—%) + 2, we have p; = 1.683855.

16. (a) If fixed-point iteration converges to the limit p, then

p= lim p, = lim 2p,_; — Ap2_, =2p — Ap?.
n—00 n—oo

Solving for p gives p = .
(b) Any subinterval [c,d] of (5, 5) containing % suffices.
Since
g(x) =2z — Az?, ¢'(z) = 2 — 24z,

so g(x) is continuous, and ¢'(z) exists. Further, g'(z) = 0 only if z = &.

1\ _1 IN_ (3Y_3
I\a)~a 9\3a)79\2a) T 1A

Since

and we have

3 1
—< < —.
1A S9@ =7
For z in (55, 5 ), we have
_ 1 < 1
TTA|T 24

S0
lg'(@)| = 24

1 1

17. One of many examples is g(z) = 2z — L on [3,1].

18. (a) The proof of existence is unchanged. For uniqueness, suppose p and ¢ are fixed points in
[a,b] with p # ¢g. By the Mean Value Theorem, a number ¢ in (a, b) exists with

p—q=9p)—9() =g P@—-q9 <k(p-q9) <p-—gq,

giving the same contradiction as in Theorem 2.2.
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(b) Consider g(z) = 1 — 22 on [0,1]. The function g has the unique fixed point p =
% (—1 + \/5) . With py = 0.7, the sequence eventually alternates between 0 and 1.

19. Let g(z) = #/2+1/x. For x # 0,¢/(z) = 1/2—1/2% If 2 > v/2, then 1/2? < 1/2, s0 ¢(z) > 0.
Also, g(v2) = V2.

(a) Suppose that zo > v/2. Then
21— V2=g(z0) — g (\/5) =g'(€) (xo - \/5) ,
where v2 < € < z. Thus, z; — V2 > 0 and z; > V2. Further,

x 1 T 1 To + V2
x1=——9+;—<—0+ =2 V2
o

2 2 V2 2

and v/2 < z; < zg. By an inductive argument,

\/§<xm+1<wm<...<m0.

Thus, {z,,} is a decreasing sequence which has a lower bound and must converge.
Suppose p = lim,, o0 Zm,. Then

. Tm—1 1 D
= 1 = —
p im ( 2 + ) 2 +

m—0o0

Thus,

_p_1
p~2+p,

which implies that p = /2. Since x,,, > /2 for all m,

lim z,, = V2.

m—o0

(b) We have
2
0< (a:o—\/i) =x%—2x0\/§+2,
0 220v2 < 22 +2 and V2 < %ﬂ—}—%:xl.
(¢) Case 1: 0 < o < /2, which implies that v/2 < z; by part (b). Thus,

0<xo<\/—2_<acm+1 < Ty <...<xpy and lim mm:\/§.

m—+r00

Case 2: ©g = \/5, which implies that z,, = V2 for all m and lim,,— oo Zm = V2.
Case 3: xo > v/2, which by part (a) implies that lim,,_,ec Tm = V2.

20. (a) Let g(z) = x/2 + A/(2z). Note that g (\/Z) = VA. Also, ¢'(z) = 1/2 — A/ (22?) if
z#0and ¢'(z) > 0if z > VA.
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(b)

If zo = VA, then z,, = VA for all m and lim,,, o0 T, = VA.
If zp > A, then

1 —VA=g(xo)— g (\/Z) =g'(¢) (mo - \/Z) > 0.
Further,

Zo A X0 A 1
n=—+4-—<—=+—==z(z A).
=y Yo 2 Tova 2("°+‘/_)

Thus, VA < z; < 2¢. Inductively,

VA< Tt < T < ... < T

and lim,—, 00 Zm = VA by an argument similar to that in Exercise 19(a).

If 0 < 2o < VA, then

0< (mo——\/ﬁ)zzxg—%o\/}l_-i-A

and
2:130\/Z < CC(2) + A,

which leads to

A
VA<D 4 = =
2 2&30

Thus,

0<zo< VA< Tpp1 < T <...< 1,
and by the preceding argument, lim,, oo Ty = VA.
If g < 0, then lim,, o0 Ty = —V/A.

21

21. Replace the second sentence in the proof with: “Since g satisfies a Lipschitz condition on [a, b]

22.

23.

with

a Lipschitz constant L < 1, we have, for each n,

Ipn — p| = |9(Pn-1) — 9(p)| < Llpn-1 — p|.”

The rest of the proof is the same, with k replaced by L.

Let ¢ = (1 —|¢’(p)|)/2. Since ¢’ is continuous at p, there exists a number § > 0 such that for
x € [p—6,p+6], we have |¢'(z) — ¢'(p)| < e. Thus, |¢'(z)| < |¢'(p)|+& < 1for z € [p—4,p+4].
By the Mean Value Theorem

for z € [p — 6,p + 6]. Applying the Fixed-Point Theorem completes the problem.

lg(z) = g(p)| = Ig' (= — pl < |z —pl,

With g(t) = 501.0625 — 201.0625¢~%4¢ and py = 5.0, p3 = 6.0028 is within 0.01 s of the actual

time.
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24. Since ¢’ is continuous at p and |¢’(p)| > 1, by letting € = |¢g/(p)| —1 there exists a number 6 > 0
such that |g'(z) — ¢'(p)| < |¢’(p)| — 1 whenever 0 < |z — p| < §. Hence, for any x satisfying
0 < |z —p| < 6, we have

lg'(@)| > |9’ ()| = 19’ (x) — g’ (D) > |g'(P)| — (I¢'(P)] — 1) = L.
If po is chosen so that 0 < |p — po| < J, we have by the Mean Value Theorem that

Ip1 — p| = lg(po) — 9(p)| = |9'(§)|Ipo — pl,

for some € between po and p. Thus, 0 < |p — &| < 4 so |p1 — p| = |¢'(§)llpo — p| > |Po — pI-
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