Exercise Set 1.3, page 36

1. (a)
$$\frac{1}{1} + \frac{1}{4} \dots + \frac{1}{100} = 1.53;$$
 $\frac{1}{100} + \frac{1}{81} + \dots + \frac{1}{1} = 1.54.$

The actual value is 1.549. Significant round-off error occurs much earlier in the first method.

(b) The following algorithm will sum the series $\sum_{i=1}^{N} x_i$ in the reverse order.

INPUT
$$N; x_1, x_2, \dots, x_N$$

OUTPUT SUM
STEP 1 Set $SUM = 0$
STEP 2 For $j = 1, \dots, N$ set $i = N - j + 1$
 $SUM = SUM + x_i$
STEP 3 OUTPUT(SUM);
STOP.

2.

	Approximation	Absolute Error	Relative Error
$\overline{(a)}$	2.715	3.282×10^{-3}	1.207×10^{-3}
(b)	2.716	2.282×10^{-3}	8.394×10^{-4}
(c)	2.716	2.282×10^{-3}	8.394×10^{-4}
(d)	2.718	2.818×10^{-4}	1.037×10^{-4}

3. (a) 2000 terms (b) 20,000,000,000 terms

- 4. 4 terms
- 5. 3 terms
- (a) $O\left(\frac{1}{n}\right)$
- (b) $O\left(\frac{1}{n^2}\right)$
- (c) $O\left(\frac{1}{n^2}\right)$ (d) $O\left(\frac{1}{n}\right)$

- The rates of convergence are:
 - (a) $O(h^2)$
- (b) *O*(*h*)
- (c) $O(h^2)$

- (d) O(h)
- (a) n(n+1)/2 multiplications; (n+2)(n-1)/2 additions.
 - (b) $\sum_{i=1}^{n} a_i \left(\sum_{j=1}^{i} b_j\right)$ requires n multiplications; (n+2)(n-1)/2 additions.
- 9. The following algorithm computes $P(x_0)$ using nested arithmetic.

INPUT
$$n, a_0, a_1, \ldots, a_n, x_0$$

OUTPUT $y = P(x_0)$
STEP 1 Set $y = a_n$.
STEP 2 For $i = n - 1, n - 2, \ldots, 0$ set $y = x_0 y + a_i$.
STEP 3 OUTPUT (y) ;
STOP.

Exercise Set 1.3

10. The following algorithm uses the most effective formula for computing the roots of a quadratic equation.

```
INPUT A, B, C.
     OUTPUT x_1, x_2.
     STEP 1 If A = 0 then
                            if B = 0 then OUTPUT ('NO SOLUTIONS');
                                          STOP.
                                     else set x_1 = -C/B;
                                          OUTPUT ('ONE SOLUTION',x_1);
                                          STOP.
     STEP 2 Set D = B^2 - 4AC.
     STEP 3 If D = 0 then set x_1 = -B/(2A);
                            OUTPUT ('MULTIPLE ROOTS', x_1);
                            STOP.
     STEP 4 If D < 0 then set
                              b = \sqrt{-D}/(2A);
                              a = -B/(2A);
                            OUTPUT ('COMPLEX CONJUGATE ROOTS');
                              x_1 = a + bi;
                              x_2 = a - bi;
                            OUTPUT (x_1, x_2);
                            STOP.
     STEP 5 If B > 0 then set
                               d = B + \sqrt{D}:
                               x_1 = -2C/d;
                               x_2 = -d/(2A)
                       else set
                               d = -B + \sqrt{D}:
                               x_1 = d/(2A);
                               x_2 = 2C/d.
     STEP 6 OUTPUT (x_1, x_2);
             STOP.
11. The following algorithm produces the product P = (x - x_0), \dots, (x - x_n).
     INPUT n, x_0, x_1, \cdots, x_n, x
     OUTPUT P.
     STEP 1
                 Set P = x - x_0;
                       i = 1.
     STEP 2
               While P \neq 0 and i \leq n set
                                           P = P \cdot (x - x_i);
                                           i = i + 1
     STEP 3
               OUTPUT (P);
               STOP.
```

12. The following algorithm determines the number of terms needed to satisfy a given tolerance.

INPUT number x, tolerance TOL, maximum number of iterations M. OUTPUT number N of terms or a message of failure.

STEP 1 Set
$$SUM = (1-2x)/(1-x+x^2);$$

 $S = (1+2x)/(1+x+x^2);$
 $N = 2.$

STEP 2 While $N \leq M$ do Steps 3–5.

$$\begin{array}{lll} \textit{STEP 3} & \text{Set} & j = 2^{N-1}; \\ & y = x^j \\ & t_1 = \frac{jy}{x}(1-2y); \\ & t_2 = y(y-1)+1; \\ & SUM = SUM + t_1/t_2. \\ & STEP \textit{4} & \text{If} & |SUM-S| < TOL \text{ then} \\ & & \text{OUTPUT }(N); \\ & & \text{STOP.} \end{array}$$

Set N = N + 1.

STEP 6 OUTPUT('Method failed'); STOP.

STEP 5

When $TOL = 10^{-6}$, we need to have $N \ge 4$.

13. (a) If $|\alpha_n - \alpha|/(1/n^p) \leq K$, then $|\alpha_n - \alpha| \leq K(1/n^p) \leq K(1/n^q)$ since 0 < q < p. Thus, $|\alpha_n - \alpha|/(1/n^p) \leq K$ and $\{\alpha_n\}_{n=1}^{\infty} \to \alpha$ with rate of convergence $O(1/n^p)$.

n	1/n	$1/n^2$	$1/n^3$	$1/n^{5}$
5	0.2	0.04	0.008	0.0016
10	0.1	0.01	0.001	0.0001
50	0.02	0.0004	8×10^{-6}	1.6×10^{-7}
100	0.01	10^{-4}	10^{-6}	10^{-8}
	5 10 50	5 0.2 10 0.1 50 0.02	5 0.2 0.04 10 0.1 0.01 50 0.02 0.0004	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The most rapid convergence rate is $O(1/n^4)$.

14. (a) If $F(h) = L + O(h^p)$, there is a constant k > 0 such that

$$|F(h) - L| \le kh^p$$
,

for sufficiently small h > 0. If 0 < q < p and 0 < h < 1, then $h^q > h^p$. Thus, $kh^p < kh^q$, so

$$|F(h) - L| \le kh^q$$
 and $F(h) = L + O(h^q)$.

intrigrak in the company of the comp

(b) For various powers of h we have the entries in the following table.

h	h^2	h^3	h^4
0.5	0.25	0.125	0.0625
0.1	0.01	0.001	0.0001
0.01	0.0001	0.00001	10^{-8}
0.001	10^{-6}	10^{-9}	10^{-12}

The most rapid convergence rate is $O(h^4)$.

15. Suppose that for sufficiently small |x| we have positive constants k_1 and k_2 independent of x, for which

$$|F_1(x) - L_1| \le K_1 |x|^{\alpha}$$
 and $|F_2(x) - L_2| \le K_2 |x|^{\beta}$.

Let $c = \max(|c_1|, |c_2|, 1), K = \max(K_1, K_2), \text{ and } \delta = \max(\alpha, \beta).$

(a) We have
$$|F(x) - c_1L_1 - c_2L_2| = |c_1(F_1(x) - L_1) + c_2(F_2(x) - L_2)|$$

 $\leq |c_1|K_1|x|^{\alpha} + |c_2|K_2|x|^{\beta}$
 $\leq cK[|x|^{\alpha} + |x|^{\beta}]$
 $\leq cK|x|^{\gamma}[1 + |x|^{\delta-\gamma}]$
 $\leq \tilde{K}|x|^{\gamma},$

for sufficiently small |x| and some constant \tilde{K} . Thus, $F(x) = c_1 L_1 + c_2 L_2 + O(x^{\gamma})$.

(b) We have
$$|G(x) - L_1 - L_2| = |F_1(c_1x) + F_2(c_2x) - L_1 - L_2| \\ \leq K_1|c_1x|^{\alpha} + K_2|c_2x|^{\beta} \\ \leq Kc^{\delta}[|x|^{\alpha} + |x|^{\beta}] \\ \leq Kc^{\delta}|x|^{\gamma}[1 + |x|^{\delta - \gamma}] \\ \leq \tilde{K}|x|^{\gamma},$$

for sufficiently small |x| and some constant \tilde{K} . Thus, $G(x) = L_1 + L_2 + O(x^{\gamma})$.

- 16. Since $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_{n+1} = x$ and $x_{n+1} = 1 + \frac{1}{x_n}$, we have $x = 1 + \frac{1}{x}$. This implies that $x = (1 + \sqrt{5})/2$. This number is called the *golden ratio*. It appears frequently in mathematics and the sciences.
- 17. (a) 354224848179261915075
- (b) $0.3542248538 \times 10^{21}$

- (c) The result in part (a) is computed using exact integer arithmetic, and the result in part (b) is computed using 10-digit rounding arithmetic.
- (d) The result in part (a) required traversing a loop 98 times.
- (e) The result is the same as the result in part (a).
- 18. (a) n = 50

(b) n = 500

Solutions of Equations of One Variable

Exercise Set 2.1, page 51

1.
$$p_3 = 0.625$$

(a) $p_3 = -0.6875$

(b) $p_3 = 1.09375$

3. The Bisection method gives:

(a) $p_7 = 0.5859$

(b) $p_8 = 3.002$

(c) $p_7 = 3.419$

4. The Bisection method gives:

(a) $p_7 = -1.414$ (b) $p_8 = 1.414$ (c) $p_7 = 2.727$ (d) $p_7 = -0.7265$

5. The Bisection method gives:

(a) $p_{17} = 0.641182$

(b) $p_{17} = 0.257530$

(c) For the interval [-3, -2], we have $p_{17} = -2.191307$, and for the interval [-1, 0], we have $p_{17} = -0.798164.$

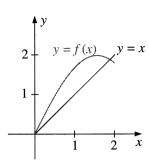
(d) For the interval [0.2, 0.3], we have $p_{14} = 0.297528$, and for the interval [1.2, 1.3], we have $p_{14} = 1.256622.$

6. (a) $p_{17} = 1.51213837$ (b) $p_{17} = 0.97676849$

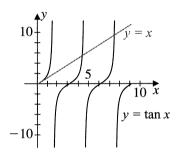
(c) For the interval [1, 2], we have $p_{17} = 1.41239166$, and for the interval [2, 4], we have $p_{18} = 3.05710602.$

(d) For the interval [0,0.5], we have $p_{16}=0.20603180$, and for the interval [0.5,1], we have $p_{16} = 0.68196869.$

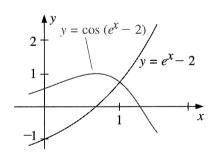
7. (a)



- (b) Using [1.5,2] from part (a) gives $p_{16}=1.89550018$.
- 8. (a)



- (b) Using [4.2, 4.6] from part (a) gives $p_{16} = 4.4934143$.
- 9. (a)



- (b) $p_{17} = 1.00762177$
- 10. (a) 0
- (b) 0
- (c) 2

(d) -2

- 11. (a) 2
- (b) -2
- (c) -1
- (d) 1

- 12. We have $\sqrt{3} \approx p_{14} = 1.7320$, using [1, 2].
- 13. The third root of 25 is approximately $p_{14} = 2.92401$, using [2, 3].
- 14. A bound for the number of iterations is $n \ge 12$ and $p_{12} = 1.3787$.

- 15. A bound is $n \ge 14$, and $p_{14} = 1.32477$.
- 16. For n > 1,

$$|f(p_n)| = \left(\frac{1}{n}\right)^{10} \le \left(\frac{1}{2}\right)^{10} = \frac{1}{1024} < 10^{-3},$$

so

$$|p - p_n| = \frac{1}{n} < 10^{-3} \Leftrightarrow 1000 < n.$$

- 17. Since $\lim_{n\to\infty}(p_n-p_{n-1})=\lim_{n\to\infty}1/n=0$, the difference in the terms goes to zero. However, p_n is the nth term of the divergent harmonic series, so $\lim_{n\to\infty}p_n=\infty$.
- 18. Since -1 < a < 0 and 2 < b < 3, we have 1 < a + b < 3 or 1/2 < 1/2(a+b) < 3/2 in all cases. Further,

$$f(x) < 0$$
, for $-1 < x < 0$ and $1 < x < 2$; $f(x) > 0$, for $0 < x < 1$ and $2 < x < 3$.

Thus, $a_1 = a$, $f(a_1) < 0$, $b_1 = b$, and $f(b_1) > 0$.

- (a) Since a + b < 2, we have $p_1 = \frac{a+b}{2}$ and $1/2 < p_1 < 1$. Thus, $f(p_1) > 0$. Hence, $a_2 = a_1 = a$ and $b_2 = p_1$. The only zero of f in $[a_2, b_2]$ is p = 0, so the convergence will be to 0.
- (b) Since a + b > 2, we have $p_1 = \frac{a+b}{2}$ and $1 < p_1 < 3/2$. Thus, $f(p_1) < 0$. Hence, $a_2 = p_1$ and $b_2 = b_1 = b$. The only zero of f in $[a_2, b_2]$ is p = 2, so the convergence will be to 2.
- (c) Since a + b = 2, we have $p_1 = \frac{a+b}{2} = 1$ and $f(p_1) = 0$. Thus, a zero of f has been found on the first iteration. The convergence is to p = 1.
- 19. The depth of the water is 0.838 ft.
- 20. The angle θ changes at the approximate rate w = -0.317059.