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Numerical Differentiation

F(w0) = lim f(zo+h)— f(fﬂo).

h—0 h

Question
How accurate is

f(wo + h) — f(xo),
- :

Suppose a given function f has continuous first derivative and f” exists.
From Taylor's theorem

1
fla+ k) = f(z) + f@h+ 5 /"€
where £ is between x and x + h, one has

f/(w):f(x-i-hg_f(x)—gf”(f):f($+h})L_f(x)
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Hence it is reasonable to use the approximation

f’(w) ~ f(x‘i_hf)L_f(x)

which is called forward finite difference, and the error involved is

h’ 1/ h 1
lel = S 1)l = 2te(rl‘,3>ih)|f (®)]

Similarly one can derive the backward finite difference approximation

() ~ f(z) - £($ —h) (1)

which has the same order of truncation error as the forward finite
difference scheme.
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The forward difference is an O(h) scheme. An O(h?) scheme can also be
derived from the Taylor's theorem

)’
" (&)n’,

fl+h) = f@)+ F@h+ 31" @+

1
6
! 1 " 2 1
fla=h) = f(z) = f(a)h+ 5 f (z)h

6

where & is between x and x + h and & is between z and z — h. Hence

flo+h) = f(z = b) = 20 (@)h + £[" (&) + (@)

and
h) — —h
f'(x) _ f(x + )2hf(x ) . %[fm(fl) + f”/(€2)]h2
Let
M= @ = T
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If f is continuous on [z — h,x + h], then by the intermediate value
theorem, there exists { € [v — h, x + h] such that

f(6) = [ (&) + f1(&)]-

f’(m) _ f(x + h)2_hf(x — h) o éf”/(f)hz — f(x + h)2h (w B h) (h2).

This is called center difference approximation and the truncation error is

Similarly, we can derive an O(h?) scheme from Taylor's theorem for f”(z)

ny~ J@EED =20 @+ fla—h) 1
f"(z) = - - 5 En,

where ¢ is between © — h and x + h.
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Polynomial Interpolation Method

Suppose that (zo, f(x0)), (z1, f(21)) -+, (zn, f(zy)) have been given,
we apply the Lagrange polynomial interpolation scheme to derive

P(z) =Y f(x:)Li(),
=0

where
- ZT xr
— &)
Li(x) = H x‘ — w . .
j=0.4#i "

Since f(z) can be written as

1
(n+1)

f(z) =) fz:)L(z) + !f("“)(fz)w(w),
1=0

where

n

w(z) = [[(x =),

j=0
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1

fl(x) = an(l‘i)Lg(x)+m

1=0

FOD () ()

@ ).

Note that

w'(z) = Z H (z — x;).

§=0 i=0,i£;j
Hence a reasonable approximation for the first derivative of f is

n

F@) = Y fa) Lia).

i=0
When z = zy, for some 0 < k < n,

n

w(zg) =0 and w'(zy) = H (zx — ;).
i=0,i#k
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Hence

F(wk) = flas) L) + SO T (@—=), (2)
i=0 (n T 1)' i=0,i#k

which is called an (n + 1)-point formula to approximate f’(z).
e Three Point Formulas

Since
L (x) _ (:Ij - $1)(I — x2)

° (xo — z1)(x0 — 2)

we have
2r — 1 — X2

! _

olr) = (20 — 21)(z0 — 22)
Similarly,

20 — xp — 20 — xo —
Lh(z) = ———0 "2 _ and Lh(a) = —— 0

(21 — xo)(21 — 22) (z2 — wo)(22 — 1)
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Hence

Fla) = o) |22 o) [ 22

(zo — 1) (w0 — 22) (71 — 20)(71 — 2)

2

)}+%f(3)(fj) IT @ =),

k=0,k£j

2.%']' —Xo — T1

(w2 — xo)(z2 — 21

+ f(ﬂ?z)[

for each j = 0,1,2. Assume that

1 =29+ h and x2 = x9+ 2h, for some h # 0.

Then
r 2
Plan) = | ~21t0)+21(ar) - 31(a2)| + S rOe)
. 2
Fla) = ¢ |3+ 3] - S
, 11 3 R s
Pla) = 3 [3He0) ~2f(en) + (o] + 5 1O0e).
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That is

, 1] 3 1 h? 3
Fla) = 3 =30+ 20(oo + 1) = 3 fao + 20| + 5 1Oe),
, 1] 1 1 B )
Flanth) = 1|37+ 5hao+2m)] - 5 1) )
: 2
Plan+2n) = 1 [370) = 2f(e0-+ 1)+ 3o+ 20| + 5/ e

Using the variable substitution zq for 2o + h and z¢ + 2h in (3) and (4),
respectively, we have

2
Flae) = 5 1-3(z0) +4f(zo+h) — flwo+2M)] + = O (6o), (5)
2
fla) = o (o= h)+ flao + W) - = FOE),

2
Flan) = o [f(ao—20) ~ 4f(zo — ) + 3 (zo)] + = 1O(&). (6)

Note that (6) can be obtained from (5) by replacing h with —h.
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e Five-point Formulas

f'(z0) = 12h [f(zo —2h) = 8f(wo — h) + 8f(zo + k) — f(xo + 2h)]

v 2o,

where £ € (xg — 2h, 29 + 2h) and
f(xo) = 12h [—25f(z0) + 48f (20 + ) — 36 f (0 + 2h)
4
+ 16f(zo + 3h) — 3f (o + 4h)] + %f“r’)(&),

where £ € (xg, xo + 4h).
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Round-off Error

Consider
oy L . = e
flao) = 5 [=flzo— )+ flzo+ 1] - /&),

where %zf(3)(§1) is called truncation error. Let f(xo + h) and f(zo — h)
be the computed values of f(zo + h) and f(xo — h), respectively. Then
f(xo +h) = f(zo + h) + e(zo + h)
and
f(wo = h) = f(zo — h) + e(wo — h).

Therefore, the total error in the approximation

(= o — e(z —e(xo — 2
f/(:co)—f(0+h)2hf(0 h) _ (o+h)2h(o h)_if )(€)

is due in part to round-off error and in part to truncation error.
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Assume that
le(eo£h)| <& and |fO(E)| < M.
Then

)_]?(9304—]1) f(zo —h) < +%2Mze(h).

/ &
J(wo oh =7

Note that e(h) attains its minimum at h = /3¢/M.
In double precision arithmetics, for example, € ~ | f(zo £ h)| x 10710, The

minimum is O(v Me2) = O(10~10).
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Richardson’s Extrapolation

Suppose Vh # 0 we have a formula Ny(h) that approximates an unknown
value M

M — Ni(h) = Kih + Koh? + K3h® + - -+ (7)

for some unknown constants Ki, K», K3,.... If K1 # 0, then the
truncation error is O(h). For example,

, f(z+h)— f(z f”:t fm:t f(4)$
PR ) O N 2 P R LT

Goal

Find an easy way to produce formulas with a higher-order truncation error.J

Replacing h in (7) by h/2, we have

h h h? h3
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Subtracting (7) with twice (8), we get
K 3K
M:Nz(h)—§h2—73h3—m, (9)

where

Na(h) = 2Ny (Z) — Ni(h) = My (Z) - [Nl (Z) - N1(h)} :

which is an O(h?) approximation formula.
Replacing h in (9) by h/2, we get

M=N, (2) = 22p2 2033 1
2 <2> T (10)
Subtracting (9) from 4 times (10) gives
h K
3M = 4N, <2> —Ng(h)+—383h3+--' ;

which implies that

M= [Nz (h> + N2(h/2)_N2(h)] N TR I =T

2 3 8 8
Fall 2010 16/ 66



Using induction, M can be approximated by
M = Np,(h) + O(R™),

where

No(h) = Nyn_1 (ﬁ) \ Nona(h/2) = Nuwa ()

2 D=t |

Centered difference formula. From the Taylor's theorem

fl@+h) = f@)+hf (@) + 5 (@) + B () + 5 FO () + & O (@) + - -
flz — ) = f(z)—hf'()+ 5 f(z)— 5 £ (z)+ 2 FO ()~ B O (z) +

we have

flz+h) = f(x —h) =2hf'(x) + “’( )+ (5)(93) +-
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and, consequently,

_ _ 2 4
f,(fEO) _ f(ZIZ'O +h)2hf(x0 h) _ [%fﬂl(xO) + %f(S)(fL'O) +:| ’
h? h*
= M) - | 557" o0) + 1)+ (1)
Replacing h in (11) by h/2 gives
2 4
Flan) =0 (3 ) = 5 "an) = 1g5p /D)= (12)

Subtracting (11) from 4 times (12) gives

h4
Z — A {C)
f(20) Nz(h)+480f (o) +---,
where

Nt = 3 [oa () - )] = 3 () + A0,
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In general,
f'(z0) = N;(h) + O(h*)

with

Nj(h) = Nj-1 (g) + Nj_l(};é%)l__]fj—l(h).

Example

Suppose that o = 2.0, h = 0.2 and f(z) = xze®. Compute an
approximated value of f/(2.0) = 22.16716829679195 to six decimal places.

Solution. By centered difference formula, we have

N1(0.2) = f20+ 0'2)2_hf(2'0 —02) _ 22.414160,

N1 (0.1) = f(20+01) ; f20=01) _ ) yg7g6.
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It implies that

N1(0.1) — N1(0.2)
3

which does not have six decimal digits. Adding N1(0.05) = 22.182564, we
get

N»(0.2) = N1(0.1) + = 22.166995

N1(0.05) — N1(0.1)
3

= 22.167157

N(0.1) = N1(0.05) +

and

0.1) — N»(0.2)
15

= 22.167168

N3(0.2) = N>(0.1) + 22

which contains six decimal digits.
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O(h) o(h?) o(h?) O(h*)
1: Ni(h) = N(h)
2: Ni(h/2) = N(h/2) 3: Na(h)
4: Ni(h/4) = N(h/4) 5: Na(h/2) 6: N3(h)
7: N1(h/8) = N(h/8) 8: Nyp(h/4) 9: N3(h/2) 10: Ny(h)
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Remark

In practice, we are often encountered with the situation where the order of
the numerical method is unknown. That is, the error expansion is of the
form

M — N(h) = K1h?* + Koh?? + K3h? + - - - (13)

where p1,p2,- -+ are unknown. Solving for the leading order p1, together
with the primary unknowns M and K7, requires 3 equations, which can be
obtained from, for example, the numerical results at h, h/2 and h/4:

M —N(h) = Kih? 4.,
M-N(B) = K5+, (14)
M-NE = K
The answer is given by

N(h) = N(3)

p1 = logy — 5~
N(3) - N(%)

Once p; is known, Richardson extrapolation can be proceeded as before.
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Elements of Numerical Integration

The basic method involved in approximating the integration

b
/ f(z) dz, (15)

is called numerical quadrature and uses a sum of the type

b n
/ feyde =Y eif(w). (16)
@ i=0
The method of quadrature in this section is based on the polynomial

interpolation. We first select a set of distinct nodes {zg, z1,...,x,} from
the interval [a,b]. Then the Lagrange polynomial

Zf z;)Li(x Zf(xz)H .T‘—.'Ej.

is used to approximate f(x). With the error term we have
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£(2) = Pale) + Bula) = 3 i) afa) + L %T) JE
=0

where {; € [a,b] and depends on z, and

/abf(x)dx _ /aan(x)da:—i—/bEn(x)dx
= foz/ d:c-l-

The quadrature formula is, therefore,

/ JLay § (I

=0
n

/ab f(z)dx z/ z)dr = Zf 7% / z)dx = Zcif(xi)’ (18)

=0

b o @
_ ) _ ¥ 2
¢ = /a Li(z)dx = /a H P dx. (19)
Jj=0
J#
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Moreover, the error in the quadrature formula is given by

E=—1 _ n—i—l / £ )H(x—xi)d:p, (20)
=0

for some (; € [a, b].
Let us consider formulas produced by using first and second Lagrange
polynomials with equally spaced nodes. This gives the Trapezoidal rule
and Simpson'’s rule, respectively.
Trapezoidal rule: Let g = a,z1 = b,h = b — a and use the linear
Lagrange polynomial:

Pi(z) = Mf(xo) T Mf(xl).

(zo — 71) (z1 — o)
Then
£ B 1 (z—21) (z — x0)
[ e = [T _xl)f(fco) + 2= )| o

/ f"(¢(x))(x — 20) (2 — x1)dz. (21)

Wei-Cheng Wang (NTHU) Fall 2010 25/ 66



Theorem (Weighted Mean Value Theorem for Integrals)
Suppose f € Cla,b], the Riemann integral of g(x)

b n
/ g@)de = lim > g(z;)Aw;,
a 1

max Ax;—0 4
1=

exists and g(x) does not change sign on [a,b]. Then 3 ¢ € (a,b) with

/f dx—ﬂ@LZWMx

v

Since (x — zg)(x — 1) does not change sign on [zg, 1], by the Weighted
Mean Value Theorem, 3 ¢ € (zg, z1) such that

1

/ f"(¢(x))(x — x0)(x — x1)dz = f"(C) /:UO (z — zo)(z — z1)dx

3 h3
——f«ﬂ@ )
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Consequently, Eq. (21) implies that

b x — 11)? x — 19)? e £
[t = | )+ =] - )
3
(o) + flan)] ~ = 7(0)

= [f(xo)+f(331)]——f”( );

which is called the Trapezoidal rule.

>
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If we choose g = a, 1 = (a +b), 22 =b, h = (b—a)/2, and the
second order Lagrange polynomial

(z — 21)(z — 22)
(zo — 21)(w0 — 2)

(z — z0)(z — 71)
(z2 — w0) (w2 — 21)

) (z — x0)(z — 22)
(z1 — zo) (71 — 22)

By(z) = f(xo) + fa

+f(22)

to interpolate f(z), then

y

Y=L
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— 172)

[ - [7[L=2e

zo — z1)(

(z — xzo)(z —

(z2 — z0) (72 —

z —zx1)(x

= 2) 13)(((2))da.

+/x2 (z — zo)(

Since, letting x = g + th,

[ ((x —o)@—w)

ro — x1)(20 — T2)

2 (z—x0)(x — 22)

z (T1—T0)(71 — 22)

dx

2

t—l t—2

LRy
A 0—-1 0-2

EA( 34 2)di =

t—0 t—2
= h| — —Zat
A 1-0 1-2

2
—h/ (t2 —2t)dt = ﬂ,
0 3

Wei-Cheng Wang (NTHU)
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T2 _ _ 2 4, -
/ (z — mo)(x Jfl)dx:h/t 0 t-1.,
xo (1'2_1'0)(:1;2_1‘1) 0 2—0 2—-1
ho[? 5 h
= e adr =
;| @ —na=3,
it implies that

/abf(“’)d‘” = b Ef(ﬂfo)Jrgf(xl)Jr;f(:cz)]

. /: (z — @0)(x ~ 1)@ = 22) 13) (1)) da,

which is called the Simpson's rule and provides only an O(h*) error term
involving f(3). A higher order error analysis can be derived by expanding f
in the third Taylor's formula about z1. V = € [a,b], 3 (; € (a,b) such that

o) = o) o) e ) e g )2

+f///éx1) (l‘ .
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Then

b e "(
[ 1wy - [f(x1>(x—x1)+f(zl)(x—x1)2+f 1) (@ — )

b
+ 37 | G e~ ) o

3

Note that (b — x1) = h, (a — x1) = —h, and since (z — x1)* does not
change sign in [a,b], by the Weighted Mean-Value Theorem for Integral,

there exists &; € (a, b) such that

[ 19 e = 19) [0yt o = LG

Consequently,

b 1" (4)
[ 1@y =25 @on+ EE 1 Ly
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Finally we replace f”(z1) by the central finite difference formulation

flao) = 2f(@0) + flaz) _ [O(&),»

() = h2 12

for some & € (a,b), to obtain

b
[ f@yds = 2nf(a) + 5 (Flao) - 26(ar) + f(a2)

F®(&) 5 f(4)(§1)
36 R+ 60

= h [1]‘(950) + %f($1) + ;f(wz)}

3
13 5
+56 [2%4)(&) - 2f(4)(€2)] B

It can show that there exists & € (a, b) such that

(4)
[ wyae =2 1seo) + 456 + sl - Fg e

This gives the Slmpson s rule formulation.

Wei-Cheng Wang (NTHU) Fall 2010 32 /66



Definition

The degree of accuracy, or precision, of a quadrature formula is the largest
positive integer n such that the formula is exact for z*, when
k=0,1,...,n.

@ The Trapezoidal and Simpson's rules have degrees of precision one
and three, respectively.
@ The degree of accuracy of a quadrature formula is n if and only if the

error £ = 0 for all polynomials P(x) of degree less than or equal to
n, but F # 0 for some polynomials of degree n + 1.
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Newton-Cotes Formulas

Definition (Newton-Cotes formula)

A quadrature formula of the form

n

b
/ @)oY eif (o)

=0

is called a Newton-Cotes formula if the nodes {zg,x1,...,z,} are equally
spaced.

Consider a uniform partition of the closed interval [a, b] by

r;=a+th, 1=0,1,....,n, h=

)

n

where n is a positive integer and h is called the step length.
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By introduction a new variable ¢ such that x = a + ht, the fundamental
Lagrange polynomial becomes

n . n - _ g n _ g
Li($):H$_$]—Ha+ht a—jh Ht ‘ZEgpi(t).

o Ti— 7a+zh—a—jh piri
J?él J#Z J#i

Therefore, the integration (19) gives

/L()da:_/o ©i(t)hdt = /Hl_ t, (22)
Jséz

and the general Newton-Cotes formula has the form

b n n n s n
@ =0 j=0 7,:0
i

(23)

Wei-Cheng Wang (NTHU) Fall 2010 35/ 66



Theorem (Closed Newton-Cotes Formulas)

Suppose that Y " a;f(x;) denotes the (n + 1)-point closed
Newton-Cotes formula with xo = a,x,, =b and h = (b —a)/n. Ifn is
even and f € C"2[a,b], then

b e n+3 £(n+2) n
[ #@yde =13 sty + L M-y - mya
@ =0 '
(24)

and if n is odd and f € C""[a,b], then

b n hn+2f(n+1)(€) n
/a f(x)dx:h;aif(xi)—l—ml)!/o Ht—1)--- (t—n)dt,

(25)

where & € (a,b) and a; = / H —dtforZ—O,l,...,

J=0, J#Z
Consequently, the degree of accuracy is n + 1 when n is an even integer,

and n when n is an odd integer.
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o n = 1: Trapezoidal rule

b _ 3
[ t@yds =52 1@ + FO) - 51, a < <
@ n = 2: Simpson's rule

(4)
/f“(M— [f@®+ ) + 2 @) | L5 a < e <

@ The error term of the Trapezoidal rule is O(h3).

@ Since the rule involves f”, it gives the exact result when applied to
any function whose second derivative is identically zero, e.g., any
polynomial of degree 1 or less.

@ The degree of accuracy of Trapezoidal rule is one.

@ The Simpson’s rule is an O(h®) scheme and the degree of accuracy is
three.

Wei-Cheng Wang (NTHU) Fall 2010 37 / 66



Another class of Newton-Cotes formulas is the open Newton-Cotes
formulas in which the nodes

x;=x9+1ih, 1=0,1,...,n,

where
b—a

= h d h=——
M= A n+2’

are used. This implies that x,, = b — h, and the endpoints, a and b, are
not used. Hence we label a = x_; and b = z,, 1. The formulas become

b g n
| taaa= [ flodde =3 asf(w)

1

where

b
ai:/ Li(z)dx.

The following theorem summarizes the open Newton-Cotes formulas.
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Theorem (Open Newton-Cotes Formulas)

Suppose that Y ", a;f(x;) denotes the (n + 1)-point open Newton-Cotes
formula with x_1 = a, 41 =band h = (b—a)/(n+2). Ifn is even and
f € C™"*2[a,b], then

b n hn+3f(n+2) § n+1
/a!f(x)dm:hgaif(mi)+m2)!()/_l 2(t—1)---(t—n)dt,

(26)
and if n is odd and f € C""[a,b], then

b ® hn+2f(”+1)(§) n+1
/a f(x)dx:h;aif(xi)+ml)!/l Ht—1)--- (t—n)dt,

(27)

where & € (a,b) and a; = / H —dtforZ—O,l,...,

Jj= OJ#Z
Consequently, the degree of accuracy is n+ 1 when n is an even integer,

and n when n is an odd integer.
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The simplest open Newton-Cotes formula is choosing n = 0 and only using
the midpoint ¢ = CLTH’. Then the coefficient and the error term can be
computed easily as

1 " 1
ao—/ dt =2, and 2t (5)/ tzdt:%f”(g)h3.

. 2 ).,

These gives the so-called Midpoint rule or Rectangular rule.
Midpoint Rule:

a+b
2

b
|| 1) do = 2hp(a0) + 31 = 6 - f(57) + SO, (29

for some £ € (a,b).
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Composite Numerical Integration

@ The Newton-Cotes formulas are generally not suitable for numerical
integration over large interval. Higher degree formulas would be
required, and the coefficients in these formulas are difficult to obtain.

@ Also the Newton-Cotes formulas which are based on polynomial
interpolation would be inaccurate over a large interval because of the
oscillatory nature of high-degree polynomials.

@ Now we discuss a piecewise approach, called composite rule, to

numerical integration over large interval that uses the low-order
Newton-Cotes formulas.

» A composite rule is one obtained by applying an integration formula for
a single interval to each subinterval of a partitioned interval.
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To illustrate the procedure, we choose an even integer n and partition the
interval [a, b] into n subintervals by nodes a = xg < 21 < -+ < &, = b,
and apply Simpson'’s rule on each consecutive pair of subintervals. With

b—a
n

h =

and z; =a+jh, j=0,1,...,n,

we have on each interval [z2;_2, x2;],

[ 1@y = 1522+ 4022 + Slaa) — 19,

2j—2 3

for some &; € (222, 2;), provided that f € C*[a,b].
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The composite rule is obtained by summing up over the entire interval,
that is,

b n/2
/af(:n)daz = Z/x f(z)dx
n/2 h 15
= 3|5 (azy-a) + 41(am0) + flow)) - 557 9E)
= S 7(wo) + 4f(ex) + f(z2)
+(22) +4f(25) + f(24)
()

+f(xa) +4f(25) +

5 1/2

+f(@n—2) + 4f(2n-1) + f(zn)] ——Zﬂ‘”
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Hence

b
[ #ayds = 3 [7(a0) +45(@r) + 21 () + 47(zs) + 2f(a4) + 41 a5)
n/2

b 2@ 2) + 4 () + Fan)] — oo > 1)
j=1

n/2 (n/2)—1
= f(xO +4Zf €25 — 1 +2 Z f372] +f($n)
g=ll j=1
5 1/2

Zf

To estimate the error associated with approximation, since f € C*[a, 8],
we have, by the Extreme Value Theorem,

m|n f(4)(a:) < jé (£ ) < max f¥(a),

x€[a,b]

for each §; € (9323'—275323')-
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Hence

n/2
n
® ) < (4) <N (4)
7 min f¢ Zf (&) < 5 max fO(),
and
5 n/2
(4) ™ < (4)
min max
min /(@) < n; (&) < max fO(a).

By the Intermediate Value Theorem, there exists i € (a,b) such that

n/2
) =23 1)
j=1
Thus, by replacing n = (b —a)/h,
n/2 n b—a
@ey= @) = 224
j;f (&) =5/ = == (W

Consequently, the composite Simpson's rule is derived.
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Composite Simpson's Rule

b h n/2 (n/2)—1
/f(:c)dx - = +4Zf(a:2] D42 S flaag) + £(0)
a j=1

180 wih'

where n is an even integer, h = (b—a)/n, ; = a+ jh, for
j=0,1,...,n, and some u € (a,b).
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The composite Midpoint rule can be derived in a similar way, except the
midpoint rule is applied on each subinterval [x2;_1, Z2j41] instead. That is,

L2541 h3 " . n
|7 f@)do = 2hfan) + TG, =127

251
Note that n must again be even. Consequently,

n/2 3 n/2

b
/ flz)de =20 flzs) + 5 O (&)
a j=1 Jj=1
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The error term can be written as

n/2
a

" . n ., . b— "
JZ::lf (&) = >f (1) = —n 1 (1),

for some p € (a, b).

Composite Midpoint Rule
[ $@)de =203 flazy) + 52 002 (29)
a J:]-
where n is an even integer, h = (b—a)/n, ; = a+ jh, for
j=0,1,...,n, and some u € (a,b).
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To derive the composite Trapezoidal rule, we partition [a, b] by n equally
spaced nodes a = xg < x1 < - -+ < &, = b, where n can be either odd or
even. Apply the trapezoidal rule on [z;_1,2;] and sum them up to obtain

/abf(x)da: = Z

3
= {5 [f(zj-1) + f(z;)] - %f”(&j)}

J=1

_ % {[f (o) + f(z1)] + [f(a:l) + f(z2)] +

$Jl

+[f(@n-1) + £( mn)]}— Zf” &)
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b
[ f@yds = 3 [Fa0) +26(w0) + 2f(a2) + -+ + 2fwnma) + )]

A3
—EZJC”(&J')
j=1
h [ n—1 i h3 n
= 3 [f@+2) f@) + F0)| - 55 2 ()
j=1 j=1
h [ s - b—a 2
= 5 |f@+2) fla) + fO)| = 5 F"(w)h?,
Jj=1 i

where each §; € (z-1,;) and p € (a,b).
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Composite Trapezoidal Rule

b n—1 _a
[ t@yds =3 | 1@ +2X 5w + 10)| - T R, (30)

where n is an integer, h = (b —a)/n, x; = a+ jh, for j =0,1,...,n, and
some u € (a,b).

v
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Gaussian Quadrature

Newton-Cotes formulas:
@ The choice of nodes xg, z1, ..., x, was made a priori.
@ Use values of the function at equally spaced points.

@ Once the nodes were fixed, the coefficients were determined, e.g., by
integrating the fundamental Lagrange polynomials of degree n.

(]

These formulas are exact for polynomials of degree <n (n+1, if nis
even).

This approach is convenient when the formulas are combined to form the
composite rules, but the restriction may decrease the accuracy of the
approximation.
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Gaussian quadrature
@ Chooses the points for evaluation in an optimal, rather than pre-fixed
or equally-spaced, way.
@ The nodes xg, x1,...,Z, € [a,b] and the coefficients cg, c1,. .., ¢, are
chosen to minimize the expected error obtained in the approximation

n

b
/ @) ds~ S eif(z:) (31)

1=0

© Produce the exact result for the largest class of polynomials, that is,
the choice which gives the greatest degree of precision.

The coefficients cg, c1,. .., c, are arbitrary, and the nodes xg, z1,..., Ty,
are restricted only in [a, b]. These give 2n + 2 degrees of freedom. Thus
we can expect that the quadrature formula of (31) can be discovered that
will be exact for polynomials of degree < 2n + 1.
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Suppose we want to determine c1, ¢, 21 and zp so that

1
/_1 f(x)dx ~ c1f(21) + caf (x2) (32)

gives the exact result whenever f(z) is a polynomial of degree
2x2—1=3or less, i.e.,
f(x) =ao+ a1z + arx?® + asz’.

Since

/(ao + a1z + apa® + a3a:3)da:

= ao/1dx+a1/a:d:v+a2/x2dm+a3/:U3dx,

this is equivalent to show that (32) gives exact results when f(z) is
1,z, 22 and z3. Hence
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c1+c =

C1T1 + Coxy2 =

! 2
123 + x5 = / z?dr = 3

azs +ers = 23dz = 0.
-1
It implies that
) ) 3 V3
Cl1 = Co = xr1 = ——— xrHo = —
1 ; €2 ; L1 3 5 L2 B
which gives

! V3 V3
/_1 f(z)dz =~ f (—?> +f (T) .
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Theorem

Suppose that xg,x1, ..., x, are the roots of the (n + 1)-st Lengendre
polynomial p,11, and that for each i =0,1,...,n,

T —T;
C = H L dx.
w,—a:j

If f(z) is any polynomial of degree < 2n + 1, then

/ fla)de = ().

=0

Gaussian Quadrature Rule

/ f(z)de =~ Z cif (), (33)

=0
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Orthogonalization and Legendre polynomials

Definition
© In a inner-product space, we say f is orthogonal to g, and write f L g
if (f,g)=0.
Q@ We write f L G if f L g forall g€ G.
© We say that a finite or infinite sequence of vectors f1, f2,... in an
inner-product space is orthogonal if (f;, f;) = 0 for all i # j, and
orthonormal if (f;, f;) = ds;. )

The space of continuous functions on [a, b] with inner-product defined as

b
(f,9) = / f(@)g(x) da, (34)

is an inner-product space.
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Definition
{b0, b1, ..,Pn}, where ¢; € Cla,b] for all i =0,1,...,n, is said to be an
orthogonal set of functions if

L , when i # j,
(01,05) = [ 01(a)s(0) do = 7
a a; > 0, when 7 = j.
If, in addition, «; = 1 for all 7, then the set is said to be orthonormal. )
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Definition

Legendre polynomials: Gram-Schmidt process applied to 1, z, x

2...
o

J

po(z) = 1
_ g Smpo)
2l = {po,po)
p(z) = 22— (2%, po) . (z?,p1)
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Corollary

For any n > 0, the set of Legendre polynomials {po,p1,...,pn} defined
above is linearly independent and

b

for any polynomial q(z) with deg(q(x)) < n — 1.
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Let IM,, denote the set of polynomials of degree at most n, that is,

M, = {p(z) | p(x) is a polynomial and deg(p) < n}.

Theorem
Let g(x) be any nonzero polynomial of degree n + 1, and q(x) L M,,. If
xo, 1, ..,Z, are the roots of q(x) in [a,b], and
bz —x;
@ = / H L dx,
a S Ty — Ty
J#i
then

b n
/ p(z)dx = Zcip(xi), for any p € MNoapy1.
e i=0

That is, the quadrature rule is exact for any polynomial of degree < 2n+1.
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Proof. For any polynomial p € Iy, 11, we can write
p(z) = q(x)t(z) + r(x),
where t(z),r(z) € MN,,. Since xg, z1,...,x, are roots of ¢(x), we have
p(x:) = q(z)t(x;) + r(z) = r(x:), i=0,1,...,n.

By assumption, ¢ L I, we have

b
(q,t) =/ q(z)t(x)dx = 0.

Since r(x) € M, it can be expressed exactly in the Lagrange form

T(II}):ZT(IZ)H — j'.
i=0 j=0 Ti = Ty

JFi
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Hence

/abp@f) @ = [ ' g(@)tla)da + / (@) da

— /ar(x)dx—/ Z il sz_ma'j]dx

Tr — X,
= ;T(l'i)/a gxi—x]jd

jsﬁi

= ZP(% / , mf da

J#z

= Z cip(x).
=0
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If the interval [a,b] is [—1, 1], then we can obtain a set of orthogonal
polynomials called the Lengendre polynomials. The first few Lengendre

polynomials are

po(z)
pi(z)

pa(7)
p3(z)
pa(z)

ps()

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ.
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Gaussian Quadrature Rule
For a given function f(z) € C[—1, 1] and integer n,

/ Fla)de ~ 3 ef (), (35)

=0

where xg, 1, ..., %, are the roots of the (n + 1)-st Lengendre polynomial

Dn+1, and
T —x; .
d:v 1=20,1,...,n.
w= [ H
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n | x; Ci

0] ®x=0 co =2

xg = —0.5773502692 | cg =c; =1
zy = 0.5773502692
2 | wg = —0.7745966692 | co =
x1 =0 c1 =
z2 = 0.7745966692 | ¢ =
3 | zo = —0.8611363116 | co = 0.3478548451

z1 = —0.3399810436 | c; = 0.6521451549

z2 = 0.3399810436 | c; = 0.6521451549

z3 = 0.8611363116 | c3 = 0.3478548451

4 | 2o =—0.9061798459 | co = 0.2369268851

z1 = —0.5384693101 | c; = 0.4786286705

22 =0 o = 338 = 0.568888889
z3 = 0.5384693101 | c3 = 0.4786286705

z4 = 0.9061798459 | ¢4 = 0.2369268851

©|o1 ©|co O|u1
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Additional Properties of Legendre Polynomials

@ Alternative definitions:

@ Other normalizations are possible.
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