Numerical Analysis I Numerical Differentiation and Integration

Instructor: Wei-Cheng Wang ¹

Department of Mathematics National TsingHua University

Fall 2010

Outline

- Numerical Differentiation
- 2 Richardson Extrapolation Method
- 3 Elements of Numerical Integration
- 4 Composite Numerical Integration
- Gaussian Quadrature

Numerical Differentiation

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Question

How accurate is

$$\frac{f(x_0+h)-f(x_0)}{h}$$
?

Suppose a given function f has continuous first derivative and $f^{\prime\prime}$ exists. From Taylor's theorem

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(\xi)h^2,$$

where ξ is between x and x + h, one has

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(\xi) = \frac{f(x+h) - f(x)}{h} + O(h).$$

Hence it is reasonable to use the approximation

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

which is called forward finite difference, and the error involved is

$$|e| = \frac{h}{2}|f''(\xi)| \le \frac{h}{2} \max_{t \in (x,x+h)} |f''(t)|.$$

Similarly one can derive the backward finite difference approximation

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$
 (1)

which has the same order of truncation error as the forward finite difference scheme.

The forward difference is an O(h) scheme. An $O(h^2)$ scheme can also be derived from the Taylor's theorem

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(\xi_1)h^3$$

$$f(x-h) = f(x) - f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{6}f'''(\xi_2)h^3,$$

where ξ_1 is between x and x+h and ξ_2 is between x and x-h. Hence

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{1}{6}[f'''(\xi_1) + f'''(\xi_2)]h^3$$

and

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{1}{12} [f'''(\xi_1) + f'''(\xi_2)]h^2$$

Let

$$M = \max_{z \in [x-h,x+h]} f'''(z)$$
 and $m = \min_{z \in [x-h,x+h]} f'''(z)$.

If f''' is continuous on [x-h,x+h], then by the intermediate value theorem, there exists $\xi\in [x-h,x+h]$ such that

$$f'''(\xi) = \frac{1}{2} [f'''(\xi_1) + f'''(\xi_2)].$$

Hence

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{1}{6}f'''(\xi)h^2 = \frac{f(x+h) - f(x-h)}{2h} + O(h^2).$$

This is called center difference approximation and the truncation error is

$$|e| = \frac{h^2}{6}f'''(\xi)$$

Similarly, we can derive an $\mathcal{O}(h^2)$ scheme from Taylor's theorem for f''(x)

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{1}{12}f^{(4)}(\xi)h^2,$$

where ξ is between x - h and x + h.

Polynomial Interpolation Method

Suppose that $(x_0, f(x_0))$, $(x_1, f(x_1)) \cdots , (x_n, f(x_n))$ have been given, we apply the Lagrange polynomial interpolation scheme to derive

$$P(x) = \sum_{i=0}^{n} f(x_i) L_i(x),$$

where

$$L_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j}.$$

Since f(x) can be written as

$$f(x) = \sum_{i=0}^{n} f(x_i)L(x) + \frac{1}{(n+1)!}f^{(n+1)}(\xi_x)w(x),$$

where

$$w(x) = \prod_{j=0}^{n} (x - x_j),$$

we have,

$$f'(x) = \sum_{i=0} nf(x_i)L'_i(x) + \frac{1}{(n+1)!}f^{(n+1)}(\xi_x)w'(x) + \frac{1}{(n+1)!}w(x)\frac{d}{dx}f^{(n+1)}(\xi_x).$$

Note that

$$w'(x) = \sum_{j=0}^{n} \prod_{i=0, i \neq j}^{n} (x - x_i).$$

Hence a reasonable approximation for the first derivative of f is

$$f'(x) \approx \sum_{i=0}^{n} f(x_i) L'_i(x).$$

When $x = x_k$ for some $0 \le k \le n$,

$$w(x_k) = 0$$
 and $w'(x_k) = \prod_{i=0, i \neq k}^{n} (x_k - x_i).$

Hence

$$f'(x_k) = \sum_{i=0}^n f(x_i) L'_i(x_k) + \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0, i \neq k}^n (x_k - x_i), \quad (2)$$

which is called an (n+1)-point formula to approximate f'(x).

Three Point Formulas

Since

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

we have

$$L_0'(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)}.$$

Similarly,

$$L_1'(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \text{ and } L_2'(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}.$$

Hence

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0, k \neq j}^{2} (x_j - x_k),$$

for each j = 0, 1, 2. Assume that

$$x_1 = x_0 + h \text{ and } x_2 = x_0 + 2h, \text{ for some } h \neq 0.$$

Then

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0),$$

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1),$$

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2).$$

That is

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0),$$

$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1),$$
 (3)

$$f'(x_0+2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0+h) + \frac{3}{2} f(x_0+2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)(4)$$

Using the variable substitution x_0 for $x_0 + h$ and $x_0 + 2h$ in (3) and (4), respectively, we have

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0), (5)$$

$$f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1),$$

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + \frac{h^2}{3} f^{(3)}(\xi_2). \quad (6)$$

Note that (6) can be obtained from (5) by replacing h with -h.

• Five-point Formulas

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi),$$

where $\xi \in (x_0 - 2h, x_0 + 2h)$ and

$$f'(x_0) = \frac{1}{12h} \left[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\xi),$$

where $\xi \in (x_0, x_0 + 4h)$.

Round-off Error

Consider

$$f'(x_0) = \frac{1}{2h} [-f(x_0 - h) + f(x_0 + h)] - \frac{h^2}{6} f^{(3)}(\xi_1),$$

where $\frac{h^2}{6}f^{(3)}(\xi_1)$ is called truncation error. Let $\tilde{f}(x_0+h)$ and $\tilde{f}(x_0-h)$ be the computed values of $f(x_0+h)$ and $f(x_0-h)$, respectively. Then

$$f(x_0 + h) = \tilde{f}(x_0 + h) + e(x_0 + h)$$

and

$$f(x_0 - h) = \tilde{f}(x_0 - h) + e(x_0 - h).$$

Therefore, the total error in the approximation

$$f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} = \frac{e(x_0 + h) - e(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

is due in part to round-off error and in part to truncation error.

Assume that

$$|e(x_0 \pm h)| \le \varepsilon$$
 and $|f^{(3)}(\xi_1)| \le M$.

Then

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M \equiv e(h).$$

Note that e(h) attains its minimum at $h=\sqrt[3]{3\varepsilon/M}$. In double precision arithmetics, for example, $\varepsilon\approx |f(x_0\pm h)|\times 10^{-16}$. The minimum is $O(\sqrt[3]{M\varepsilon^2})=O(10^{-10})$.

Richardson's Extrapolation

Suppose $\forall h \neq 0$ we have a formula $N_1(h)$ that approximates an unknown value M

$$M - N_1(h) = K_1 h + K_2 h^2 + K_3 h^3 + \cdots,$$
 (7)

for some unknown constants K_1, K_2, K_3, \ldots If $K_1 \neq 0$, then the truncation error is O(h). For example,

$$f'(x) - \frac{f(x+h) - f(x)}{h} = -\frac{f''(x)}{2!}h - \frac{f'''(x)}{3!}h^2 - \frac{f^{(4)}(x)}{4!}h^3 - \cdots$$

Goal

Find an easy way to produce formulas with a higher-order truncation error.

Replacing h in (7) by h/2, we have

$$M = N_1 \left(\frac{h}{2}\right) + K_1 \frac{h}{2} + K_2 \frac{h^2}{4} + K_3 \frac{h^3}{8} + \cdots$$

(8)

15 / 66

Subtracting (7) with twice (8), we get

$$M = N_2(h) - \frac{K_2}{2}h^2 - \frac{3K_3}{4}h^3 - \cdots,$$
 (9)

where

$$N_2(h) = 2N_1\left(\frac{h}{2}\right) - N_1(h) = N_1\left(\frac{h}{2}\right) + \left[N_1\left(\frac{h}{2}\right) - N_1(h)\right],$$

which is an $O(h^2)$ approximation formula.

Replacing h in (9) by h/2, we get

$$M = N_2 \left(\frac{h}{2}\right) - \frac{K_2}{8}h^2 - \frac{3K_3}{32}h^3 - \cdots$$
 (10)

Subtracting (9) from 4 times (10) gives

$$3M = 4N_2\left(\frac{h}{2}\right) - N_2(h) + \frac{3K_3}{8}h^3 + \cdots,$$

which implies that

$$M = \left[N_2 \left(\frac{h}{2} \right) + \frac{N_2(h/2) - N_2(h)}{3} \right] + \frac{K_3}{8} h^3 + \dots \equiv N_3(h) + \frac{K_3}{8} h^3 + \dots$$

Using induction, M can be approximated by

$$M = N_m(h) + O(h^m),$$

where

$$N_m(h) = N_{m-1}\left(\frac{h}{2}\right) + \frac{N_{m-1}(h/2) - N_{m-1}(h)}{2^{m-1} - 1}.$$

Centered difference formula. From the Taylor's theorem

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \frac{h^5}{5!}f^{(5)}(x) + \cdots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \frac{h^5}{5!}f^{(5)}(x) + \cdots$$

we have

$$f(x+h)-f(x-h)=2hf'(x)+\frac{2h^3}{3!}f'''(x)+\frac{2h^5}{5!}f^{(5)}(x)+\cdots,$$

and, consequently,

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \left[\frac{h^2}{3!}f'''(x_0) + \frac{h^4}{5!}f^{(5)}(x_0) + \cdots\right],$$

$$\equiv N_1(h) - \left[\frac{h^2}{3!}f'''(x_0) + \frac{h^4}{5!}f^{(5)}(x_0) + \cdots\right]. \tag{11}$$

Replacing h in (11) by h/2 gives

$$f'(x_0) = N_1\left(\frac{h}{2}\right) - \frac{h^2}{24}f'''(x_0) - \frac{h^4}{1920}f^{(5)}(x_0) - \cdots$$
 (12)

Subtracting (11) from 4 times (12) gives

$$f'(x_0) = N_2(h) + \frac{h^4}{480} f^{(5)}(x_0) + \cdots,$$

where

Wei-Cheng Wang (NTHU)

$$N_2(h) = \frac{1}{3} \left[4N_1\left(\frac{h}{2}\right) - N_1(h) \right] = N_1\left(\frac{h}{2}\right) + \frac{N_1(h/2) - N_1(h)}{3}.$$

In general,

$$f'(x_0) = N_j(h) + O(h^{2j})$$

with

$$N_j(h) = N_{j-1}\left(\frac{h}{2}\right) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{4^{j-1} - 1}.$$

Example

Suppose that $x_0 = 2.0$, h = 0.2 and $f(x) = xe^x$. Compute an approximated value of f'(2.0) = 22.16716829679195 to six decimal places.

Solution. By centered difference formula, we have

$$N_1(0.2) = \frac{f(2.0 + 0.2) - f(2.0 - 0.2)}{2h} = 22.414160,$$

 $N_1(0.1) = \frac{f(2.0 + 0.1) - f(2.0 - 0.1)}{h} = 22.228786.$

It implies that

$$N_2(0.2) = N_1(0.1) + \frac{N_1(0.1) - N_1(0.2)}{3} = 22.166995$$

which does not have six decimal digits. Adding $N_1(0.05)=22.182564$, we get

$$N_2(0.1) = N_1(0.05) + \frac{N_1(0.05) - N_1(0.1)}{3} = 22.167157$$

and

$$N_3(0.2) = N_2(0.1) + \frac{N_2(0.1) - N_2(0.2)}{15} = 22.167168$$

which contains six decimal digits.

O(h)	$O(h^2)$	$O(h^3)$	$O(h^4)$

1:
$$N_1(h) = N(h)$$

2:
$$N_1(h/2) = N(h/2)$$
 3: $N_2(h)$

4:
$$N_1(h/4) = N(h/4)$$
 5: $N_2(h/2)$ **6**: $N_3(h)$

7:
$$N_1(h/8) = N(h/8)$$
 8: $N_2(h/4)$ 9: $N_3(h/2)$ 10: $N_4(h)$

Remark

In practice, we are often encountered with the situation where the order of the numerical method is unknown. That is, the error expansion is of the form

$$M - N(h) = K_1 h^{p_1} + K_2 h^{p_2} + K_3 h^{p_3} + \cdots,$$
 (13)

where p_1, p_2, \cdots are unknown. Solving for the leading order p_1 , together with the primary unknowns M and K_1 , requires 3 equations, which can be obtained from, for example, the numerical results at h, h/2 and h/4:

$$M - N(h) = K_{1}h^{p_{1}} + \cdots, M - N(\frac{h}{2}) = K_{1}(\frac{h}{2})^{p_{1}} + \cdots, M - N(\frac{h}{4}) = K_{1}(\frac{h}{4})^{p_{1}} + \cdots$$
(14)

The answer is given by

$$p_1 \approx \log_2 \frac{N(h) - N(\frac{h}{2})}{N(\frac{h}{2}) - N(\frac{h}{4})}$$

Once p_1 is known, Richardson extrapolation can be proceeded as before.

Elements of Numerical Integration

The basic method involved in approximating the integration

$$\int_{a}^{b} f(x) \, dx,\tag{15}$$

is called numerical quadrature and uses a sum of the type

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i}). \tag{16}$$

The method of quadrature in this section is based on the polynomial interpolation. We first select a set of distinct nodes $\{x_0, x_1, \ldots, x_n\}$ from the interval [a, b]. Then the Lagrange polynomial

$$P_n(x) = \sum_{i=0}^n f(x_i) L_i(x) = \sum_{i=0}^n f(x_i) \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

is used to approximate f(x). With the error term we have

$$f(x) = P_n(x) + E_n(x) = \sum_{i=0}^n f(x_i) L_i(x) + \frac{f^{(n+1)}(\zeta_x)}{(n+1)!} \prod_{i=0}^n (x - x_i),$$

where $\zeta_x \in [a,b]$ and depends on x, and

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} P_{n}(x) dx + \int_{a}^{b} E_{n}(x) dx$$

$$= \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} L_{i}(x) dx + \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\zeta_{x}) \prod_{i=0}^{n} (x - x_{i})^{i}$$

The quadrature formula is, therefore,

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{n}(x) dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} L_{i}(x) dx \equiv \sum_{i=0}^{n} c_{i} f(x_{i}), \quad (18)$$

where

$$c_i = \int_a^b L_i(x) dx = \int_a^b \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} dx.$$

Moreover, the error in the quadrature formula is given by

$$E = \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\zeta_x) \prod_{i=0}^n (x - x_i) \, dx, \tag{20}$$

for some $\zeta_x \in [a, b]$.

Let us consider formulas produced by using first and second Lagrange polynomials with equally spaced nodes. This gives the Trapezoidal rule and Simpson's rule, respectively.

Trapezoidal rule: Let $x_0 = a, x_1 = b, h = b - a$ and use the linear Lagrange polynomial:

$$P_1(x) = \frac{(x-x_1)}{(x_0-x_1)}f(x_0) + \frac{(x-x_0)}{(x_1-x_0)}f(x_1).$$

Then

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{1}} \left[\frac{(x-x_{1})}{(x_{0}-x_{1})} f(x_{0}) + \frac{(x-x_{0})}{(x_{1}-x_{0})} f(x_{1}) \right] dx + \frac{1}{2} \int_{x_{0}}^{x_{1}} f''(\zeta(x))(x-x_{0})(x-x_{1}) dx.$$
 (21)

Theorem (Weighted Mean Value Theorem for Integrals)

Suppose $f \in C[a,b]$, the Riemann integral of g(x)

$$\int_a^b g(x)dx = \lim_{\max \triangle x_i \to 0} \sum_{i=1}^n g(x_i) \triangle x_i,$$

exists and g(x) does not change sign on [a,b]. Then $\exists c \in (a,b)$ with

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx.$$

Since $(x-x_0)(x-x_1)$ does not change sign on $[x_0,x_1]$, by the Weighted Mean Value Theorem, $\exists \zeta \in (x_0,x_1)$ such that

$$\int_{x_0}^{x_1} f''(\zeta(x))(x - x_0)(x - x_1) dx = f''(\zeta) \int_{x_0}^{x_1} (x - x_0)(x - x_1) dx$$
$$= f''(\zeta) \left[\frac{x^3}{3} - \frac{x_1 + x_0}{2} x^2 + x_0 x_1 x \right]^{x_1} = -\frac{h^3}{6} f''(\zeta).$$

Consequently, Eq. (21) implies that

$$\int_{a}^{b} f(x)dx = \left[\frac{(x-x_{1})^{2}}{2(x_{0}-x_{1})}f(x_{0}) + \frac{(x-x_{0})^{2}}{2(x_{1}-x_{0})}f(x_{1})\right]_{x_{0}}^{x_{1}} - \frac{h^{3}}{12}f''(\zeta)$$

$$= \frac{x_{1}-x_{0}}{2}\left[f(x_{0}) + f(x_{1})\right] - \frac{h^{3}}{12}f''(\zeta),$$

$$= \frac{h}{2}\left[f(x_{0}) + f(x_{1})\right] - \frac{h^{3}}{12}f''(\zeta),$$

which is called the Trapezoidal rule.

If we choose $x_0 = a$, $x_1 = \frac{1}{2}(a+b)$, $x_2 = b$, h = (b-a)/2, and the second order Lagrange polynomial

$$P_2(x) = f(x_0) \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + f(x_1) \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + f(x_2) \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

to interpolate f(x), then

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} \left[\frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} f(x_{0}) + \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} f(x_{1}) + \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})} f(x_{2}) \right] dx + \int_{x_{0}}^{x_{2}} \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{6} f^{(3)}(\zeta(x)) dx.$$

Since, letting $x = x_0 + th$,

$$\int_{x_0}^{x_2} \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} dx = h \int_0^2 \frac{t-1}{0-1} \cdot \frac{t-2}{0-2} dt$$

$$= \frac{h}{2} \int_0^2 (t^2 - 3t + 2) dt = \frac{h}{3},$$

$$\int_{x_0}^{x_2} \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} dx = h \int_0^2 \frac{t-0}{1-0} \cdot \frac{t-2}{1-2} dt$$

$$= -h \int_0^2 (t^2 - 2t) dt = \frac{4h}{3},$$

$$\int_{x_0}^{x_2} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} dx = h \int_0^2 \frac{t-0}{2-0} \cdot \frac{t-1}{2-1} dt$$
$$= \frac{h}{2} \int_0^2 (t^2-t) dt = \frac{h}{3},$$

it implies that

$$\int_{a}^{b} f(x)dx = h\left[\frac{1}{3}f(x_{0}) + \frac{4}{3}f(x_{1}) + \frac{1}{3}f(x_{2})\right] + \int_{x_{0}}^{x_{2}} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{6}f^{(3)}(\zeta(x))dx,$$

which is called the Simpson's rule and provides only an $O(h^4)$ error term involving $f^{(3)}$. A higher order error analysis can be derived by expanding f in the third Taylor's formula about x_1 . $\forall x \in [a,b]$, $\exists \zeta_x \in (a,b)$ such that

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\zeta_x)}{24}(x - x_1)^4.$$

Then

$$\int_{a}^{b} f(x) dx = \left[f(x_{1})(x - x_{1}) + \frac{f'(x_{1})}{2}(x - x_{1})^{2} + \frac{f''(x_{1})}{6}(x - x_{1})^{3} + \frac{f'''(x_{1})}{24}(x - x_{1})^{4} \right]_{a}^{b} + \frac{1}{24} \int_{a}^{b} f^{(4)}(\zeta_{x})(x - x_{1})^{4} dx.$$

Note that $(b-x_1)=h$, $(a-x_1)=-h$, and since $(x-x_1)^4$ does not change sign in [a,b], by the Weighted Mean-Value Theorem for Integral, there exists $\xi_1\in(a,b)$ such that

$$\int_a^b f^{(4)}(\zeta_x)(x-x_1)^4 dx = f^{(4)}(\xi_1) \int_a^b (x-x_1)^4 dx = \frac{2f^{(4)}(\xi_1)}{5} h^5.$$

Consequently,

$$\int_a^b f(x) dx = 2f(x_1)h + \frac{f''(x_1)}{3}h^3 + \frac{f^{(4)}(\xi_1)}{60}h^5.$$

Finally we replace $f''(x_1)$ by the central finite difference formulation

$$f''(x_1) = \frac{f(x_0) - 2f(x_1) + f(x_2)}{h^2} - \frac{f^{(4)}(\xi_2)}{12}h^2,$$

for some $\xi_2 \in (a, b)$, to obtain

$$\int_{a}^{b} f(x) dx = 2hf(x_{1}) + \frac{h}{3} (f(x_{0}) - 2f(x_{1}) + f(x_{2}))$$

$$-\frac{f^{(4)}(\xi_{2})}{36} h^{5} + \frac{f^{(4)}(\xi_{1})}{60} h^{5}$$

$$= h \left[\frac{1}{3} f(x_{0}) + \frac{4}{3} f(x_{1}) + \frac{1}{3} f(x_{2}) \right]$$

$$+ \frac{1}{90} \left[\frac{3}{2} f^{(4)}(\xi_{1}) - \frac{5}{2} f^{(4)}(\xi_{2}) \right] h^{5}.$$

It can show that there exists $\xi \in (a, b)$ such that

$$\int_a^b f(x) dx = \frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x_2) \right] - \frac{f^{(4)}(\xi)}{90} h^5.$$

This gives the Simpson's rule formulation.

Definition

The degree of accuracy, or precision, of a quadrature formula is the largest positive integer n such that the formula is exact for x^k , when $k = 0, 1, \ldots, n$.

- The Trapezoidal and Simpson's rules have degrees of precision one and three, respectively.
- The degree of accuracy of a quadrature formula is n if and only if the error E=0 for all polynomials P(x) of degree less than or equal to n, but $E\neq 0$ for some polynomials of degree n+1.

Newton-Cotes Formulas

Definition (Newton-Cotes formula)

A quadrature formula of the form

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} c_{i} f(x_{i})$$

is called a Newton-Cotes formula if the nodes $\{x_0, x_1, \dots, x_n\}$ are equally spaced.

Consider a uniform partition of the closed interval $\left[a,b\right]$ by

$$x_i = a + ih, \quad i = 0, 1, \dots, n, \quad h = \frac{b - a}{n},$$

where n is a positive integer and h is called the step length.

By introduction a new variable t such that x=a+ht, the fundamental Lagrange polynomial becomes

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j} = \prod_{\substack{j=0\\j\neq i}}^n \frac{a+ht-a-jh}{a+ih-a-jh} = \prod_{\substack{j=0\\j\neq i}}^n \frac{t-j}{i-j} \equiv \varphi_i(t).$$

Therefore, the integration (19) gives

$$c_i = \int_a^b L_i(x) \, dx = \int_0^n \varphi_i(t) h \, dt = h \int_0^n \prod_{\substack{j=0 \ j \neq i}}^n \frac{t-j}{i-j} \, dt, \tag{22}$$

and the general Newton-Cotes formula has the form

$$\int_{a}^{b} f(x) dx = h \sum_{i=0}^{n} f(x_{i}) \int_{0}^{n} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t-j}{i-j} dt + \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\zeta_{x}) \prod_{i=0}^{n} (x-x_{i})$$

Theorem (Closed Newton-Cotes Formulas)

Suppose that $\sum_{i=0}^n a_i f(x_i)$ denotes the (n+1)-point closed Newton-Cotes formula with $x_0=a, x_n=b$ and h=(b-a)/n. If n is even and $f\in C^{n+2}[a,b]$, then

$$\int_{a}^{b} f(x) dx = h \sum_{i=0}^{n} \alpha_{i} f(x_{i}) + \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t^{2} (t-1) \cdots (t-n) dt,$$
(24)

and if n is odd and $f \in C^{n+1}[a,b]$, then

$$\int_{a}^{b} f(x) dx = h \sum_{i=0}^{n} \alpha_{i} f(x_{i}) + \frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_{0}^{n} t(t-1) \cdots (t-n) dt,$$
(25)

where
$$\xi \in (a,b)$$
 and $\alpha_i = \int_0^n \prod_{j=0, \ j\neq i}^n \frac{t-j}{i-j} dt$ for $i=0,1,\ldots,n$.

Consequently, the degree of accuracy is n+1 when n is an even integer, and n when n is an odd integer.

• n = 1: Trapezoidal rule

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)] - \frac{h^{3}}{12} f''(\xi), \ a < \xi < b.$$

• n = 2: Simpson's rule

$$\int_{a}^{b} f(x) dx = h \left[\frac{1}{3} f(x_0) + \frac{4}{3} f(x_1) + \frac{1}{3} f(x_2) \right] - \frac{f^{(4)}(\xi)}{90} h^5, \ a < \xi < b.$$

- The error term of the Trapezoidal rule is $O(h^3)$.
- Since the rule involves f'', it gives the exact result when applied to any function whose second derivative is identically zero, e.g., any polynomial of degree 1 or less.
- The degree of accuracy of Trapezoidal rule is one.
- The Simpson's rule is an $O(h^5)$ scheme and the degree of accuracy is three.

Another class of Newton-Cotes formulas is the open Newton-Cotes formulas in which the nodes

$$x_i = x_0 + ih, \quad i = 0, 1, \dots, n,$$

where

$$x_0 = a + h$$
 and $h = \frac{b-a}{n+2}$,

are used. This implies that $x_n = b - h$, and the endpoints, a and b, are not used. Hence we label $a = x_{-1}$ and $b = x_{n+1}$. The formulas become

$$\int_{a}^{b} f(x)dx = \int_{x-1}^{x_{n+1}} f(x)dx \approx \sum_{i=0}^{n} a_{i} f(x_{i}),$$

where

$$a_i = \int_a^b L_i(x) dx.$$

The following theorem summarizes the open Newton-Cotes formulas.

Theorem (Open Newton-Cotes Formulas)

Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ denotes the (n+1)-point open Newton-Cotes formula with $x_{-1}=a$, $x_{n+1}=b$ and h=(b-a)/(n+2). If n is even and $f\in C^{n+2}[a,b]$, then

$$\int_{a}^{b} f(x) dx = h \sum_{i=0}^{n} \alpha_{i} f(x_{i}) + \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{-1}^{n+1} t^{2} (t-1) \cdots (t-n) dt,$$
(26)

and if n is odd and $f \in C^{n+1}[a,b]$, then

$$\int_{a}^{b} f(x) dx = h \sum_{i=0}^{n} \alpha_{i} f(x_{i}) + \frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{n+1} t(t-1) \cdots (t-n) dt,$$
(27)

where
$$\xi \in (a,b)$$
 and $\alpha_i = \int_{-1}^{n+1} \prod_{j=0, j \neq i}^n \frac{t-j}{i-j} \, dt$ for $i=0,1,\ldots,n$.

Consequently, the degree of accuracy is n+1 when n is an even integer, and n when n is an odd integer.

The simplest open Newton-Cotes formula is choosing n=0 and only using the midpoint $x_0=\frac{a+b}{2}$. Then the coefficient and the error term can be computed easily as

$$\alpha_0 = \int_{-1}^1 dt = 2$$
, and $\frac{h^3 f''(\xi)}{2!} \int_{-1}^1 t^2 dt = \frac{1}{3} f''(\xi) h^3$.

These gives the so-called Midpoint rule or Rectangular rule. Midpoint Rule:

$$\int_{a}^{b} f(x) dx = 2hf(x_0) + \frac{1}{3}f''(\xi)h^3 = (b-a)f(\frac{a+b}{2}) + \frac{1}{3}f''(\xi)h^3, (28)$$

for some $\xi \in (a, b)$.

Composite Numerical Integration

- The Newton-Cotes formulas are generally not suitable for numerical integration over large interval. Higher degree formulas would be required, and the coefficients in these formulas are difficult to obtain.
- Also the Newton-Cotes formulas which are based on polynomial interpolation would be inaccurate over a large interval because of the oscillatory nature of high-degree polynomials.
- Now we discuss a piecewise approach, called composite rule, to numerical integration over large interval that uses the low-order Newton-Cotes formulas.
 - ▶ A composite rule is one obtained by applying an integration formula for a single interval to each subinterval of a partitioned interval.

To illustrate the procedure, we choose an even integer n and partition the interval [a,b] into n subintervals by nodes $a=x_0 < x_1 < \cdots < x_n = b$, and apply Simpson's rule on each consecutive pair of subintervals. With

$$h = \frac{b-a}{n}$$
 and $x_j = a + jh$, $j = 0, 1, \dots, n$,

we have on each interval $[x_{2j-2}, x_{2j}]$,

$$\int_{x_{2j-2}}^{x_{2j}} f(x) dx = \frac{h}{3} \left[f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \right] - \frac{h^5}{90} f^{(4)}(\xi_j),$$

for some $\xi_j \in (x_{2j-2}, x_{2j})$, provided that $f \in C^4[a, b]$.

The composite rule is obtained by summing up over the entire interval, that is,

$$\int_{a}^{b} f(x) dx = \sum_{j=1}^{n/2} \int_{x_{2j-2}}^{x_{2j}} f(x) dx$$

$$= \sum_{j=1}^{n/2} \left[\frac{h}{3} \left(f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \right) - \frac{h^{5}}{90} f^{(4)}(\xi_{j}) \right]$$

$$= \frac{h}{3} \left[f(x_{0}) + 4f(x_{1}) + f(x_{2}) + f(x_{2}) + 4f(x_{3}) + f(x_{4}) + f(x_{4}) + 4f(x_{5}) + f(x_{6}) \right]$$

$$\vdots$$

$$+f(x_{n-2})+4f(x_{n-1})+f(x_n)]-\frac{h^5}{90}\sum_{j=1}^{n/2}f^{(4)}(\xi_j)$$

Hence

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{4}) + 4f(x_{5})$$

$$+ \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})] - \frac{h^{5}}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_{j})$$

$$= \frac{h}{3} \left[f(x_{0}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + f(x_{n}) \right]$$

$$- \frac{h^{5}}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_{j}).$$

To estimate the error associated with approximation, since $f \in C^4[a,b]$, we have, by the Extreme Value Theorem,

$$\min_{x \in [a,b]} f^{(4)}(x) \le f^{(4)}(\xi_j) \le \max_{x \in [a,b]} f^{(4)}(x),$$

A UNITED TO

for each $\xi_j \in (x_{2j-2}, x_{2j})$.

Hence

$$\frac{n}{2} \min_{x \in [a,b]} f^{(4)}(x) \le \sum_{j=1}^{n/2} f^{(4)}(\xi_j) \le \frac{n}{2} \max_{x \in [a,b]} f^{(4)}(x),$$

and

$$\min_{x \in [a,b]} f^{(4)}(x) \le \frac{2}{n} \sum_{j=1}^{n/2} f^{(4)}(\xi_j) \le \max_{x \in [a,b]} f^{(4)}(x).$$

By the Intermediate Value Theorem, there exists $\mu \in (a,b)$ such that

$$f^{(4)}(\mu) = \frac{2}{n} \sum_{j=1}^{n/2} f^{(4)}(\xi_j).$$

Thus, by replacing n = (b - a)/h,

$$\sum_{j=1}^{n/2} f^{(4)}(\xi_j) = \frac{n}{2} f^{(4)}(\mu) = \frac{b-a}{2h} f^{(4)}(\mu).$$

Consequently, the composite Simpson's rule is derived.

Composite Simpson's Rule

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + 2 \sum_{j=1}^{(n/2)-1} f(x_{2j}) + f(b) \right] - \frac{b-a}{180} f^{(4)}(\mu) h^{4},$$

where n is an even integer, h=(b-a)/n, $x_j=a+jh$, for $j=0,1,\ldots,n$, and some $\mu\in(a,b)$.

The composite Midpoint rule can be derived in a similar way, except the midpoint rule is applied on each subinterval $[x_{2j-1}, x_{2j+1}]$ instead. That is,

$$\int_{x_{2j-1}}^{x_{2j+1}} f(x) dx = 2hf(x_{2j}) + \frac{h^3}{3}f''(\xi_j), \qquad j = 1, 2, \dots, \frac{n}{2}.$$

Note that n must again be even. Consequently,

$$\int_{a}^{b} f(x) dx = 2h \sum_{j=1}^{n/2} f(x_{2j}) + \frac{h^{3}}{3} \sum_{j=1}^{n/2} f''(\xi_{j}).$$

The error term can be written as

$$\sum_{j=1}^{n/2} f''(\xi_j) = \frac{n}{2} f''(\mu) = \frac{b-a}{2h} f''(\mu),$$

for some $\mu \in (a, b)$.

Composite Midpoint Rule

$$\int_{a}^{b} f(x) dx = 2h \sum_{j=1}^{n/2} f(x_{2j}) + \frac{b-a}{6} f''(\mu) h^{2},$$
 (29)

where n is an even integer, h=(b-a)/n, $x_j=a+jh$, for $j=0,1,\ldots,n$, and some $\mu\in(a,b)$.

To derive the composite Trapezoidal rule, we partition [a,b] by n equally spaced nodes $a=x_0< x_1< \cdots < x_n=b$, where n can be either odd or even. Apply the trapezoidal rule on $[x_{j-1},x_j]$ and sum them up to obtain

$$\int_{a}^{b} f(x) dx = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} f(x) dx$$

$$= \sum_{j=1}^{n} \left\{ \frac{h}{2} \left[f(x_{j-1}) + f(x_{j}) \right] - \frac{h^{3}}{12} f''(\xi_{j}) \right\}$$

$$= \frac{h}{2} \left\{ \left[f(x_{0}) + f(x_{1}) \right] + \left[f(x_{1}) + f(x_{2}) \right] + \cdots + \left[f(x_{n-1}) + f(x_{n}) \right] \right\} - \frac{h^{3}}{12} \sum_{j=1}^{n} f''(\xi_{j})$$

Hence.

$$\int_{a}^{b} f(x) dx = \frac{h}{2} [f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n})]$$

$$-\frac{h^{3}}{12} \sum_{j=1}^{n} f''(\xi_{j})$$

$$= \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right] - \frac{h^{3}}{12} \sum_{j=1}^{n} f''(\xi_{j})$$

$$= \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right] - \frac{b-a}{12} f''(\mu)h^{2},$$

where each $\xi_j \in (x_{j-1}, x_j)$ and $\mu \in (a, b)$.

Composite Trapezoidal Rule

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] - \frac{b-a}{12} f''(\mu) h^{2}, \quad (30)$$

where n is an integer, h=(b-a)/n, $x_j=a+jh$, for $j=0,1,\ldots,n$, and some $\mu\in(a,b)$.

Gaussian Quadrature

Newton-Cotes formulas:

- The choice of nodes x_0, x_1, \ldots, x_n was made a priori.
- Use values of the function at equally spaced points.
- Once the nodes were fixed, the coefficients were determined, e.g., by integrating the fundamental Lagrange polynomials of degree n.
- These formulas are exact for polynomials of degree $\leq n$ (n+1, if n is even).

This approach is convenient when the formulas are combined to form the composite rules, but the restriction may decrease the accuracy of the approximation.

Gaussian quadrature

- Chooses the points for evaluation in an optimal, rather than pre-fixed or equally-spaced, way.
- 2 The nodes $x_0, x_1, \ldots, x_n \in [a, b]$ and the coefficients c_0, c_1, \ldots, c_n are chosen to minimize the expected error obtained in the approximation

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i})$$
(31)

Produce the exact result for the largest class of polynomials, that is, the choice which gives the greatest degree of precision.

The coefficients c_0, c_1, \ldots, c_n are arbitrary, and the nodes x_0, x_1, \ldots, x_n are restricted only in [a,b]. These give 2n+2 degrees of freedom. Thus we can expect that the quadrature formula of (31) can be discovered that will be exact for polynomials of degree $\leq 2n+1$.

Suppose we want to determine c_1, c_2, x_1 and x_2 so that

$$\int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2)$$
 (32)

gives the exact result whenever f(x) is a polynomial of degree $2 \times 2 - 1 = 3$ or less, i.e.,

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

Since

$$\int (a_0 + a_1 x + a_2 x^2 + a_3 x^3) dx$$

$$= a_0 \int 1 dx + a_1 \int x dx + a_2 \int x^2 dx + a_3 \int x^3 dx,$$

this is equivalent to show that (32) gives exact results when f(x) is $1, x, x^2$ and x^3 . Hence

$$c_1 + c_2 = \int_{-1}^{1} 1 dx = 2,$$

$$c_1 x_1 + c_2 x_2 = \int_{-1}^{1} x dx = 0,$$

$$c_1 x_1^2 + c_2 x_2^2 = \int_{-1}^{1} x^2 dx = \frac{2}{3},$$

$$c_1 x_1^3 + c_2 x_2^3 = \int_{-1}^{1} x^3 dx = 0.$$

It implies that

$$c_1 = 1, \ c_2 = 1, \ x_1 = -\frac{\sqrt{3}}{3}, \ x_2 = \frac{\sqrt{3}}{3}$$

which gives

$$\int_{-1}^{1} f(x)dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$$

Theorem

Suppose that x_0, x_1, \ldots, x_n are the roots of the (n+1)-st Lengendre polynomial p_{n+1} , and that for each $i=0,1,\ldots,n$,

$$c_i = \int_{-1}^{1} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} dx.$$

If f(x) is any polynomial of degree $\leq 2n+1$, then

$$\int_{-1}^{1} f(x) dx = \sum_{i=0}^{n} c_i f(x_i).$$

Gaussian Quadrature Rule

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} c_i f(x_i), \tag{33}$$

◆ロト ◆部ト ◆草ト ◆草ト 草 めの

Orthogonalization and Legendre polynomials

Definition

- In a inner-product space, we say f is orthogonal to g, and write $f \perp g$ if $\langle f,g \rangle = 0$.
- ② We write $f \perp G$ if $f \perp g$ for all $g \in G$.
- **3** We say that a finite or infinite sequence of vectors f_1, f_2, \ldots in an inner-product space is orthogonal if $\langle f_i, f_j \rangle = 0$ for all $i \neq j$, and orthonormal if $\langle f_i, f_j \rangle = \delta_{ij}$.

The space of continuous functions on $\left[a,b\right]$ with inner-product defined as

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, dx,$$
 (34)

is an inner-product space.

Definition

 $\{\phi_0,\phi_1,\ldots,\phi_n\}$, where $\phi_i\in C[a,b]$ for all $i=0,1,\ldots,n$, is said to be an orthogonal set of functions if

$$\langle \phi_i, \phi_j \rangle = \int_a^b \phi_i(x) \phi_j(x) dx = \begin{cases} 0, & \text{when } i \neq j, \\ \alpha_i > 0, & \text{when } i = j. \end{cases}$$

If, in addition, $\alpha_i = 1$ for all i, then the set is said to be orthonormal.

Definition

Legendre polynomials: Gram-Schmidt process applied to $1, x, x^2, \cdots$

$$p_0(x) = 1$$

$$p_1(x) = x - \frac{\langle x, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0 = x$$

$$p_2(x) = x^2 - \frac{\langle x^2, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0 - \frac{\langle x^2, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1 = x^2 - \frac{1}{3}$$

Corollary

For any n > 0, the set of Legendre polynomials $\{p_0, p_1, \dots, p_n\}$ defined above is linearly independent and

$$\langle q, p_n \rangle = \int_a^b q(x) p_n(x) dx = 0$$

for any polynomial q(x) with $deg(q(x)) \le n - 1$.

Let Π_n denote the set of polynomials of degree at most n, that is,

$$\Pi_n = \{p(x) \mid p(x) \text{ is a polynomial and } \deg(p) \leq n\}.$$

Theorem

Let q(x) be any nonzero polynomial of degree n+1, and $q(x) \perp \Pi_n$. If x_0, x_1, \ldots, x_n are the roots of q(x) in [a, b], and

$$c_i = \int_a^b \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j} dx,$$

then

$$\int_a^b p(x) dx = \sum_{i=0}^n c_i p(x_i), \quad \text{for any} \quad p \in \Pi_{2n+1}.$$

That is, the quadrature rule is exact for any polynomial of degree $\leq 2n+1$.

Proof. For any polynomial $p \in \Pi_{2n+1}$, we can write

$$p(x) = q(x)t(x) + r(x),$$

where $t(x), r(x) \in \Pi_n$. Since x_0, x_1, \dots, x_n are roots of q(x), we have

$$p(x_i) = q(x_i)t(x_i) + r(x_i) = r(x_i), \qquad i = 0, 1, ..., n.$$

By assumption, $q \perp \Pi_n$, we have

$$\langle q, t \rangle = \int_a^b q(x)t(x) dx = 0.$$

Since $r(x) \in \Pi_n$, it can be expressed exactly in the Lagrange form

$$r(x) = \sum_{i=0}^{n} r(x_i) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}.$$

Hence

$$\int_{a}^{b} p(x) dx = \int_{a}^{b} q(x)t(x) dx + \int_{a}^{b} r(x) dx$$

$$= \int_{a}^{b} r(x) dx = \int_{a}^{b} \sum_{i=0}^{n} r(x_{i}) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \sum_{i=0}^{n} r(x_{i}) \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \sum_{i=0}^{n} p(x_{i}) \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \sum_{i=0}^{n} c_{i} p(x_{i}).$$

If the interval [a,b] is [-1,1], then we can obtain a set of orthogonal polynomials called the Lengendre polynomials. The first few Lengendre polynomials are

$$p_0(x) = 1$$

$$p_1(x) = x$$

$$p_2(x) = x^2 - \frac{1}{3}$$

$$p_3(x) = x^3 - \frac{3}{5}x$$

$$p_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}$$

$$p_5(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x$$

Gaussian Quadrature Rule

For a given function $f(x) \in C[-1,1]$ and integer n,

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} c_i f(x_i), \tag{35}$$

where x_0, x_1, \ldots, x_n are the roots of the (n+1)-st Lengendre polynomial p_{n+1} , and

$$c_i = \int_{-1}^{1} \prod_{\substack{j=0 \ i \neq j}}^{n} \frac{x - x_j}{x_i - x_j} dx.$$
 $i = 0, 1, \dots, n.$

n	x_i	c_i
0	$x_0 = 0$	$c_0 = 2$
1	$x_0 = -0.5773502692$	$c_0 = c_1 = 1$
	$x_1 = 0.5773502692$	
2	$x_0 = -0.7745966692$	$c_0 = \frac{5}{9}$
	$x_1 = 0$	$c_1 = \frac{8}{9}$
	$x_2 = 0.7745966692$	$c_2 = \frac{5}{9}$
3	$x_0 = -0.8611363116$	$c_0 = 0.3478548451$
	$x_1 = -0.3399810436$	$c_1 = 0.6521451549$
	$x_2 = 0.3399810436$	$c_2 = 0.6521451549$
	$x_3 = 0.8611363116$	$c_3 = 0.3478548451$
4	$x_0 = -0.9061798459$	$c_0 = 0.2369268851$
	$x_1 = -0.5384693101$	$c_1 = 0.4786286705$
	$x_2 = 0$	$c_2 = \frac{128}{225} = 0.568888889$
	$x_3 = 0.5384693101$	$c_3 = 0.4786286705$
	$x_4 = 0.9061798459$	$c_4 = 0.2369268851$

Additional Properties of Legendre Polynomials

- Alternative definitions:
- Other normalizations are possible.

