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IEEE standard floating-point format

Terminologies

binary: 二進位 , decimal: 十進位 , hexadecimal: 十六進位
exponent: 指數, mantissa: 尾數
floating point numbers: 浮點數
chopping: 無條件捨去, rounding: 四捨五入(X捨Y入)
single precision: 單精度, double precisiom: 雙精度
roundoff error: 捨入誤差

significant digits: 有效位數
loss of significance: 有效位數喪失
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Example

What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain

4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both
sides.
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Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.
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In the computational world, each representable number
has only a fixed and finite number of digits.
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
In 1985, the IEEE (Institute for Electrical and Electronic
Engineers) published a report called Binary Floating Point
Arithmetic Standard 754-1985. In this report, formats were
specified for single, double, and extended precisions, and
these standards are generally followed by microcomputer
manufactures to design floating-point hardware.
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Single precision

The single precision IEEE standard floating-point format
allocates 32 bits for the normalized floating-point number
±q × 2m as shown in the following figure.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

The first bit is a sign indicator, denoted s. It is followed by
an 8-bit exponent c and a 23-bit mantissa f .
The base for the exponent and mantissa is 2, and the
actual exponent is c− 127. The value of c is restricted by
the inequality 0 ≤ c ≤ 255.
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The actual exponent of the number is restricted by the
inequality −127 ≤ c− 127 ≤ 128.
A normalization is imposed that requires that the leading
digit in fraction be 1, and this digit is not stored as part of
the 23-bit mantissa.
Using this system gives a floating-point number of the form

(−1)s2c−127(1 + f).
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Example
What is the decimal number of the machine number

01000000101000000000000000000000?

1 The leftmost bit is zero, which indicates that the number is
positive.

2 The next 8 bits, 10000001, are equivalent to

c = 1 · 27 + 0 · 26 + · · ·+ 0 · 21 + 1 · 20 = 129.

The exponential part of the number is 2129−127 = 22.
3 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 1 · (2)−2 + 0 · (2)−3 + · · ·+ 0 · (2)−23 = 0.25.

4 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.25) = 5.
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Example
What is the decimal number of the machine number

01000000100111111111111111111111?

1 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 0 · (2)−2 + 1 · (2)−3 + · · ·+ 1 · (2)−23

= 0.2499998807907105.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2499998807907105)

= 4.999999523162842.
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Example
What is the decimal number of the machine number

01000000101000000000000000000001?

1 The final 23 bits specify that the mantissa is

f = 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + · · ·+ 0 · 2−22 + 1 · 2−23

= 0.2500001192092896.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2500001192092896)

= 5.000000476837158.
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Summary

Above three examples

01000000100111111111111111111111 ⇒ 4.999999523162842

01000000101000000000000000000000 ⇒ 5

01000000101000000000000000000001 ⇒ 5.000000476837158

Only a relatively small subset of the real number system is
used for the representation of all the real numbers.
This subset, which are called the floating-point numbers,
contains only rational numbers, both positive and negative.
When a number can not be represented exactly with the
fixed finite number of digits in a computer, a near-by
floating-point number is chosen for approximate
representation.
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The smallest (normalized) positive number
Let s = 0, c = 1 and f = 0. This cooresponds to

2−126 · (1 + 0) ≈ 1.175× 10−38

The largest number

Let s = 0, c = 254 and f = 1− 2−23 which is equivalent to

2127 · (2− 2−23) ≈ 3.403× 1038

Definition
If a number x with |x| < 2−126 · (1 + 0), then we say that an
underflow has occurred and is generally set to zero. It is
sometimes referred to as an IEEE ’subnormal’ or ’denormal’
and corresponds to c = 0. If |x| > 2127 · (2− 2−23), then we say
that an overflow has occurred.
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Double precision

A floating point number in double precision IEEE standard
format uses two words (64 bits) to store the number as
shown in the following figure.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

The first bit is a sign indicator, denoted s. It is followed by
an 11-bit exponent c and a 52-bit mantissa f .
The actual exponent is c− 1023.
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Format of floating-point number

(−1)s × (1 + f)× 2c−1023

The smallest (normalized) positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−1022 · (1 + 0) ≈ 2.225× 10−308.

The largest number

Let s = 0, c = 2046 and f = 1− 2−52 which is equivalent to

21023 · (2− 2−52) ≈ 1.798× 10308.
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Chopping and rounding
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
1 chopping: simply discard the excess bits at+1, at+2, . . . to

obtain

fl(x) = ±1.a1a2 · · · at × 2m.

2 rounding: add ±2−(t+1) × 2m to x and then chop the
excess bits to obtain a number of the form

fl(x) = ±1.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x),
and if at+1 = 0, we merely chop off all but the first t digits.
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Definition (Round-off error)
The error results from replacing a number with its floating-point
form is called round-off error or rounding error.

Definition (Absolute Error and Relative Error)
If x is an approximation to the exact value x?, the absolute error
is |x? − x| and the relative error is |x

?−x|
|x?| , provided that x? 6= 0.

Example

(a) If x = 0.3000× 10−3 and x∗ = 0.3100× 10−3, then the
absolute error is 0.1× 10−4 and the relative error is
0.3333× 10−1.
(b) If x = 0.3000× 104 and x∗ = 0.3100× 104, then the absolute
error is 0.1× 103 and the relative error is 0.3333× 10−1.
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Remark
As a measure of accuracy, the absolute error may be
misleading and the relative error more meaningful.

Definition
In decimal expressions, the number x∗ is said to approximate x
to t significant digits if t is the largest nonnegative integer for
which

|x− x∗|
|x|

≤ 5× 10−t.
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In binary expressions, if the floating-point representation
flchop(x) for the number x is obtained by t digits chopping,
then the relative error is

|x− flchop(x)|
|x|

=
|0.00 · · · 0at+1at+2 · · · × 2m|
|1.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t.

The minimal value of the denominator is 1. The numerator
is bounded above by 1. As a consequence∣∣∣∣x− flchop(x)x

∣∣∣∣ ≤ 2−t.
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If t-digit rounding arithmetic is used and
at+1 = 0, then flround(x) = ±1.a1a2 · · · at × 2m. A bound for
the relative error is

|x− flround(x)|
|x|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
×2−t ≤ 2−(t+1).

The numerator is bounded above by 1
2 since at+1 = 0.

at+1 = 1, then flround(x) = ±(1.a1a2 · · · at + 2−t)× 2m. The
upper bound for relative error becomes

|x− flround(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
×2−t ≤ 2−(t+1).

The numerator is bounded by 1
2 since at+1 = 1.

Therefore the relative error for rounding arithmetic is∣∣∣∣x− flround(x)x

∣∣∣∣ ≤ 2−(t+1) =
1

2
× 2−t.
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Definition (Machine epsilon)
The floating-point representation, fl(x), of x can be expressed
as

fl(x) = x(1 + δ), |δ| ≤ εM , (1)

where εM ≡ 2−t is referred to as the machine epsilon. It is
equivalent to the distance from 1.0 to the next largest floating
point number, and also equivalent to the least upper bound of
relative error resulted from chopping.

Single precision IEEE standard floating-point format
The mantissa f corresponds to 23 binary digits (i.e., t = 23),
the machine epsilon is

εM = 2−23 ≈ 1.192× 10−7.

This approximately corresponds to 6 accurate decimal digits
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Double precision IEEE standard floating-point format
The mantissa f corresponds to 52 binary digits (i.e., t = 52),
the machine epsilon is

εM = 2−52 ≈ 2.220× 10−16,

which provides between 15 and 16 decimal digits of accuracy.
The matlab built-in function eps returns this value by default.

Summary of IEEE standard floating-point format

single precision double precision
εM 1.192× 10−7 2.220× 10−16

smallest positive number 1.175× 10−38 2.225× 10−308

largest number 3.403× 1038 1.798× 10308

decimal precision 6 15



university-logo

Error Algorithms and Convergence

Machine Epsilon

Let � stand for any one of the four basic arithmetic
operators +, −, ?, ÷.
Whenever two machine numbers x and y are to be
combined arithmetically, the computer will produce
fl(x� y) instead of x� y.
Under (1), the relative error of fl(x� y) satisfies

fl(x� y) = (x� y)(1 + δ), δ ≤ εM , (2)

where εM is the machine epsilon. In fact, δ ≤ εM/2 if
rounding is used (that is, if fl(·) = flround(·)).
But if x, y are not machine numbers, then they must first be
rounded to floating-point format before the arithmetic
operation. The resulting relative error becomes

fl(fl(x)� fl(y)) = (x(1 + δ1)� y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.
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Example

Let x = 0.54617 and y = 0.54601. With four-digits rounding, we
have

x∗ = fl(x) = 0.5462 is accurate to four significant digits
since

|x− x∗|
|x|

=
0.00003

0.54617
= 5.5× 10−5 ≤ 5× 10−4.

y∗ = fl(y) = 0.5460 is accurate to five significant digits
since

|y − y∗|
|y|

=
0.00001

0.54601
= 1.8× 10−5 ≤ 5× 10−5.
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The exact value of subtraction is

r = x− y = 0.00016.

But

r∗ ≡ x	 y = fl(fl(x)− fl(y)) = 0.0002.

Since

|r − r∗|
|r|

= 0.25 ≤ 5× 10−1

the result has only one significant digit.
Loss of accuracy
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Loss of Significance
One of the most common error-producing calculations
involves the cancellation of significant digits due to the
subtraction of nearly equal numbers.
Sometimes, loss of significance can be avoided by
rewriting the mathematical formula in equivalent
expressions.

Example
The quadratic formulas for computing the roots of
ax2 + bx+ c = 0, when a 6= 0, are

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

Consider the quadratic equation x2 + 62.10x+ 1 = 0 and
discuss the numerical results.
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Solution

Using the quadratic formula and 8-digit rounding
arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding
arithmetic. We have√

b2 − 4ac =
√
62.102 − 4.000 =

√
3856− 4.000 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=
−0.04000
2.000

= −0.02000.

|fl(x1)− x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723|
≈ 0.2417 ≤ 5×10−1.
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In calculating x2,

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10,

|fl(x2)− x2|
|x2|

=
| − 62.10 + 62.08390|
| − 62.08390|

≈ 0.259×10−3 ≤ 5×10−4.

In this equation, b2 = 62.102 is much larger than 4ac = 4.
Hence b and

√
b2 − 4ac become two nearly equal numbers.

The calculation of x1 involves the subtraction of two nearly
equal numbers.
To obtain a more accurate 4-digit rounding approximation
for x1, we change the formulation by rationalizing the
numerator, that is,

x1 =
−2c

b+
√
b2 − 4ac

.
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Then

fl(x1) =
−2.000

62.10 + 62.06
=
−2.000
124.2

= −0.01610.

The relative error in computing x1 is now reduced to 6.2× 10−4

Example
Let

p(x) = x3 − 3x2 + 3x− 1,

q(x) = ((x− 3)x+ 3)x− 1. (nested expression)

Compare the function values at x = 2.19 with three-digit
rounding arithmetic.
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Solution

With 3-digit rounding for p(2.19) and q(2.19), we have

p̂(2.19) = ((2.193 − 3× 2.192) + 3× 2.19)− 1

= ((10.5− 14.4) + 3× 2.19)− 1

= (−3.9 + 6.57)− 1

= 2.67− 1 = 1.67

and

q̂(2.19) = ((2.19− 3)× 2.19 + 3)× 2.19− 1

= (−0.81× 2.19 + 3)× 2.19− 1

= (−1.77 + 3)× 2.19− 1

= 1.23× 2.19− 1

= 2.69− 1 = 1.69.
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With more digits, one can have

p(2.19) = g(2.19) = 1.685159

|p(2.19)− p̂(2.19)| = 0.015159

and
|q(2.19)− q̂(2.19)| = 0.004841,

respectively. q(x) is better than p(x).
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Definition (Algorithm)
An algorithm is a procedure that describes a finite sequence of
steps to be performed in a specified order.

Example

Give an algorithm to compute
∑n

i=1 xi, where n and
x1, x2, . . . , xn are given.

Algorithm

INPUT n, x1, x2, . . . , xn.
OUTPUT SUM =

∑n
i=1 xi.

Step 1. Set SUM = 0. (Initialize accumulator.)
Step 2. For i = 1, 2, . . . , n do

Set SUM = SUM + xi. (Add the next term.)
Step 3. OUTPUT SUM ;

STOP
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Definition (Stable)
An algorithm is called stable if small changes in the initial data
of the algorithm produce correspondingly small changes in the
final results.

Definition (Unstable)
An algorithm is unstable if small errors made at one stage of the
algorithm are magnified and propagated in subsequent stages
and seriously degrade the accuracy of the overall calculation.

Remark
Whether an algorithm is stable or unstable should be decided
on the basis of relative error.
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Example
Consider the following recurrence algorithm{

x1 = 1, x2 =
1
3

xn+1 =
13
3 xn −

4
3xn−1

for computing the sequence of {xn = (13)
n−1}. This algorithm is

unstable.

A Matlab implementation of the recurrence algorithm is as
follows:
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Matlab program

n = 30;
x = zeros(n,1);
x(1) = 1;
x(2) = 1/3;
for ii = 3:n

x(ii) = 13 / 3 * x(ii-1) - 4 / 3 * x(ii-2);
xstar = (1/3)(̂ii-1);
RelErr = abs(xstar-x(ii)) / xstar;
fprintf(’x(%2.0f) = %20.8d, x ast(%2.0f) = %20.8d,’, ...

’RelErr(%2.0f) = %14.4d \n’, ii,x(ii),ii,xstar,ii,RelErr);
end
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Result of the Matlab implementation:

n xn x∗n RelErr
9 4.57247371e-04 4.57247371e-04 4.4359e-10

11 5.08052602e-05 5.08052634e-05 6.3878e-08
13 5.64497734e-06 5.64502927e-06 9.1984e-06
15 6.26394672e-07 6.27225474e-07 1.3246e-03
16 2.05751947e-07 2.09075158e-07 1.5895e-02
17 5.63988754e-08 6.96917194e-08 1.9074e-01
18 -2.99408028e-08 2.32305731e-08 2.2889e+00

The relative error is increased by a factor of 12 after each
iteration (compare the result from n = 9 to n = 11 and from
n = 16 to n = 17, etc). This is a typical example of exponential
instability, where the error grows exponentially in n.
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Question: What is the source of this instability and where does
the factor 12 come from?

Proposition
The general solution of the three term recursion formula
xn+1 = axn + bxn−1 is given by

xn = c1z
n
1 + c2z

n
2 (3)

where z1 and z2 are the (distinct) roots of the characteristic
equation z2 = az + b. In case z1 = z2, equation (3) is replaced
by xn = c1z

n
1 + c2nz

n
1 .

In this example, z1 = 1/3 and z2 = 4. The fact that |z2| > 1 is
precisely the reason for exponential instability.
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Denote by xen the exact solution and xhn the numerical solution.
We have {

xe1 = 1, xe2 =
1
3

xen+1 =
13
3 x

e
n − 4

3x
e
n−1

and {
xh1 = fl(1) = 1, xh2 = fl(13) =

1
3(1 + δ1)

xhn+1 =
(
13
3 (1 + αn)x

h
n − 4

3(1 + βn)x
h
n−1
)
(1 + δn)

where |δn|, |αn|, |βn| ≤ εM . Loosely speaking, the behavior of
xhn can be approximated by xhn+1 =

13
3 x

h
n − 4

3x
h
n−1, thus the error

en := xhn − xen satisfies (approximately) en+1 =
13
3 en −

4
3en−1.

The general solution is given by en = d1(
1
3)

n + d24
n. Since

e1 = 0 and e2 = 1
3δ1 6= 0, it follows that d2 6= 0 and the error

grows exponentially in n.
The above argument is not completely rigorous, but is the
essential part of the error estimate and can be made rigorous
with some elaboration.
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Rate of convergence

Definition
Suppose {βn} → 0 and {xn} → x∗. If ∃ c > 0 and an integer
N > 0 such that

|xn − x∗| ≤ c|βn|, ∀ n ≥ N,

then we say {xn} converges to x∗ with rate of convergence
O(βn), and write xn = x∗ +O(βn).

Example
Compare the convergence behavior of {xn} and {yn}, where

xn =
n+ 1

n2
, and yn =

n+ 3

n3
.
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Solution:

Note that both

lim
n→∞

xn = 0 and lim
n→∞

yn = 0.

Let αn = 1
n and βn = 1

n2 . Then

|xn − 0| =
n+ 1

n2
≤ n+ n

n2
=

2

n
= 2αn,

|yn − 0| =
n+ 3

n3
≤ n+ 3n

n3
=

4

n2
= 4βn.

Hence
xn = 0 +O(

1

n
) and yn = 0 +O(

1

n2
).

This shows that {yn} converges to 0 much faster than {xn}.
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