Richardson's Extrapolation

Suppose $\forall h \neq 0$ we have a formula $N_1(h)$ that approximates an unknown value M

$$M - N_1(h) = K_1 h + K_2 h^2 + K_3 h^3 + \cdots, (7)$$

for some unknown constants K_1, K_2, K_3, \ldots If $K_1 \neq 0$, then the truncation error is O(h). For example,

$$f'(x) - \frac{f(x+h) - f(x)}{h} = -\frac{f''(x)}{2!}h - \frac{f'''(x)}{3!}h^2 - \frac{f^{(4)}(x)}{4!}h^3 - \cdots$$

Goal

Find an easy way to produce formulas with a higher-order truncation error.

Replacing h in (7) by h/2, we have

$$M = N_1 \left(\frac{h}{2}\right) + K_1 \frac{h}{2} + K_2 \frac{h^2}{4} + K_3 \frac{h^3}{8} + \cdots$$

Subtracting (7) with twice (8), we get

$$M = N_2(h) - \frac{K_2}{2}h^2 - \frac{3K_3}{4}h^3 - \cdots,$$
 (9)

where

$$N_2(h) = 2N_1\left(\frac{h}{2}\right) - N_1(h) = N_1\left(\frac{h}{2}\right) + \left[N_1\left(\frac{h}{2}\right) - N_1(h)\right],$$

which is an $O(h^2)$ approximation formula.

Replacing h in (9) by h/2, we get

$$M = N_2 \left(\frac{h}{2}\right) - \frac{K_2}{8}h^2 - \frac{3K_3}{32}h^3 - \cdots$$
 (10)

Subtracting (9) from 4 times (10) gives

$$3M = 4N_2\left(\frac{h}{2}\right) - N_2(h) + \frac{3K_3}{8}h^3 + \cdots,$$

which implies that

$$M = \left[N_2 \left(\frac{h}{2} \right) + \frac{N_2(h/2) - N_2(h)}{3} \right] + \frac{K_3}{8} h^3 + \dots \equiv N_3(h) + \frac{K_3}{8} h^3 + \dots$$

Using induction, M can be approximated by

$$M = N_m(h) + O(h^m),$$

where

$$N_m(h) = N_{m-1}\left(\frac{h}{2}\right) + \frac{N_{m-1}(h/2) - N_{m-1}(h)}{2^{m-1} - 1}.$$

Centered difference formula. From the Taylor's theorem

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \frac{h^5}{5!}f^{(5)}(x) + \cdots$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \frac{h^5}{5!}f^{(5)}(x) + \cdots$$

we have

$$f(x+h)-f(x-h)=2hf'(x)+\frac{2h^3}{3!}f'''(x)+\frac{2h^5}{5!}f^{(5)}(x)+\cdots,$$

and, consequently,

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \left[\frac{h^2}{3!}f'''(x_0) + \frac{h^4}{5!}f^{(5)}(x_0) + \cdots\right],$$

$$\equiv N_1(h) - \left[\frac{h^2}{3!}f'''(x_0) + \frac{h^4}{5!}f^{(5)}(x_0) + \cdots\right]. \tag{11}$$

Replacing h in (11) by h/2 gives

$$f'(x_0) = N_1\left(\frac{h}{2}\right) - \frac{h^2}{24}f'''(x_0) - \frac{h^4}{1920}f^{(5)}(x_0) - \cdots$$
 (12)

Subtracting (11) from 4 times (12) gives

$$f'(x_0) = N_2(h) + \frac{h^4}{480} f^{(5)}(x_0) + \cdots,$$

where

$$N_2(h) = \frac{1}{3} \left[4N_1\left(\frac{h}{2}\right) - N_1(h) \right] = N_1\left(\frac{h}{2}\right) + \frac{N_1(h/2) - N_1(h)}{3}.$$

In general,

$$f'(x_0) = N_j(h) + O(h^{2j})$$

with

$$N_j(h) = N_{j-1}\left(\frac{h}{2}\right) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{4^{j-1} - 1}.$$

Example

Suppose that $x_0 = 2.0$, h = 0.2 and $f(x) = xe^x$. Compute an approximated value of f'(2.0) = 22.16716829679195 to six decimal places.

Solution. By centered difference formula, we have

$$N_1(0.2) = \frac{f(2.0 + 0.2) - f(2.0 - 0.2)}{2h} = 22.414160,$$

 $N_1(0.1) = \frac{f(2.0 + 0.1) - f(2.0 - 0.1)}{h} = 22.228786.$

It implies that

$$N_2(0.2) = N_1(0.1) + \frac{N_1(0.1) - N_1(0.2)}{3} = 22.166995$$

which does not have six decimal digits. Adding $N_1(0.05) = 22.182564$, we get

$$N_2(0.1) = N_1(0.05) + \frac{N_1(0.05) - N_1(0.1)}{3} = 22.167157$$

and

$$N_3(0.2) = N_2(0.1) + \frac{N_2(0.1) - N_2(0.2)}{15} = 22.167168$$

which contains six decimal digits.

Remark

In practice, we are often encountered with the situation where the order of the numerical method is unknown. That is, the error expansion is of the form

$$M - N(h) = K_1 h^{p_1} + K_2 h^{p_2} + K_3 h^{p_3} + \cdots,$$
 (13)

where p_1, p_2, \cdots are unknown. Solving for the leading order p_1 , together with the primary unknowns M and K_1 , requires 3 equations, which can be obtained from, for example, the numerical results at h, h/2 and h/4:

$$M - N(h) = K_1 h^{p_1} + \cdots, M - N(\frac{h}{2}) = K_1 (\frac{h}{2})^{p_1} + \cdots, M - N(\frac{h}{4}) = K_1 (\frac{h}{4})^{p_1} + \cdots$$
(14)

The answer is given by

$$p_1 \approx \log_2 \frac{N(h) - N(\frac{h}{2})}{N(\frac{h}{2}) - N(\frac{h}{4})}$$

Once p_1 is known, Richardson extrapolation can be proceeded as before.