Newton's method

Suppose that f : R — R and f € C?[a, b], i.e., f" exists and is continuous.
If f(x*) =0 and x* = x + h where h is small, then by Taylor’s theorem

0="1F(x*) = f(x+h)
= f(x)+ f(x)h+ %f”(x)h2+ %f’"(X)h?’—F“'
— () + F(x)h+ O(R?).

Since h is small, O(h?) is negligible. It is reasonable to drop O(h?) terms.
This implies

f(x)

f(x)+ f(x)h~0 and h%_f’(x)’ if f'(x)#0.
Hence ()
X
h=x—
X + X f’(x)

Is a better approximation to x*.
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This sets the stage for the Newton-Raphson's method, which starts with
an initial approximation xg and generates the sequence {x,}°°, defined by

f(xn)

Xn—l—l — Xn o f-/(X )
n

Since the Taylor's expansion of f(x) at xx is given by

1

f(x) = f(xk) + F () (x — xi) + §f”(xk)(x — Xg)S

At x;, one uses the tangent line
y = £(x) = f(xk) + ' (xi)(x — xk)

to approximate the curve of f(x) and uses the zero of the tangent line to
approximate the zero of f(x).
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Newton's Method

Given xp, tolerance TOL, maximum number of iteration M.
Set i=1and x = xg — f(x0)/f'(x0).
While i < M and |x — xg| > TOL
Seti=i+4+1, xp =x and x = xp — f(x0)/f"(x0)-
End While

g

Slope f'(p)) y = f(x)

(P1.f(p1)

Slope f(py)

L _

(Po> f(Po))
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Three stopping-technique inequalities

(). |xn—xn-1]| <e,

(b).
(c). |f(xn)] <e.

‘Xn — Xn—ll

<e, Xxp#£0,

Note that Newton's method for solving f(x) =0

()

Xpi1l = Xp — F(xy)’ for n>1

Is just a special case of functional iteration in which

g(x)=x— :/(();))
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Example

The following table shows the convergence behavior of Newton's method
applied to solving f(x) = x> — 1 = 0. Observe the quadratic convergence

rate. ‘
n | xp len] = |1 — x|
0120 1
1|1.25 0.25
2 | 1.025 2.5e-2
3 | 1.0003048780488 | 3.048780488e-4
4 | 1.0000000464611 | 4.64611e-8
5|10 0
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Theorem

Assume f(x*) =0, f'(x*) # 0 and f(x), f'(x) and f"(x) are continuous
on N.(x*). Then if xg is chosen sufficiently close to x*, then

o =ne 3} -+

f(x)
f'(x)

Proof: Define

g(x) =x—

Find an interval [x* — §, x* 4 d] such that

g([x" =6, x" +4]) C[x" —d,x" + 9]

and

g'(xX)| < k<1, Vxe((x*—§x"+0).
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Since f’ is continuous and f'(x*) #£ 0, it implies that 3 6; > 0 such that
f'(x) 20V x € [x* —d1,x* + 1] C [a, b]. Thus, g is defined and
continuous on [x* — d1, x* + d01]. Also

PO (x) = F()F(x) _ F(x)F(x)
() GO
for x € [x* — 61, x* 4+ 01]. Since f” is continuous on [a, b], we have g’ is

continuous on [x* — d1, x* + d1].
By assumption f(x*) =0, so

g'(x)=1

e FO)
A TE L

Since g’ is continuous on [x* — 41, x* + 01] and g’(x*) = 0, 3 ¢ with
0 <9 <d1 and k € (0,1) such that

g’ (x)| < k, V x € [x*—§x"+1]

Wei-Cheng Wang (NTHU)
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Claim: g([x* — d,x" +6]) C [x* — 9§, x* + 9].
If x € [x* — 6, x* + 6], then, by the Mean Value Theorem, 3 £ between x
and x* such that

g(x) — g(x") = [g"(E)lIx — X7

It implies that

g(x) — g(x*)| = [g"()l|x — x|
kix — x*| < |x — x™| <.

g(x) = x|

VAN

Hence, g([x* — d,x* +4]) C [x* — 4§, x* + §].
By the Fixed-Point Theorem, the sequence {x,}°°, defined by

f(Xn_l)
p— . p— 1 — f > 1
Xn = &(Xn—1) = Xn—1 F(xq) or n>1,
converges to x* for any xp € [x* — J, x* + §]. ]

Wei-Cheng Wang (NTHU)
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Example
When Newton's method applied to f(x) = cos x with starting point
3, which is close to the root 5 of f, it produces

X0 =
x1 = —4.01525, xp = —4.8526, - - - , which converges to another root —37”.
y
15 T T T T T T T T T
y = cos(Xx)
1. 5 | | | | | | | | |
5 4 3 2 1 0 1 2 3 4 5
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Secant method

Disadvantage of Newton's method

In many applications, the derivative f'(x) is very expensive to compute, or
the function f(x) is not given in an algebraic formula so that 7/(x) is not

available.

By definition,
f _f n—
Flxp1) = lim ()= Flao1)

X—Xp—1 X - Xn_]_

Letting x = x,_», we have
f(Xn_Q) — f(Xn_l) _ f(Xn_l) — f(Xn_Q)

fl(xp_1) &
(Xn 1) Xn—2 — Xn—1 Xn—1 — Xp—2

Using this approximation for f’(x,_1) in Newton's formula gives

f(Xn—l)(Xn—l — Xn—2)
f(Xn_l) — f(Xn_Q) 7

which is called the Secant method.
Wei-Cheng Wang (NTHU) Solutions of Equations in One Variable Fall 2010
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From geometric point of view, we use a secant line through x, 1 and x,_»
instead of the tangent line to approximate the function at the point x,_1.
The slope of the secant line is

_ f(Xn_l) — f(Xn_Q)

Xn—1 — Xp—2

Spn—1

and the equation is
M(x) = f(xn—1) + Sn—1(x — Xn—1)-
The zero of the secant line

f(Xn_l) .
P L T P T oy

Xn—1 — Xp—2

X = Xp—1 —

Is then used as a new approximate x,.
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Secant Method

Given xp, x1, tolerance TOL, maximum number of iteration M.
Set i =2; yo = f(x0); y1 = f(x1);

x =x1 — y1(x1 —x0)/(y1 — y0).
While i < M and |x — x1| > TOL

Set i =i+1; xo =x1;%0 = y1; X1 = X; y1 = f(x);

x =x1— yi1(x1 — x0)/(y1 — y0)-

End While

Y A

= Y
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Method of False Position )

@ Choose initial approximations xg and x; with f(xg)f(x1) < 0.
Q@ x2 =x1 — f(x1)(x1 — x0)/(f(x1) — f(x0))

© Decide which secant line to use to compute x3:
If f(x2)f(x1) <0, then x; and x» bracket a root, i.e.,

x3 = xp — f(x2)(x2 — x1)/(f(x2) — f(x1))

Else, xo and x» bracket a root, i.e.,

x3 = xp — f(x2)(x2 — x0)/(f(x2) — f(x0))

End if
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Method of False Position

Given xp, x1, tolerance TOL, maximum number of iteration M.
Set i =2; yo = f(x0); y1 = f(x1); x = x1 — y1(x1 — x0)/(y1 — y0).
While i < M and |x — xz| > TOL

Seti=i+1; y="f(x).

If y-y1 <O, then set xg = x1; Y0 = y1.

Set x1 = x;y1 = y; x = x1 — y1(x1 — x0)/(y1 — Y0):
End While

Y A
y = f(x)

Wei-Cheng Wang (NTHU)
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Error analysis for iterative methods

Definition

Let {x,} — x™. If there are positive constants ¢ and « such that
P

. *k
[Xnt1 — X7 —c

lim
N—00 ‘Xn—X*‘O‘

then we say the rate of convergence is of order «.

We say that the rate of convergence is
O linearifa=1and 0 <c < 1.

@ superlinear if

© quadratic if o = 2.

y
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Suppose that {x,}72 4 and {X,} 2, are linearly and quadratically
convergent to x*, respectively, with the same constant ¢ = 0.5. For
simplicity, suppose that

X1 — X°| ~ c and o1 = x| ~ C.
xp — x*| X, — x*|?
These imply that
[Xn — X*| & C|Xp_1 — X*| & ®|Xp_p — x*| = -+ & "|xg — X7,
and
% — x|~ %1 — X & c[clfnn — x*7]% = S|fa — x|

Q

~ 4 ~
c> [C\Xn_g, — X*\2] = c'|Xy_3 — x*[°

Q

cre 2z — x|

Wei-Cheng Wang (NTHU)
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Remark

Quadratically convergent sequences generally converge much more quickly
than those that converge only linearly.

Theorem

Let g € C[a, b] with g([a, b]) C [a, b]. Suppose that g’ is continuous on
(a,b) and 3 k € (0,1) such that

g'(x)| < k, V x € (a,b).
If g'(x*) #£ 0, then for any xy € [a, b], the sequence

xp = g(xn—1), for n>1

converges only linearly to the unique fixed point x* in |a, b].

Wei-Cheng Wang (NTHU)
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Proof:

o By the Fixed-Point Theorem, the sequence {x,}°°, converges to x*

@ Since g’ exists on (a, b), by the Mean Value Theorem, 3 &, between
X, and x* such that

Xnt1 — X* = g(xn) — g(x7) = g'(§n) (0 — x7).

cAxntnzo = Xt = {&n o — X
@ Since g’ is continuous on (a, b), we have

lim g'(¢n) = &'(x7).
@ Thus,

lim X = X7

n—oo |x, — x*|

= lim |g'(¢n)] = [g"(x")!.

Hence, if g’(x*) # 0, fixed-point iteration exhibits linear
convergence. ]

Wei-Cheng Wang (NTHU)
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Theorem

Let x* be a fixed point of g and | be an open interval with x* € |.
Suppose that g’'(x*) = 0 and g” is continuous with

g’ (X)) <M, Vxel.
Then 3 0 > 0 such that
{xn = g(xn-1)}521 — x* for xp € [x" — 0, x" + 9]
at least quadratically. Moreover,
M 2

Xpt1 — X7| < ?‘Xn — x"|%, for sufficiently large n.

Wei-Cheng Wang (NTHU)
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Proof:

e Since g/(x*) =0 and g’ is continuous on /, 3 § such that
[x* — 6,x* 4+ 0] C I and

g'(x)| < k<1, Vxe[x*—§x*+14]
@ In the proof of the convergence for Newton's method, we have
{xn}ro C [X* — 0, x" + 4]
@ Consider the Taylor expansion of g(x,) at x*

g”(‘S) *) 2
> (Xn — x7)

g(x*) +&'(x")(xn — x*) +

Xn+1 = g(Xn)

x* g”2(£) (Xn . X*)2’

where £ lies between x, and x*.

Wei-Cheng Wang (NTHU)
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@ Since
g'(X)| < k<1, Vxe€[x*—¥§x"+0]
and
g([x" =, x"+4]) C[x" —d,x" + ],

it follows that {x,}2, converges to x*

o But &, is between x, and x* for each n, so {£,}°°, also converges to
x* and

i e x| g ) M
n—o0 ‘Xn—X ’2 2 2

o It implies that {x,}°°, is quadratically convergent to x* if
g"(x*) # 0 and
M *‘2

[ Xp+1 — X7 < —=|xn — X

Wei-Cheng Wang (NTHU)
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Example

Recall that Newton's method x,11 = x, — (( ’:7)) corresponds to

g(x)=x— % Suppose that f(x) has a m-fold root at x*, that is

F(x) = (x—x)"q(x),  q(x") £0.

f(x * X ..
Let p(x) = f,((X)) = (x — x )mq(X)+E’)E )X*)q( . It is easy to see that
1 (x*) = —. It follows that 0 < g'(x,) =1 — — < 1. Hence Newton's

method 5 IocaIIy convergent. Moreover, it converges quadratically for
simple roots (m = 1) and linearly for multiple roots (m > 1).

Remedy for slow convergence on multiple roots (m > 1):

o If mis known, take x,11 = x, — %

p(xn)

@ |f mis not known, take x,11 = x, — () since
n

(X) _ f(x) _ O(x—x*)m
H ' (x) O(x—x*)m—
x* for any m > 1. This is known as modified Newton's method.

Wei-Cheng Wang (NTHU)
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Global Convergence for Convex (Concave) Functions

Theorem

If f € C?, f” > 0 and f(x) = 0 has a root, then Newton's method always
converges to a root x* for any initial xg.

Proof:

It suffices to consider the case where f' > 0, f” > 0 and f(x) =0 has a
root. In this case, the root x™ is unique. Define e, = x, — x™. Since

Xpi1 = Xp — :,((Z)). It follows that

erit = &= . 2)

Moreover, since f(x*) = f(xa) + ' (xa)(x* — xn) + ) (x* — x,,)2, we

also have f(x,) = f'(xn)en — 12 Therefore

) _ F)
Om) 2P () 3)

Consequently x,+1 > x* and f(x,11) > 0 for all n.> 0.
Fall 2010 51 /74
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Moreover e,1+1 = €, — f,(X”) < ep, we conclude that
T f'(xn)

O<...<Xn_|_1<Xn<...<X]_

and x, converges monotonically to some X satisfying x = X — :,((X)) that is

f(x) = 0, thus X = x* by uniqueness of the root.
The proof for other cases

o /<0, f">0, f(x) =0 has a root.
e f” > 0, has two distinct roots.

e 7 > 0, has a double root. are similar. So is the concave case
(" < 0).
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Alternative Error Estimate for Newton's Method

Suppose f'(x*) # 0, then both f(x) and its linearization at (x,, yn), L(x),

are locally invertible (Inverse Function Theorem). The formula of the

tangent lines are given by
df (x,)
dx

L(x) = f(xn) +

(x — xp)

and

L_l(y) — f_l(yn) + dy (y — )/n) = Xp + f’(Xn) (y — )/n)

y X
Xn / / /
=f(x x*=f1(0)

y=LO=Fx )+ (x )(xx,)
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Since x* = f~1(0) and x,41 = L71(0), the error estimate for Newton's
method reduces to error estimate between f~1(y) and its linearization
approximation L=%(y) at y = 0. From standard analysis, the error is
proportional to (0 — y,):

2r—1
i = x| = 0H0) = 20)] = 5 |2 () — O
2,1 2,1
= 5 | ) (70~ 0))7 = (5 ()] (P60 ) G

The main advantage of this formulation:

Higher order approximations of f~1(0), such as quadratic approximation,

gives rise to higher order iteration schemes for solving the original equation
f(x) = 0.

Wei-Cheng Wang (NTHU)
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Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, " Numerical analysis”
Let x* denote the exact solution of f(x) =0, ex = xx — x* be the errors at
the k-th step. Then

€k+1 — Xk+1 — X"
= Xk — f(Xk) f(Xk/; — flz)_(:_l) — X
1 N o
= ) = Fluy) [(xk—1 — x*)F(xk) — (xk — x7)F (Xp—1)]
1

— f(xk) — f(Xk_l) (ek_lf(xk) — ekf(xk_l))

(e_lkf(xk) - ekl_l f(Xk—l) X — Xk—1 >
Ck€k—1

Xk — Xk—1 | f(Xk) — f(Xk_l)
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i f(Xk)— ekl—l f(Xk)

Xk —Xk—1

To estimate the numerator , we apply the Taylor's theorem

1
fa) = F(<" + &) = F(x7) + F/(x"ew + S "(x")e + O(ep),

to get
1 1
e—kf(Xk) — f,(X*) -+ Ef”(X*)ek + O(e/%)
Similarly,
k ]' >k
- f(xk_1) = F'(x*) + §f”(x )ex—1 + O(ef_y).
k—1
Hence
1 1 1 s
—f(xk) — —F(xk_1) =~ =(ex — ex_1)f" (x7).
€k €k—1 2

Since xx — Xx_1 = €x — €x_1 and

Xk — Xk—1 . 1
f(xk) — F(xk_1) f(x*)’

Wei-Cheng Wang (NTHU)
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we have

oo %(ek — €y 1)f”(x*) 1 1 f//(X*)e .
e ~ _ : _ B
K S €k — €x_1 f/(x*) 2 f/(x*) Kokt

— Cekek_l (4)

To estimate the convergence rate, we assume
lext1] ~ nlex|”,
where n > 0 and a > 0 are constants, I.e.,

| €kt1]

o] »1 as k — oo.
1| €k

Then |ex| =~ n|ex—_1|® which implies |ex_1| = 1~ *|ex|/. Hence (4) gives
nlex® ~ Clexln™oe]/® = C7lptta ~ gl oa.

Since |ex| — 0 as k — oo, and C~1 1+a is a nonzero constant,

1 1 5
l—-a+—=0 — a= +2\/_%1.62.
Q0

Wei-Cheng Wang (NTHU)
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This result implies that C~1n1*ta — 1 and

o f//(X*) 0.62
1= = (ng)

In summary, we have shown that
ek = nlel”, o~ 1.62,

that is, the rate of convergence is superlinear.
Rate of convergence:

@ secant method: superlinear

@ Newton's method: quadratic

@ bisection method: linear

Wei-Cheng Wang (NTHU) Solutions of Equations in One Variable Fall 2010 58 / 74



Each iteration of method requires
@ secant method: one function evaluation

e Newton's method: two function evaluation, namely, f(xx) and /(x).

= two steps of secant method are comparable to one step of
Newton's method. Thus

3+5
ko] ~ nleni1|® =~ ' e T2~ T ek|* 0%

= secant method is more efficient than Newton's method.

Remark

Two steps of secant method would require a little more work than one
step of Newton's method.

Wei-Cheng Wang (NTHU)

Fall 2010 59 / 74



