Gaussian Quadrature

Newton-Cotes formulas:
@ The choice of nodes xq, z1,...,x, was made a priori.
@ Use values of the function at equally spaced points.

@ Once the nodes were fixed, the coefficients were determined, e.g., by
integrating the fundamental Lagrange polynomials of degree n.

@ These formulas are exact for polynomials of degree < n.

This approach is convenient when the formulas are combined to form the

composite rules, but the restriction may decrease the accuracy of the
approximation.
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Gaussian quadrature

© Chooses the points for evaluation in an optimal, rather than pre-fixed
or equally-spaced, way.

@ The nodes xg, x1,...,x, € |a,b] and the coefficients g, c1, ..., c, are
chosen to minimize the expected error obtained in the approximation

n

b
[ f@)de =Y it @) (34)

1=0

© Produce the exact result for the largest class of polynomials, that is,
the choice which gives the greatest degree of precision.

The coefficients cg, c1, ..., c, are arbitrary, and the nodes g, x1,..., T,
are restricted only in [a,b]. These give 2n + 2 degrees of freedom. Thus
we can expect that the quadrature formula of (34) can be discovered that
will be exact for polynomials of degree < 2n + 1.
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Suppose we want to determine c1, ¢y, x1 and x so that

1
/_ f(@)dz = 1) + eaf (22 (35)

gives the exact result whenever f(x) is a polynomial of degree
2x2—1=3orless, i.e.,

Tr)=ag+ a1xr + a2x2 R a3az3.
f(z)

Since

/(ao + a12 + apx® + azx’)dzx

= aofldx—l—al/xdw—l—az/xzdac—l—a3/x3dx,

this is equivalent to show that (35) gives exact results when f(x) is
1,2, 2% and 23. Hence
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c1+cp = / ldx = 2,

1
c1x1 + crxy = / xdr = 0,

—1
! 2
clx%—kczx% = / r?dr = =
1 3
1
a1es + cors = / r3dr =
—1
It implies that
. . V3 V3
c1=1 =1 21=—"F, To = —
1 2 1 3 2 3
which gives
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Definition

© In a inner-product space, we say f is orthogonal to g, and write f L g

if {f,g)=0.
Q@ Wewrite f LG if f Lgforall geg.
© We say that a finite or infinite sequence of vectors f1, f2,... in an

inner-product space is orthogonal if (f;, f;) = 0 for all ¢ # j, and
orthonormal if <fz, f]> — 523

The space of continuous functions on [a, b] with inner-product defined as

b
(f,g) = / F(2)g(z) da, (36)

Is an inner-product space.
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Definition
{0, P1,...,0n}, where ¢; € Cla,b] for all t =0,1,...,n, is said to be an
orthogonal set of functions if
0 when 7 #£ j,
5 iz r)dr =
(6001) = [ oute)oste) {WO e
If, in addition, «; = 1 for all 7, then the set is said to be orthonormal. )
Theorem
The set of polynomials {pg, p1,...,pn} defined as follows is orthogonal:
pn(2) = (& — an)pn-1(2) = bppn—2(z) (0 =2)
with po(x) =1, p1(x) = ¢ — a1, and
o _ {@Pn-1,Pp1) b _ \ZPn-1,Pn2)
" (pn-1,Pn-1) " {pn—2,pn—2) )
Fall 2010 62 / 75




Proof. It is clear from the formulation that each p,, is a monic polynomial
of degree n and is therefore not zero. Hence, the denominators in a,, and
b,, are not zero. Now we prove the theorem by induction on n that
(pn,pi) =0fort=0,1,...,n— 1.

For n = 1, it can be shown directly from the definition that

(p1,p0) = ((z — a1)po, o)
= (@po, po) — a1{po,po)
(zpo, po)

= (xpo,Ppo) — (Do, 7o) (Po, po) = 0.

Now suppose that the assertion is true for an index n — 1, where n > 2.
That is
(Pn-1,pi) =0, i=0,1,....n—2 n>2.
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Now we can verify that

<pnapn—1> —

(DnyPr—2) =

Wei-Cheng Wang (NTHU)

<(:U T a’n)pn—l — bnpn—2apn—1>

<37pn—1apn—1> — an<pn—1apn—1> — bn<pn—
IPn—1, Pn—1

(TPp—1,Pn—1) — \ZPn1, Pr ><pn_1,pn_
<pn—lapn—1>

0,

<(3j — an)pn—l — bnpn—2apn—2>

<xpn—1apn—2> — Qp <pn—1apn—2> — by, <pn—
IPn—1, Pn—2

<xpn—17pn—2> — < - “ ><pn—2,pn—
(Pn—2,Pn—2)

0,
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2,pn—1>

1)

2, Pn—2)

2)
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and, fore=1,...,n— 3,

(Pn,pi) = (T — an)pn-1 — bupn—2,pi)
= (ZPn—1,P0i) — an(Pn—1,Pi) — bn{Pn—2,Pi)
= (ZPn—1,Ds)
= (Pn—1,TD;)

= (Pn—1,TDi — @i+1P; — bit1Pi—1 + @ix1Di + bit1Di—1)
= (Pn—1,Pi+1 + Gir1P; + bir1pi—1)

= (Pn—1,Pi+1) + Qit1(Pn—1,Di) + bit1{Pn-1,Di-1)
= 0.

Finally, when 7 = 0,

<pn7p0> — <(CC — an)pn—l — bnpn—2ap0>
— <:Cpn—17p0> — <pn—1737p0> — <pn_1,p1 —+ a1p0> = 0.

Hence the theorem is proved. [
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Corollary

For any n > 0, the set of polynomials {pg,p1,...,pn} given in the
previous theorem is linearly independent and

b
(¢, Pn) = / q(z)pn(z) dx = 0

for any polynomial q(x) with deg(q(x)) < n.

Proof. Suppose ag, a1, ..., o, are real numbers such that

P(z) = agpo(z) + a1pi(x) + - - - 4+ appp(x) = 0.

This means that the coefficients of the terms 1, z, 22, ... x" are all zero.

Since deg(p;) = j and a,py, is the only term in P(x) which contains the
x™ term, this implies i, = 0. Hence P(x) can be reduced to
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Similarly, we have o;,_1 = 0,,,_2 =0,...,a9 = 0. Therefore,

{po,p1,...,pn} is linearly independent.
Suppose deg(q) = k < n. Write

k
q(z) = aopo(x) + arp1(x) + -+ + awpr(x) = Y a;p;(x),
j=0
for some real numbers ag,ai,...,ai. Then
b
b k
- / " apy(@) | pale)w(e) do
7=0
k b
= pj(2)pn(z)w(z) d
j=0"14

[ ]
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Let I1,, denote the set of polynomials of degree at most n, that is,

M, = {p(z) |p(x) is a polynomial and deg(p) < n}.
Definition

Let f(xz) be any nonzero continuous function. We say f is orthogonal to
[1,,, and denote f L I1,, if

b
(f.p) = / F(x)p(e) da =0,

for any p(x) € I,.
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Theorem
Let q(x) be any nonzero polynomial of degree n + 1, and q(x) L I,. If

xo, X1, ..., Ty are the roots of q(x) in [a,b], and
L
cz-:/ H L dz,
a Ly — Ly
J#i
then

b n
/ p(x) dx = Z cip(x;), forany p € Moyiq.
¢ =0

That is, the quadrature rule is exact for any polynomial of degree < 2n + 1.

v
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Proof: For any polynomial p € 5,11, we can write
p(z) = q(z)t(z) + (),
where t(x),r(x) € M. Since xg,x1,...,x, are roots of ¢(x), we have
p(xi) = q(x)t(x;) + r(x;) = r(x;), i=0,1,...,n.

By assumption, ¢ L I1,,, we have

b
(q,t) = / q(x)t(x)dxr = 0.

Since r(z) € ,, it can be expressed exactly in the Lagrange form

1=0 j=0
J#
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/a bp(x)daz = / bq(w)t(w)dx+ Lbr(m) o
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If the interval [a, b] is [—1,1], then we can obtain a set of orthogonal
polynomials called the Lengendre polynomials. The first few Lengendre
polynomials are

po(x) = 1
pi(z) = =
1
p(x) = 2% -3
3
pa(z) = a°— 7
6 3
pa(z) = a* - ;352 + 3¢
10 5
ps(z) = x> — 3:1:3 + 1%
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@ For a given integer n, the Lengendre polynomial p, 1 is a monic
polynomial of degree n + 1 and is orthogonal to the set of first n

Lengendre polynomials {pg, p1,---,pn}.

@ By theorem, {po,p1,...,pn} is linearly independent, and, hence, is a
basis for the vector space [1,,. This implies that p,.1 L I,.

Theorem
Suppose that xg,x1,...,x, are the roots of the (n + 1)-st Lengendre
polynomial p,.1, and that for each: =0,1,...,n,
L o —
C; = / H L dz.
1 i r; — 517]
JF#1

If f(x) is any polynomial of degree < 2n + 1, then

/_ 11 f(z) dz = anci F(z2)

1=0

v
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Gaussian Quadrature Rule
For a given function f(x) € C[—1,1] and integer n,

| f@dox 3t (37)
o 1=0

where xq,x1,...,x, are the roots of the (n + 1)-st Lengendre polynomial
Pn+1, and
1l S r—o
C; = H L dx 1 =0,1,....n
—1 6 r; — ij
J7#1
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L &)

0| 2zg=0 co = 2

xo = —0.5773502692 | cg =c1 =1
x1 = 0.5773502692
2 | xg = —0.7745966692 | ¢ =
21 =0 cL =
ro = 0.7745966692 Co =
3 | g = —0.8611363116 | cp = 0.3478548451

x1 = —0.3399810436 | c; = 0.6521451549

xo> = 0.3399810436 cp, = 0.6521451549

x3 = 0.8611363116 c3 = 0.3478548451

4 | g = —0.9061798459 | ¢y = 0.236926885H1

x1 = —0.5384693101 | ¢; = 0.4786286705

xo =0 Cp = % = 0.568888889
x3 = 0.5384693101 c3 = 0.4786286705

x4 = 0.9061798459 ca = 0.2369268851
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