Gaussian Quadrature

Newton-Cotes formulas:

- The choice of nodes x_0, x_1, \ldots, x_n was made a priori.
- Use values of the function at equally spaced points.
- Once the nodes were fixed, the coefficients were determined, e.g., by integrating the fundamental Lagrange polynomials of degree n.
- These formulas are exact for polynomials of degree $\leq n$.

This approach is convenient when the formulas are combined to form the composite rules, but the restriction may decrease the accuracy of the approximation.

Gaussian quadrature

- Chooses the points for evaluation in an optimal, rather than pre-fixed or equally-spaced, way.
- 2 The nodes $x_0, x_1, \ldots, x_n \in [a, b]$ and the coefficients c_0, c_1, \ldots, c_n are chosen to minimize the expected error obtained in the approximation

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i})$$
(34)

3 Produce the exact result for the largest class of polynomials, that is, the choice which gives the greatest degree of precision.

The coefficients c_0, c_1, \ldots, c_n are arbitrary, and the nodes x_0, x_1, \ldots, x_n are restricted only in [a, b]. These give 2n + 2 degrees of freedom. Thus we can expect that the quadrature formula of (34) can be discovered that will be exact for polynomials of degree $\leq 2n + 1$.

Suppose we want to determine c_1, c_2, x_1 and x_2 so that

$$\int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2) \tag{35}$$

gives the exact result whenever f(x) is a polynomial of degree $2 \times 2 - 1 = 3$ or less, i.e.,

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

Since

$$\int (a_0 + a_1 x + a_2 x^2 + a_3 x^3) dx$$

$$= a_0 \int 1 dx + a_1 \int x dx + a_2 \int x^2 dx + a_3 \int x^3 dx,$$

this is equivalent to show that (35) gives exact results when f(x) is $1, x, x^2$ and x^3 . Hence

$$c_{1} + c_{2} = \int_{-1}^{1} 1 dx = 2,$$

$$c_{1}x_{1} + c_{2}x_{2} = \int_{-1}^{1} x dx = 0,$$

$$c_{1}x_{1}^{2} + c_{2}x_{2}^{2} = \int_{-1}^{1} x^{2} dx = \frac{2}{3},$$

$$c_{1}x_{1}^{3} + c_{2}x_{2}^{3} = \int_{-1}^{1} x^{3} dx = 0.$$

It implies that

$$c_1 = 1, \ c_2 = 1, \ x_1 = -\frac{\sqrt{3}}{3}, \ x_2 = \frac{\sqrt{3}}{3}$$

which gives

$$\int_{-1}^{1} f(x)dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$$

Definition

- In a inner-product space, we say f is orthogonal to g, and write $f \perp g$ if $\langle f,g \rangle = 0$.
- ② We write $f \perp G$ if $f \perp g$ for all $g \in G$.
- We say that a finite or infinite sequence of vectors f_1, f_2, \ldots in an inner-product space is orthogonal if $\langle f_i, f_j \rangle = 0$ for all $i \neq j$, and orthonormal if $\langle f_i, f_j \rangle = \delta_{ij}$.

The space of continuous functions on [a,b] with inner-product defined as

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx,$$
 (36)

is an inner-product space.

Definition

 $\{\phi_0, \phi_1, \dots, \phi_n\}$, where $\phi_i \in C[a, b]$ for all $i = 0, 1, \dots, n$, is said to be an orthogonal set of functions if

$$\langle \phi_i, \phi_j \rangle = \int_a^b \phi_i(x)\phi_j(x) dx = \begin{cases} 0, & \text{when } i \neq j, \\ \alpha_i > 0, & \text{when } i = j. \end{cases}$$

If, in addition, $\alpha_i = 1$ for all i, then the set is said to be orthonormal.

Theorem

The set of polynomials $\{p_0, p_1, \dots, p_n\}$ defined as follows is orthogonal:

$$p_n(x) = (x - a_n)p_{n-1}(x) - b_n p_{n-2}(x) \qquad (n \ge 2)$$

with $p_0(x) = 1$, $p_1(x) = x - a_1$, and

$$a_n = \frac{\langle xp_{n-1}, p_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle}, \qquad b_n = \frac{\langle xp_{n-1}, p_{n-2} \rangle}{\langle p_{n-2}, p_{n-2} \rangle}.$$

Proof: It is clear from the formulation that each p_n is a monic polynomial of degree n and is therefore not zero. Hence, the denominators in a_n and b_n are not zero. Now we prove the theorem by induction on n that $\langle p_n, p_i \rangle = 0$ for $i = 0, 1, \ldots, n-1$.

For n=1, it can be shown directly from the definition that

$$\langle p_1, p_0 \rangle = \langle (x - a_1) p_0, p_0 \rangle$$

$$= \langle x p_0, p_0 \rangle - a_1 \langle p_0, p_0 \rangle$$

$$= \langle x p_0, p_0 \rangle - \frac{\langle x p_0, p_0 \rangle}{\langle p_0, p_0 \rangle} \langle p_0, p_0 \rangle = 0.$$

Now suppose that the assertion is true for an index n-1, where $n\geq 2$. That is

$$\langle p_{n-1}, p_i \rangle = 0, \qquad i = 0, 1, \dots, n-2, \quad n \ge 2.$$

Now we can verify that

$$\langle p_n, p_{n-1} \rangle = \langle (x - a_n) p_{n-1} - b_n p_{n-2}, p_{n-1} \rangle$$

$$= \langle x p_{n-1}, p_{n-1} \rangle - a_n \langle p_{n-1}, p_{n-1} \rangle - b_n \langle p_{n-2}, p_{n-1} \rangle$$

$$= \langle x p_{n-1}, p_{n-1} \rangle - \frac{\langle x p_{n-1}, p_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle} \langle p_{n-1}, p_{n-1} \rangle$$

$$= 0,$$

$$\langle p_n, p_{n-2} \rangle = \langle (x - a_n) p_{n-1} - b_n p_{n-2}, p_{n-2} \rangle$$

$$= \langle x p_{n-1}, p_{n-2} \rangle - a_n \langle p_{n-1}, p_{n-2} \rangle - b_n \langle p_{n-2}, p_{n-2} \rangle$$

$$= \langle x p_{n-1}, p_{n-2} \rangle - \frac{\langle x p_{n-1}, p_{n-2} \rangle}{\langle p_{n-2}, p_{n-2} \rangle} \langle p_{n-2}, p_{n-2} \rangle$$

$$= 0,$$

and, for $i = 1, \ldots, n-3$,

$$\langle p_{n}, p_{i} \rangle = \langle (x - a_{n})p_{n-1} - b_{n}p_{n-2}, p_{i} \rangle$$

$$= \langle xp_{n-1}, p_{i} \rangle - a_{n} \langle p_{n-1}, p_{i} \rangle - b_{n} \langle p_{n-2}, p_{i} \rangle$$

$$= \langle xp_{n-1}, p_{i} \rangle$$

$$= \langle p_{n-1}, xp_{i} \rangle$$

$$= \langle p_{n-1}, xp_{i} - a_{i+1}p_{i} - b_{i+1}p_{i-1} + a_{i+1}p_{i} + b_{i+1}p_{i-1} \rangle$$

$$= \langle p_{n-1}, p_{i+1} + a_{i+1}p_{i} + b_{i+1}p_{i-1} \rangle$$

$$= \langle p_{n-1}, p_{i+1} \rangle + a_{i+1} \langle p_{n-1}, p_{i} \rangle + b_{i+1} \langle p_{n-1}, p_{i-1} \rangle$$

$$= 0.$$

Finally, when i = 0,

$$\langle p_n, p_0 \rangle = \langle (x - a_n) p_{n-1} - b_n p_{n-2}, p_0 \rangle$$

= $\langle x p_{n-1}, p_0 \rangle = \langle p_{n-1}, x p_0 \rangle = \langle p_{n-1}, p_1 + a_1 p_0 \rangle = 0.$

Hence the theorem is proved.

Corollary

For any n > 0, the set of polynomials $\{p_0, p_1, \ldots, p_n\}$ given in the previous theorem is linearly independent and

$$\langle q, p_n \rangle = \int_a^b q(x) p_n(x) dx = 0$$

for any polynomial q(x) with deg(q(x)) < n.

Proof: Suppose $\alpha_0, \alpha_1, \ldots, \alpha_n$ are real numbers such that

$$P(x) = \alpha_0 p_0(x) + \alpha_1 p_1(x) + \dots + \alpha_n p_n(x) = 0.$$

This means that the coefficients of the terms $1, x, x^2, \dots x^n$ are all zero. Since $deg(p_j) = j$ and $\alpha_n p_n$ is the only term in P(x) which contains the x^n term, this implies $\alpha_n = 0$. Hence P(x) can be reduced to

$$P(x) = \sum_{j=0}^{n-1} \alpha_j p_j(x) = 0.$$

Similarly, we have $\alpha_{n-1} = 0, \alpha_{n-2} = 0, \dots, \alpha_0 = 0$. Therefore, $\{p_0, p_1, \dots, p_n\}$ is linearly independent. Suppose $\deg(q) = k < n$. Write

$$q(x) = a_0 p_0(x) + a_1 p_1(x) + \dots + a_k p_k(x) = \sum_{j=0}^k a_j p_j(x),$$

for some real numbers a_0, a_1, \ldots, a_k . Then

$$\langle q, p_n \rangle = \int_a^b q(x) p_n(x) w(x) dx$$

$$= \int_a^b \left(\sum_{j=0}^k a_j p_j(x) \right) p_n(x) w(x) dx$$

$$= \sum_{j=0}^k \int_a^b p_j(x) p_n(x) w(x) dx = 0.$$

Let Π_n denote the set of polynomials of degree at most n, that is,

$$\Pi_n = \{p(x) \mid p(x) \text{ is a polynomial and } \deg(p) \leq n\}.$$

Definition

Let f(x) be any nonzero continuous function. We say f is orthogonal to Π_n , and denote $f \perp \Pi_n$, if

$$\langle f, p \rangle = \int_a^b f(x)p(x) dx = 0,$$

for any $p(x) \in \Pi_n$.

Theorem

Let q(x) be any nonzero polynomial of degree n+1, and $q(x) \perp \Pi_n$. If x_0, x_1, \ldots, x_n are the roots of q(x) in [a, b], and

$$c_i = \int_a^b \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j} dx,$$

then

$$\int_{a}^{b} p(x) dx = \sum_{i=0}^{n} c_{i} p(x_{i}), \text{ for any } p \in \Pi_{2n+1}.$$

That is, the quadrature rule is exact for any polynomial of degree $\leq 2n+1$.

Proof: For any polynomial $p \in \Pi_{2n+1}$, we can write

$$p(x) = q(x)t(x) + r(x),$$

where $t(x), r(x) \in \Pi_n$. Since x_0, x_1, \ldots, x_n are roots of q(x), we have

$$p(x_i) = q(x_i)t(x_i) + r(x_i) = r(x_i), \qquad i = 0, 1, \dots, n.$$

By assumption, $q \perp \Pi_n$, we have

$$\langle q, t \rangle = \int_a^b q(x)t(x) dx = 0.$$

Since $r(x) \in \Pi_n$, it can be expressed exactly in the Lagrange form

$$r(x) = \sum_{i=0}^{n} r(x_i) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}.$$

Hence

$$\int_{a}^{b} p(x) dx = \int_{a}^{b} q(x)t(x) dx + \int_{a}^{b} r(x) dx$$

$$= \int_{a}^{b} r(x) dx = \int_{a}^{b} \sum_{i=0}^{n} r(x_{i}) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \sum_{i=0}^{n} r(x_{i}) \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \sum_{i=0}^{n} p(x_{i}) \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \sum_{i=0}^{n} c_{i} p(x_{i}).$$

If the interval [a,b] is [-1,1], then we can obtain a set of orthogonal polynomials called the Lengendre polynomials. The first few Lengendre polynomials are

$$p_{0}(x) = 1$$

$$p_{1}(x) = x$$

$$p_{2}(x) = x^{2} - \frac{1}{3}$$

$$p_{3}(x) = x^{3} - \frac{3}{5}x$$

$$p_{4}(x) = x^{4} - \frac{6}{7}x^{2} + \frac{3}{35}$$

$$p_{5}(x) = x^{5} - \frac{10}{9}x^{3} + \frac{5}{21}x$$

- For a given integer n, the Lengendre polynomial p_{n+1} is a monic polynomial of degree n+1 and is orthogonal to the set of first n Lengendre polynomials $\{p_0, p_1, \ldots, p_n\}$.
- By theorem, $\{p_0, p_1, \dots, p_n\}$ is linearly independent, and, hence, is a basis for the vector space Π_n . This implies that $p_{n+1} \perp \Pi_n$.

Theorem

Suppose that x_0, x_1, \ldots, x_n are the roots of the (n + 1)-st Lengendre polynomial p_{n+1} , and that for each $i = 0, 1, \ldots, n$,

$$c_i = \int_{-1}^{1} \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_j}{x_i - x_j} \, dx.$$

If f(x) is any polynomial of degree $\leq 2n+1$, then

$$\int_{-1}^{1} f(x) dx = \sum_{i=0}^{n} c_i f(x_i).$$

Gaussian Quadrature Rule

For a given function $f(x) \in C[-1,1]$ and integer n,

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} c_i f(x_i), \tag{37}$$

where x_0, x_1, \ldots, x_n are the roots of the (n+1)-st Lengendre polynomial p_{n+1} , and

$$c_i = \int_{-1}^{1} \prod_{\substack{j=0 \ i \neq i}}^{n} \frac{x - x_j}{x_i - x_j} dx.$$
 $i = 0, 1, \dots, n.$

n	x_i	c_i
0	$x_0 = 0$	$c_0 = 2$
1	$x_0 = -0.5773502692$	$c_0 = c_1 = 1$
	$x_1 = 0.5773502692$	
2	$x_0 = -0.7745966692$	$c_0 = \frac{5}{9}$
	$x_1 = 0$	$c_1 = \frac{8}{9}$
	$x_2 = 0.7745966692$	$c_2 = \frac{5}{9}$
3	$x_0 = -0.8611363116$	$c_0 = 0.3478548451$
	$x_1 = -0.3399810436$	$c_1 = 0.6521451549$
	$x_2 = 0.3399810436$	$c_2 = 0.6521451549$
	$x_3 = 0.8611363116$	$c_3 = 0.3478548451$
4	$x_0 = -0.9061798459$	$c_0 = 0.2369268851$
	$x_1 = -0.5384693101$	$c_1 = 0.4786286705$
	$x_2 = 0$	$c_2 = \frac{128}{225} = 0.568888889$
	$x_3 = 0.5384693101$	$c_3 = 0.4786286705$
	$x_4 = 0.9061798459$	$c_4 = 0.2369268851$

