
Composite Numerical Integration

The Newton-Cotes formulas are generally not suitable for numerical
integration over large interval. Higher degree formulas would be
required, and the coefficients in these formulas are difficult to obtain.

Also the Newton-Cotes formulas which are based on polynomial
interpolation would be inaccurate over a large interval because of the
oscillatory nature of high-degree polynomials.
Now we discuss a piecewise approach, called composite rule, to
numerical integration over large interval that uses the low-order
Newton-Cotes formulas.

� A composite rule is one obtained by applying an integration formula for
a single interval to each subinterval of a partitioned interval.
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To illustrate the procedure, we choose an even integer n and partition the
interval [a, b] into n subintervals by nodes a = x0 < x1 < · · · < xn = b,
and apply Simpson’s rule on each consecutive pair of subintervals. With

h =
b − a

n
and xj = a + jh, j = 0, 1, . . . , n,

we have on each interval [x2j−2, x2j ],

∫ x2j

x2j−2

f(x) dx =
h

3
[f(x2j−2) + 4f(x2j−1) + f(x2j)] − h5

90
f (4)(ξj),

for some ξj ∈ (x2j−2, x2j), provided that f ∈ C4[a, b].
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The composite rule is obtained by summing up over the entire interval,
that is,

∫ b

a
f(x) dx =

n/2∑
j=1

∫ x2j

x2j−2

f(x) dx

=

n/2∑
j=1

[
h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j)) − h5

90
f (4)(ξj)

]

=
h

3
[f(x0) + 4f(x1) + f(x2)

+f(x2) + 4f(x3) + f(x4)

+f(x4) + 4f(x5) + f(x6)
...

+f(xn−2) + 4f(xn−1) + f(xn)] − h5

90

n/2∑
j=1

f (4)(ξj)
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Hence∫ b

a
f(x) dx =

h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5)

+ · · · + 2f(xn−2) + 4f(xn−1) + f(xn)] − h5

90

n/2∑
j=1

f (4)(ξj)

=
h

3

⎡
⎣f(x0) + 4

n/2∑
j=1

f(x2j−1) + 2

(n/2)−1∑
j=1

f(x2j) + f(xn)

⎤
⎦

−h5

90

n/2∑
j=1

f (4)(ξj).

To estimate the error associated with approximation, since f ∈ C4[a, b],
we have, by the Extreme Value Theorem,

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

for each ξj ∈ (x2j−2, x2j).
Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 44 / 66



Hence

n

2
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤ n

2
max

x∈[a,b]
f (4)(x),

and

min
x∈[a,b]

f (4)(x) ≤ 2

n

n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x).

By the Intermediate Value Theorem, there exists µ ∈ (a, b) such that

f (4)(µ) =
2

n

n/2∑
j=1

f (4)(ξj).

Thus, by replacing n = (b − a)/h,

n/2∑
j=1

f (4)(ξj) =
n

2
f (4)(µ) =

b − a

2h
f (4)(µ).

Consequently, the composite Simpson’s rule is derived.
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Composite Simpson’s Rule

∫ b

a
f(x) dx =

h

3

⎡
⎣f(a) + 4

n/2∑
j=1

f(x2j−1) + 2

(n/2)−1∑
j=1

f(x2j) + f(b)

⎤
⎦

−b − a

180
f (4)(µ)h4,

where n is an even integer, h = (b − a)/n, xj = a + jh, for
j = 0, 1, . . . , n, and some µ ∈ (a, b).
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The composite Midpoint rule can be derived in a similar way, except the
midpoint rule is applied on each subinterval [x2j−1, x2j+1] instead. That is,

∫ x2j+1

x2j−1

f(x) dx = 2hf(x2j) +
h3

3
f ′′(ξj), j = 1, 2, . . . ,

n

2
.

Note that n must again be even. Consequently,

∫ b

a
f(x) dx = 2h

n/2∑
j=1

f(x2j) +
h3

3

n/2∑
j=1

f ′′(ξj).

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 47 / 66



The error term can be written as

n/2∑
j=1

f ′′(ξj) =
n

2
f ′′(µ) =

b − a

2h
f ′′(µ),

for some µ ∈ (a, b).

Composite Midpoint Rule

∫ b

a
f(x) dx = 2h

n/2∑
j=1

f(x2j) +
b − a

6
f ′′(µ)h2, (29)

where n is an even integer, h = (b − a)/n, xj = a + jh, for
j = 0, 1, . . . , n, and some µ ∈ (a, b).

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 48 / 66



To derive the composite Trapezoidal rule, we partition [a, b] by n equally
spaced nodes a = x0 < x1 < · · · < xn = b, where n can be either odd or
even. Apply the trapezoidal rule on [xj−1, xj ] and sum them up to obtain∫ b

a
f(x) dx =

n∑
j=1

∫ xj

xj−1

f(x) dx

=
n∑

j=1

{
h

2
[f(xj−1) + f(xj)] − h3

12
f ′′(ξj)

}

=
h

2
{[f(x0) + f(x1)] + [f(x1) + f(x2)] + · · ·

+ [f(xn−1) + f(xn)]} − h3

12

n∑
j=1

f ′′(ξj)
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Hence,

∫ b

a
f(x) dx =

h

2
[f(x0) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(xn)]

−h3

12

n∑
j=1

f ′′(ξj)

=
h

2

⎡
⎣f(a) + 2

n−1∑
j=1

f(xj) + f(b)

⎤
⎦ − h3

12

n∑
j=1

f ′′(ξj)

=
h

2

⎡
⎣f(a) + 2

n−1∑
j=1

f(xj) + f(b)

⎤
⎦ − b − a

12
f ′′(µ)h2,

where each ξj ∈ (xj−1, xj) and µ ∈ (a, b).
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Composite Trapezoidal Rule

∫ b

a
f(x) dx =

h

2

⎡
⎣f(a) + 2

n−1∑
j=1

f(xj) + f(b)

⎤
⎦ − b − a

12
f ′′(µ)h2, (30)

where n is an integer, h = (b− a)/n, xj = a + jh, for j = 0, 1, . . . , n, and
some µ ∈ (a, b).
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