Numerical Analysis I, Fall 2010 (http://www.math.nthu.edu.tw/~wangwc/)

Homework Assignment for Week 16

Assigned Dec 31, 2010.

- 1. Section 6.2: Problems 1(a), 3(a), 5(a), 31.
- 2. (corrected) Continue from last week's homework problem, show that if p < -1, and c_i is an arbitrary point in the interval $[x_{i-1}, x_i]$, then $h \sum_{i=2}^n c_i^p \int_h^1 x^p dx = O(h^{p+1})$ (which implies that $h \sum_{i=2}^n c_i^p = O(h^{p+1})$, p < -1 and $h \sum_{i=1}^n x_{i-\frac{1}{2}}^q \int_0^1 x^q dx = O(h^{q+1})$, -1 < q < 1).

Hint: use monotonicity of the function x^p .

Remark: for general $r\in R,$ $h\sum_{i=2}^n x_{i-\frac{1}{2}}^r - \int_h^1 x^r dx = O(h^{\min\{r+1,2\}})$

3. Continue on previous problem, can you predict the order of convergence of Simpson's rule applied to $\int_0^1 x^p dx$, -1 ? Verify your answer numerically.