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Outline

@ Interpolation and the Lagrange Polynomial

© Divided Differences

© Hermite Interpolation

@ Cubic Spline Interpolation
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Introduction
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Question

From these data, how do we get a reasonable estimate of the population,
say, in 1965, or even in 20107
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Interpolation

Suppose we do not know the function f, but a few information (data)
about f, now we try to compute a function g that approximates f.

Theorem (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a,b]. For any € > 0, there
exists a polynomial P(x), such that

|f(z) — P(z)| < e, for all x in [a, b].

Reason for using polynomial
@ They uniformly approximate continuous functions (Weierstrass
Theorem)

@ The derivatives and indefinite integral of a polynomial are easy to
determine and are also polynomials.
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Interpolation and the Lagrange polynomial

YA
=) Property
yo=rfl) T The linear function
passing through
Yo =f00) ¥ =P (2o, f(0)) and
(1, f(x1)) is unique.
5 I
Let
T — T xr — o
L - L =
o(®) To— 21’ 1{e) T1 — T
and
P(z) = Lo(z)f(z0) + L1(z) f(x1)-
Then

P(x0) = f(x0), P(x1) = f(x1).
S TTTRYIE



iy
Question
How to find the polynomial

of degree n that passes
through

(xOv f(:l?o)), soog (an, f(fL'n))?

Theorem

If (zi,v:), xi,yi € R, i =0,1,...,n, are n + 1 distinct pairs of data
point, then there is a unique polynomial P,, of degree at most n such that

Po(i) = yi, (0<i<n) (1)
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Proof of Existence (by mathematical induction)

@ The theorem clearly holds for n = 0 (only one data point (29, o))
since one may choose the constant polynomial Py(x) = yo for all x.

@ Assume that the theorem holds for n < k, that is, there is a
polynomial Py, deg(Py) < k, such that y; = Py(z;), for 0 <i < k.

© Next we try to construct a polynomial of degree at most k£ + 1 to
interpolate (z;,y;), 0 <i<k+1. Let

Piyi1(x) = Pe(x) + c(z — zo)(z — x1) - - - (& — xg),

where
Yk+1 — Pr(Tr41)

(zx+1 — To)(@rs1 — 1) -+ (Tr41 — Z&)
Since x; are distinct, the polynomial Py1(x) is well-defined and
deg(Pr+1) < k+ 1. It is easy to verify that

CcC =

Pk_,_l(x,-):yi, 0§Z§k+1
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Proof of Uniqueness

Suppose there are two such polynomials P,, and @,, satisfying (1). Define
Sn(z) = Pu(z) — Qn(z).
Since both deg(P,) < n and deg(Q,,) < n, deg(S,,) < n. Moreover
Sn(zi) = Po(zi) — Qn(:) = yi —y: =0,

for 0 < i < n. This means that S,, has at least n + 1 zeros, it therefore
must be S, = 0. Hence P, = Q.. ]
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ldea
Construct polynomial P(x) with deg(P) < n as

P(x) = f(xO)Ln,O(x) +o+ f(xn)Ln,n(x)a

where
Q L, () are polynomial with degree n for 0 < k < n.

Q L, i(zr) =1and Ly, (z;) =0 for i # k.
Then

P(zi) = f(zg) for k=0,1,...,n.

Q deg(Ly, ) =n and Ly, (z;) = 0 for i # k:
L e(z) = ci(z — zo)(z — 21) -+ (¥ — p—1)(x — Tppg1) -+ - (. — )
Q Ly k(zy) =1

Loi(z) = (x —zo)(xz—21) (2 —xp_1)(x — Tpa1) -+ (2 — )
n, ($k — IO)(ﬁk = :El) R (J;k — $k_1)(:(,‘k — mk—l—l) A (fb“k DY ajn)
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Theorem

If zo,21,...,Z, aren + 1 distinct numbers and f is a function whose
values are given at these numbers, then a unique polynomial of degree at
most n exists with

f(zx) = P(zx), fork=0,1,...,n.

This polynomial is given by

P(z) = ) f(ar)Lnk(z)

k=0

which is called the nth Lagrange interpolating polynomial.

Note that we will write L,, («) simply as Li(z) when there is no
confusion as to its degree.
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Example
Given the following 4 data points,

|0 1 3 5
yi|l 2 6 7

find a polynomial in Lagrange form to interpolate these data.

Solution: The interpolating polynomial in the Lagrange form is

P3(z) = Lo(x) + 2L1(x) + 6Lo(z) + 7L3(x) with

Ine) = i — 1z~ -3 -5)
L) = gy~ 5t e

) = Gopme-g - 1 e
) = g3 = " e
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Question

What's the error involved in approximating f(z) by the interpolating
polynomial P(x)?

Theorem

Suppose
Q =xo,...,x, are distinct numbers in [a,b],
Q fcC"a,b].

Then, Vz € [a,b], 3 £(z) € (a,b) such that

T (E(=))

f(@) = Pla) + S

(x —zo)(xz — 1) - (z — xp). (2)

v

Proof: If z = xy, for any £k =0,1,...,n, then f(zy) = P(xx) and (2) is
satisfied.
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If x # xp, for all k =0,1,...,n, define
o(t) = () = P(2) - 1f(@) ~ PN ]| o=
i=0 g

Since f € C"*1[a,b] and P € C*[a, b], it follows that g € C"*[a, b].
Since

o(ax) = [f(x) = Plew)] = /(@) = P@I]] =" =0,

i=0
and
- r —x;
g(x) = [f(z) - P(x)] - [f(z) - P()]]] ——i=q,
it implies that g is zero at x, xg, x1,...,%,. By the Generalized Rolle's

Theorem, 3 ¢ € (a,b) such that g""1(&) = 0. That is
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0 = 4" (3)
n—+1 w —
FOD () — PA(e) _ [ f() — ;in:l [H (t z)]

O(ac—acZ

Since deg(P) < n, it implies that P("*1)(¢) = 0. On the other hand,
[T ol(t — xi)/(x — ;)] is a polynomial of degree (n + 1), so

(= 1 _
H ((a: _a;)) = [Hn (&= x)] "1 4 (lower-degree terms in t),
i=0 ! i= (

and

Yy )| (n+ 1)
i+l Ll_% (z — ;) ] [T o — )
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Equation (3) becomes

0 = 7 0(E) = [£(o) ~ Pl pr 2y
(n+1)(g)
)= Pe) + TS [T - 2,
=0
Example

@ Goal: Prepare a table for the function f(z) = e® for z € [0, 1].

Q@ zj41—xzj=hforj=0,1,...,n—1.

© What should A be for linear interpolation to give an absolute error of

at most 10767
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Suppose = € [z, xj41]. Equation (2) implies that

(2)
£(z) - Pl@)] = ‘f "Die - 2)( - 211)
= TRl et
o

= Sle=jhllz = (G+1h|

3 , '
max max —ibllz = (G + 1k
<§€[O’1]e ) <mj<x<mj+1 [z = ghllz = (5 ) |>

( max |z — jhllz — (j + 1)h|) .

2 <z<Tj1

N ® l\)ll—‘,\)|
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Let

g(x) = (x — jh)(z — (§j + 1)h), for jh <z < (j+1)h.

e e Ll =
X = - =—.
2 <e<Tji1 9T g J 2 4

Consequently,

Then

h2
#(2) - Pla)] < - <1075,
which implies that
h<172x1073,

Since n = (1 — 0)/h must be an integer, one logical choice for the step
size is h = 0.001. £
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Difficulty for the Lagrange interpolation
© If more data points are added to the interpolation problem, all the
cardinal functions Lj; have to be recalculated.

@ We shall now derive the interpolating polynomials in a manner that
uses the previous calculations to greater advantage.

Definition
@ f is a function defined at xg, 21, ..., %y
@ Suppose that mq, mo, ..., my are k distinct integers with 0 < m; <n
for each 1.

The Lagrange polynomial that interpolates f at the k points
Tmy, Tmys - - - 3 Ty, 1S denoted Py o m, (T).
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Theorem

Let f be defined at distinct points xg,z1,...,xE, and 0 <14, <k, i # j.
Then

(z — ;)
P(z) = m 0,1,.j—1,j41,....6(Z) —

P, L
(fEi —:cj) 0,1,...,i—1,i4+1,....k

describes the k-th Lagrange polynomial that interpolates f at the k + 1
points xqg, T1,...,Tk.

Proof: Since

deg(Po1,...j—1j+1,..k) < k—1
and

deg(Po1,..i—1i+1,..k) < k—1,

it implies that deg(P) < k. If 0 <r < k and r # i, j, then
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(zr — z5) (zr — zi)
P = P 1 ——— =P 3515
(xr) (QS‘Z — Ij) 0,1,....5 l,]—l—l,...,k(mr) (1'7, — 55]') 0,1,...,¢ 1,z+1,...,k(xr)
(zr — z5) (zr — z:)
= T — X = X
ey ) = e f ) = far)
J J
Moreover
(i — ;) (zi — ;)
P(x;) = —<P 1 ) — ——= P, P14 ;
(z4) (s — ;) L OoLeed 1,541, k(24) (s — ;) 0oL 1,i+1,... k(24)
= f(x)
and
(zj — ;) (zj — i)
P(z;) = —— P, j-15+1,..%(x;) — ——F P01, . i-14+1,. k(T
( J) (xz_z.]) 0117 5] 1,]+17 ) ( ]) (IEz—CB]) 0,1, »? 17Z+17 5 ( J)
= flz))
Therefore P(z) agrees with f at all points xg, z1,...,2%. By the
uniqueness theorem, P(x) is the k-th Lagrange polynomial that
interpolates f at the k + 1 points g, x1,..., 7%, i.e., P = Fy1 .. ]
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Neville's method

The theorem implies that the Lagrange interpolating polynomial can be
generated recursively. The procedure is called the Neville's method.

o

Denote

Qi =PFi_jij+1,. . i-14

@ Hence Q;;, 0 < j <14, denotes the interpolating polynomial of degree
Jj on the j +1 points z;_;, T jy1,...,Ti—1, ;.

© The polynomials can be computed in a manner as shown in the
following table.

Zo
T
T2
T3
T4

Po=Qop
P =Q1p0
P, = Q0
P; = Qs
Py = Qa0

Py =Q11
Pio=0Q21
P3= Q31
P34 = Qa4

Poio= Q22
Pio3s=Q32 FPi23=0Q33
Pr3s=Qup Pio3a=Qs3z Foi1234=0ss
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zo | Po= Qoo
21 | PL=Q10 Fo1=0Q1.1
T2 | =020 Pio=0Q21 i2=Q22
23 | Ps=Q30 P3=Q31 Pip3=Q32 Fi123=033
Ty | Po=Qu0 P3a=0Qu1 P34=0Q42 Pio3s=Qs3 FPo1234=CQa,
Poa(2) (z —z1)Po(z) — (x — wo) P ()
’ o — T1 ’
Pra(z) = (z = 22) P1(x) — (z — 21) Pa(x)
’ Tr1 — T2 ’
Pora(z) = E=2)0a(@) = (@ = 20)Pra(2)

To — X2
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Example

Compute approximate value of f(1.5) by using the following data:

x f(z)
1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623
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© The first-degree approximation:

(x —20)Q1,0 — (z — 21)Qoy0

Q11(1.5) = 71 — 7o

_ (5 1.0)6211‘,; = 5105 —1.3)Qoo _ 0.5233449,
Ona(L5) — (z — xl)Qiz - ;al: — 22)Q1,0

_ (15— 1-3)Q12',g - §135 —16)@10 _ 5102068,
0s1(15) = (z — xz)Qi,: - iﬁz — 23)Q2,0

_ (15— 1-6)Q1:*sjg - &5 —19)Q20 _ 5135634,
Qur(L5) = (z— a:3)Q;,Z - ;ﬂz — 74)Q3,0

_ (s 1-9)Q24‘,g - S;’ —22)830 _ 5104270,
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@ The second-degree approximation:

(x —21)Q21 — (z — 22)Q11

Q22(15) = 2
_ (15— 1.3)@12‘,2 = 5135 16011 _ o s ounis
Qsa(15) = &= 9”2)@;; = S; — 3)Qa1
_ (15— 1.6)Q13',§1) : &5 —19)Q21 _ TR
Q42(15) = = x3)Q‘;i : 5::; — 24)Q31
1.5—1.9)Qa1 — (15— 2.2
- )Q;"; - g'g )31 _ 5137361,
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i f(z) 1st-deg 2nd-deg 3rd-deg 4th-deg
1.0 | 0.7651977

1.3 | 0.6200860 0.5233449

1.6 | 0.4554022 0.5102968 0.5124715

1.9 | 0.2818186 0.5132634 0.5112857 0.5118127

2.2 | 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

Table: Results of the higher-degree approximations

az f(z) 1st-deg 2nd-deg 3rd-deg 4th-deg 5th-deg
1.0 | 0.7651977

1.3 | 0.6200860  0.5233449

1.6 | 0.4554022 0.5102968 0.5124715

1.9 | 0.2818186 0.5132634 0.5112857 0.5118127

2.2 | 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

2.5 | —0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.511827"

Table: Results of adding (x5, f(xs))
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Divided Differences

@ Neville's method: generate successively higher-degree polynomial
approximations at a specific point.
o Divided-difference methods: successively generate the polynomials

themselves.
Suppose that P,(z) is the nth Lagrange polynomial that agrees with f at
distinct xg, x1,...,x,. Express P,(x) in the form
P.(z) = a0+ ai(x —x0) +ap(x — zo)(x — 1) + - -

+an(z —x0)(x —21) -+ - (T — Tp—1).

@ Determine constant agp:
ao = Pp(w0) = f(x0)

@ Determine aq:

f(zo) + ar(@1 — w0) = Po(z1) = f(z1) = a1 = w
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@ The zero divided difference of the function f with respect to z;:

flz:i] = f(i)

@ The first divided difference of f with respect to x; and x;11 is
denoted and defined as

flein] = flai]

flzi, xipa] = Tir1 — i

@ The second divided difference of f is defined as

flzit1, ivo] — flzi, it1) '

fl%is Tit1, Tigo] =

Tit2 — Tj
@ The k-th divided difference relative to x;, x;11, ..., %;1% is given by
_ [, Tiros - - Tink) = FTi Tiv1, - Tigna]
f[xia L1y - - a$i+k] —
Litk — T4
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As might be expected from the evaluation of ag, a1, ...,a, in P,(z), the
required coefficients are given by

ak:f[x07x17---,$k], /6:0,1,...,71.

Therefore P,(x) can be expressed as

Po(z) = flzol + > flzo, 21, ..., zsl(z — zo) (2w — 21) -+ (2 — wp—1)-

k=1
This formula is known as the Newton’s divided-difference formula.

x|k =10 k=1 k=2 k=3
xo | flwo]

> flwo, 2]
w1 | flr] > flwo, 21, 22]

> flog, 2] > flwo, v1, 72, 73]
z2 | flxa] > fla1, x2, 23]

> flao, x3]
r3 | flr3]

Table: Dependency diagram of Newton's divided differences.
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Newton's Divided Difference
Step 0 INPUT (35073/0)7 o 7($n7yn)' Set FO,O = Yo, aFn,O = Yn-
Stepl. Fori=1,2,---.,n
Fork=1,2,--- ,1

Fj = bl (B = flag g, -, 2x])
End &
End ¢
Step 2. OUTPUT Fo}o, Fl,la ce e ,Fn,n (Flﬂ = f[x‘o, o ,l‘i]), STOP.

z;, | k=0 k=1 k=2 k=3
zo | flzo]

> /[10 .(‘1]
z1 | flo1] > flzo, x1,22]

> flz1, 2] > flzo, x1, 2, 23]
zo | flzo] > flw1, z2, 23]

> flxo, 3]
x3 | flr3]

Table: Divided differences generated from left to right, then from top to bottom.
Red: ¢ = 0; green: ¢ = 1; blue: ¢ = 2; black: ¢ = 3.
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Newton's Divided Difference (Storage Saving Version)

Step 0 INPUT (35073/0)7"' 7($n7yn)' Set FO =Yo0," 7F7‘L = Yn-
Stepl. Fork=1,2,---.n

Fore=n,n—1,--- k
End ¢
End k
Step 2. OUTPUT Fy, F1,--- , Fy (Fz = f[.’L‘o, 000 ,wi]), STOP.
z;, | k=0 k=1 k=2 k=3
zo | flzo]
> /[10 .I'l]
z1 | flz1] > flwo, 21, 22]
> flog, 2] > flwo, x1, 72, 73]
z2 | flxa] > fla1, x2, 23]
> flao, x3]
r3 | flr3]

Table: Divided differences generated from bottom to top, then from left to right.
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Example
Given the following 4 points (n = 3)

yi | 1

find a polynomial of degree 3 in Newton's form to interpolate these data.
v

1 3 5
2 6 7

Solution:

zi | k=0 k=1 k=2 k=3
0 1

> 1
1| 2 > 3

17

> 2 > —150
3] 6 > -3

>3
5 7

1 17
Therefore, P(x) =1+ z + gaz(x -1)- mx(a: —1)(z —3).

1
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Theorem (11)

Suppose f € C"[a,b] and zg,x1, ..., x, are distinct numbers in [a,b].

Then there exists £ € (a,b) such that

RG]

nl

flzo, z1, ..., xn)

Proof: Define
9(x) = f(z) — Pa(w).
Since P,(z;) = f(x;) for i =0,1,...,n, g has n + 1 distinct zeros in
[a,b]. By the generalized Rolle’'s Theorem, 3 £ € (a,b) such that
0= g™ () = ™) - PIV(e).
Note that
P,g")(m) = nlflxo, x1,...,Tp]

As a consequence
()

n!
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Ly — L
h n 0

= GBjuil = By; 1=0,1,...,n—1.
n

Then each z; = zo +ih, i =0,1,...,n. For any = € [a,b], write
x = x9 + sh, s € R.

Hence © — z; = (s —i)h and
P.(z) = flxo]+ Z flzo,x1, .., xp](x — zo)(x — 21) -+ - (& — 2p—1)
k=1

fxo) + ) flwo, 1, ..., xg](s — 0)h(s — Dh--- (s — k + 1)h

k=1
= flwo) + > flwo, w1, . wgls(s — 1)+ (s — k + 1)hF
k=1
= f(wo) + ” flzo, z1, ..., xE]k! 5 R, (4)
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@ The binomial formula

(.9) B 8(8—1).-]-{:!(8—“1)

k

@ The forward difference notation A
Af(xi) = fzivr) — flai)
and fori=0,1,...,n— 1,
AR f(z) = AP f(2i01) — AL f(2) = A (A’f—l f(xi)) .
e With this notation,

flz1) = flzo) _ 1

flzo,x1] = P & A f(xo)
f[wo,x17x2] — f[fi'l»x;z] : i([)l‘o,ml]
LA _ 1A
_ h f(x1)2hh f (o) _ 2—}112A2f(x0),
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@ In general

f[.’L‘o, Ll ,xk] = Akf(xo)

k'hk

@ The Newton forward-difference formula:

Pu(z) = f(zo +Z(>foo)

o If = is close to xg, the first few terms in the above summation also
gives good lower degree interpolating polynomials.
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@ In case x is close to x,, we could rearrange interpolation nodes as
e e [ T
Po(z) = flzn] + flzn, Tn-1](z — z4)
+flTn, Tn-1, Tn-2](x — 2p)(x — Tp_1) + -+
+flzn, - xol(z — xn)(z — 2p—1) - - - (2 — 21).
o If the nodes are equally spaced with
Ty — TQ

h= , x; = xp — (n —0)h, T = Ty, + sh,
n

Pu(z) = floal+ > fl@n o1, Znglsh(s + Dh-- (s +k—1)
k=1

L Ry e U (g T
k=1

@ The first few terms in the above summation gives good lower degree
approximation for x near x,,.
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@ Binomial formula:

—s —s(—s—1)---(-s—k+1 s(s+1)---(s+k—-1
(7)) - ==t )_ (qpata D)ot )

o Backward-difference:
VE f(wi) = V5 f (i) = V7 flwiea) = 7 (VA f(2)
then
I iy B ]| = 3 lewm)); I 1 )| = 2 f(zn),

and, in general,
1
f[xna Tp—1y--- 73371—/6] = vaf(wn)

@ Newton backward-difference formula:
n —S
Pol) = f(z0) + ;(—n’“( )9 H.
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Hermite Interpolation

Given n + 1 data points 29 < 21 < - -+ < Zp, and

v =fo) 0 =Sn) ) = ()
' =fo)  w=fla) =)
O = 9 a0) o = Far) e ) = 1))
| | !
mg + 1 conditions mj + 1 conditions --- m, + 1 conditions
for some function f € C™[a,b], where m = max{mg, m1,...,my}.
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@ Determine a polynomial P of degree at most IV, where

N = <Z m,) +n, (5)
i=0
to satisfy the following interpolation conditions:
PP () =y®  k=01,...m; i=01,...,n. (6)

o If n =0, then P is the moth Taylor polynomial for f at xg.

@ If m; = 0 for each 4, then P is the nth Lagrange polynomial
interpolating f on xg, ..., x,.

@ If m; =1 for each i, then P is called the Hermite polynomials.
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Theorem

If f € Ca,b] and xo, ..., T, € [a,b] are distinct, then the polynomial of
least degree agreeing with f and f' at xq,...,x, is unique and is given by

Hops1(z) =Y f@)Hn (@) + > f(2;)Hn (),
§=0 j=0
where
Hy () = [1 = 2(x — z;) L}, j(z;)] L2 ;(2),  Haj(z) = (@ — ;) L2 j(2),
and

(z = o)~ (& —aj1)(x = xj11) - (2 = xn)

Ly j(z) = (z; — 20) - - (x5 — 251 )(T; — Tjp1) - - (T5 — Tn)

Moreover, if f € C?"*2[a,b], then 3 £(z) € [a,b] s.t.

2 = H " +($—9€0)2"'(9€—$n)2 @n+2) (¢ (2)).
f(@) = Haun(a) o e g a)
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Proof: Since

0, ifi#j
L”J(‘”"):{ 1, ifi=j,

it implies that

07 if @ '7 Ty ..

As a consequence,

n
Hopi1(wi) = Z f(x) -0+ f(x:) -1 f(x5) - 0= f(z;),V i.
7=0,j7#1 j:O
By definitions of H,, j(z) and ﬁn](x)
Hy j(x) = —2L ;(z;)L7 j(2) + 2 [1 = 2z — @)Ly, (25)] Ln(2) L, ;(2)

H (@) = L7 ;(2) +2(x — 5)Ln(2) L7 ;(2).
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It implies that if ¢ # 7,

HI (%) 2L;z,j(xa) L2 (551) +2 [1 — 2(z; — :c])L (SUJ)] n](371)L (
= _2L;"L,j( z;) - O+ 2 [1 — 2(z; — x;)L n,j(x])] 0- L;L,j( z;) =0,

Hy, j(x:) = L, j(:) + 2(m: — ©5) L j (i) Ly, ()
=04+ 2(1‘2' — .’L‘j) -0 L;w'(l‘i) =0

and

H}, i(x:) = —2L7, () L2 (i) + 2 [1 — 2(as — @)Ly, 4(23)] Lini(2:) Ly, (:)
= —2L;m-(l‘i) = 2L;m-($i) =0,

ﬁéﬂ(xl) = ng,i(xi) +2(z; — x;) L, 2(x2) (xz) =1

Therefore, V 1,

n

Hpy1 () =) J () Hy, (i) + Zf () Hy, (@) + () Hy () = £ ()
J=0 J=0,j%#i

That is, Ho, 1 agrees with f and Hj, ; with f’ at zq,..., zy.
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Proof of uniqueness:
@ Since deg(P) < 2n + 1, write

P(LE) =ag+arx+ -+ CL2”+1I2n—i—1.

@ 2n + 2 coefficients, ag, a1, ..., az, 11, to be determined and 2n + 2
conditions given
P(x;) = f(xz:), P(x;)=f(x;), fori=0,...,n.

= 2n + 2 linear equations in 2n + 2 unknowns to solve
= show that the coefficient matrix A of this system is nonsingular.
@ To prove A is nonsingular, it suffices to prove that Au = 0 has only
the trivial solution v = 0.
o Au =0 iff

P(x;)=0, P'(x;)=0, fori=0,...,n.

= P is a multiple of the polynomial given by

n

q(z) = H (z — :Ui)z .

1=0
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@ However, deg(q) = 2n + 2 whereas P has degree at most N.

@ Therefore, P(xz) =0, i.e. u=0.

@ That is, A is nonsingular, and the Hermite interpolation problem has
a unique solution. O
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Divided Difference Method for Hermite Interpolation

Given the 2n + 2 condition pairs
(w0, f(x0)), (o, f'(20)); (z1, f(z1)), (21, f'(21)), -+, (Tn, f(@n)), (@n, f'(2n
Rename the z-coordinates as zg, 21, -+ , 2241, Where

20 =21 = X0,%22 = 23 = X1, , Zontl = Zont+2 = Tn.

Note that zp < 23 < .- < zny. The unique Hermite interpolating
polynomial in Newton's form can then be written as

2n+2
Hont1(z) = flao] + Y flzo, 21, - 2kl(@ — 20) (& — 21) - - (2 — 2r-1).
k=1

If z; # 2,1k, then

flziv1, ziv2, . - 2ik] — fl2, 241y - o5 Zigi—1]
Zi+k — Zi

flzis Zig1s - -5 Zigk] =
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However the divided-difference formula has to be modified because there
may be repetitions among z;. Since 2p; = 2p;+1 = x; for each 7, let

22i = Tj, 25i11 = Ti + €.
and let ¢ — 0. Then,

flz2i, 20i41] = E"_fpo flz2s, Z§i+1] = f’(zZi) = f’(xi)
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f(2)

%
Z0 = X9
€ __
21 = To+e€
zZ2 = X1
z3 = T1+e€
zZ4 = X2
25 = To+e

Wei-Cheng Wang (NTHU) Interpol. & Poly. Approx.

[flzo] = f(x0)
fle] = 1(21)
flz] = f(z1)
flzs] = £(23)
flza] = f(22)

flzs] = f(25)

Flzo, 28] = Flz1]—flz0]

2] —20

fl25, 2] = flz2]=Flz1]

22—21

Flza, 25] = flzs]—flz]

z3—22

Fl25, 4] = flzal=Flz5]

Z4—z3‘

flza, 28] = J—f[zzg:;[z“]

f[ZO7 Zi; 22] =

f[Z]E_a 22, Z§] =

f[ZZ7 Z§, Z4] =

f[zga 24, Z;] =

Fall 2010

flz1,22]— fl20,21]
22—2Z0

flz2,23]— fl21 ,22]
z; —zf

flz3,24]= fl22,23]
Z24—22

flza,25]— fl23,24]
z; —z§
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As e — 0, 2{ — 21 := 20, f[2{] = f(z0), fl20,21] — fl20,21] := f'(20).

etc.

z f(2)

20 =0 | flzo] = f(20)
2z =0 | fla] = f(x0)
=11 | flz] = f(z1)
z3 =11 | flzs] = f(a1)

za =122 | flea] = f(z2)

25 = T2 f[Zs] = f($2)

2n+-2

flz0, 21] = f'(w0)

flzo, 21, 22] = %ﬁo{zozﬂ

flz1, 22] = % flz2,23] = fl21,22]
f[Z]_,ZQ,Z3] = W

el S Flzs,2a]— flz2,24]
f[Zg,Z3,Z4] S 3 :4_22 2:23

f[Z3,z4] _ Jlzal=fl=]

Z4—23
flz3, 2a, 28] = —f[24"z§3:£3[z3’z4]

flza, 2z5] = f'(x2)

Hony1(z) = flaol + Y flzo, 21, - 2kl(2 — 20) (& — 21) - - (& — 2k-1).

k=1
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Cubic spline interpolation

@ The previous sections concern the approximation of an arbitrary
function on a closed interval by a polynomial. However, the
oscillatory nature of high-degree polynomials restricts their use.

@ Piecewise polynomial interpolation: divide the interval into a
collection of sub-intervals and construct different approximation on
each sub-interval.

@ The simplest piecewise polynomial approximation is piecewise linear
interpolation.

@ A disadvantage of linear function approximation is that the
interpolating function is not smooth at each of the endpoints of the
subintervals. It is often required that the approximating function is
continuously differentiable.

@ An alternative procedure is to use a piecewise polynomial of Hermite
type. However, to use Hermite piecewise polynomials for general
interpolation, we need to know the derivatives of the function being
approximated, which is frequently not available.
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@ The most common piecewise-polynomial use cubic polynomials
between each successive pair of nodes and is called cubic spline
interpolation.

Definition

Given a function f defined on [a, b], and a set of nodes

a=1x0<x1 <---<x, =Db, a cubic spline interpolation S for f is a
function that satisfies the following conditions:

(a) S'is a cubic polynomial, denoted S;(z), on [z}, z;11] for each
j=0,1,...,n—1,

b) S;(z;) = f(z;) and Sj(zj41) = f(zj+1) Vi=0,1,...,n—1;
) Sj+1(zjt1) = Sj(zj+)Vji=0,1,...,n -2

d) ]+1($]+1) S ($J+1)v.] :0717'- 7'1,—2,

e) ]+1(x3+1) (%-1-1)v j=0,1,....,n—2;

(f) One of the followmg sets of boundary conditions is satisfied:

(i) S"(wo) = S”"(xy) = 0 (free or natural boundary);
(ii) S’(zo) = f'(x0) and S’(z,,) = f'(xn) (clamped boundary).
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Construction of cubic spline interpolation

Remark

In general, clamped boundary conditions lead to more accurate
approximations since they include more information about the function.

Write
Si(z) = aj + bj(z — x;) + ¢j(z — z;)* + dj(z — z;)*,V j =0,1,...,n — 1.
That is

aj = Sj(z;) = f(z;)-
Since Sji1(xj41) = Sj(xj41), it implies that

aj41 = aj +bj(zj1 — a5) + ¢i(xj01 — 25)° + dj(wg1 — 25)°
Let
hj=zj41—2;,vj=01,...,n— 1L

Then

ajp1 = a; +bihi + c;ih? + d;h3. (7)
T



Define b, = S’(z,) and observe that

Si(x) = bj + 2¢j(z — ;) + 3dj(z — z;)°
implies that

b; :S;-(:cj), vVi=0,1,...,n—1.
Applying S’ 1 (xj41) = Si(2)11) gives
bj+1 = bj + 2c;h; +3d;h3, Vi =0,1,...,n— 1. (8)

Defining ¢, = S"(x,)/2 and applying S7,;(7;+1) = S} (zj4+1), we get

¢j+1 =c¢j +3d;h;, Vj=0,1,...,n—1.
Hence

R o S
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Substituting d; in (9) into (7) and (8), it obtains

2
ajr1 = a; + bjhj aF ?](203' T Cj+1) (10)
and
bji+1 = bj + hj(c; + cjy1). (11)
Eq. (10) implies that
1 h;
bj = 1—(aj+1 = a5) — 5°(2¢ + ¢j11), (12)
J
and then
1 .
bj—1= h (aj —aj-1) — 3 (2C] 1+ ). (13)
j—1
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Substituting (12) and (13) into (11), we get

3 3
hj-le—l I 2(hj_1 + hj)Cj = hjCj+1 = E(aﬂ—l = aj) — h‘_l(aj — aj_l).(l‘
J J—

foreach j =1,2,...,n— L.

Theorem

If f is defined ata = xg < 1 < --- < x, = b, then f has a unique natural
spline interpolant S on the nodes xg, 1, ..., T, that satisfies
S"(a) = S"(b) = 0.

Proof: The boundary conditions imply that

cn = 8"(zn)/2=0,
0 = S"(x0) = 2co + 6do(wo — 29) = co=0.
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Substituting co = ¢, = 0 into (14), it produces a linear system Az = b,
where A is an (n + 1) x (n + 1) matrix

1 0
ho 2(h0 aF hl) hi
h 2(h1+ h h
e 1 ( 1. 2) | 2 |
hn—2 2(hn—2 + hn—l) hn—l
- 0 3
¢
(a2 — a1) = 22 (a1 — ao) C(l)
b = : , T=
o (n — Gn—1) — p=(dn—1 — 0 2) .
I 0 | n

The matrix A is strictly diagonally dominant, so A is nonsingular and the

linear system has a unique solution for cg,c1, ..., Cp. ]
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Solving tridiagonal linear system

Let

1 U2

en,n—l Enn

Comparing the coefficients of matrix in both sides, we have

a1 = {11,
aii-1 = lij—1, fori=23,...,n,

aig = Lligaui15+40y, fori=23,...
aiiv1 = Lliuiir1, fori=1,2,...,n—1.
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Un—1,n

7n7
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It implies that

01 =a11, uip = ain/l,

and, fort=2,...,n—1,

lipes = il
Lii = ag— i 1ui—134,
Wil = @il
and
Kn,n—l = danpn-1,
Ui = G, — gn,n—lun—l,vr
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Forward substitution

Solve Ly =15
( luuyr = by,
D1y1 +Lloy2 = by,
= .
\ En,nflynfl +LlunYn = bn.
(1 = b1/l,
y2 = (b2 — l21y1)/l22,
= .
\ Un = (bn - gn,n—lyn—l)/gnn-
N { y1 = bi/ln,
vi = (b —¥lii—1yi—1)/lii, for i=2,... n.
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Back substitution

Solve Uz =y,
)
T1 +ur2 = Y1,
=
Tp—1+Up—1nTn = Yn—1,
\ In = Yn,
p
In = Yn,
Ipn—-1 = Yn—1— Up—1nZTn,
=
T1 = Y1 — U122,
= In = y’l’ba )
Ti = Yi— Uit1Ti41, fori=n—1,...,1
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Theorem

If f is defined at a = x¢9 < x1 < - -+ < x, = b and differentiable at a and
b, then f has a unique clamped spline interpolant S on the nodes
x0o, X1, ..., T, that satisfies S’(a) = f'(a) and S'(b) = f'(b).

Proof: Since f'(a) = S'(a) = S'(x0) = bo, Eq. (12) with j = 0 implies

£1(@) = elar = a0) = 2(2e0 + 1)

Consequently,

3
2hgco + hoc1 = h—o(al —ag) — 3f’(a).
Similarly,

fl(b) = bn = bn—l + hn—l(cn—l + Cn))
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so Eq. (12) with j = n — 1 implies that

ap — apn-1 h

Fo) = = (201 + en) + hnma(eno1 + o)
ap — Ap—1 hn—1
= n— 2 n )y
- + 3 (cn-1+2¢,)

and

S [ (S P 3f/(b) - (an - anfl)-

hn—l

Eq. (14) together with the equations
3 /
2hgoco + hger = h—o(al = ao) —3f (a)

and

3

hpn—1cn—1+ 2hp_1¢cy, = 3fl(b) - h
n—1

(an - an—l)
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determine the linear system Ax = b, where

[ 2hg hg
ho 2(ho I hl) hi
hl 2(h1 =+ h2) h2

A =
hn—2 2(hn—2 + hn—l) hn—l
L hn—l 2hn—l ]
[ (a1 — ag) — 3f(a) .
(a2 — a1) = 2 (a1 — ao) ccl’

%(an - an—l) - %(an—l - an—2)
3f'(b) — 7 (an — an-1)

Cn

The matrix A is strictly diagonally dominant, so A is nonsingular and the
linear system has a unique solution for cg,cy, ..., cp. (58
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