Assignment 2.

(1) Here is an alternative proof for the rank theorem.

- (a) If a linear transformation L is nonsingular, and v_i are linear independent vectors, show that Lv_i are linearly independent.
- (b) Use part (a) to show that

$$rank(PA) = rank(A)$$

if P is a nonsingular matrix.

(2) let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$.

- (a) Show that $rank(AB) \leq rank(A)$.
- (b) Is it true that rank(AB) = rank(B)? Explain.
- (c) Show that $\operatorname{rank}(AB) = \operatorname{rank}(B)$ if and only if $\operatorname{range}(B) \cap \ker(A) = \{0\}$ where $\operatorname{range}(B)$ is the linear span of columns of B.
- (3) Let

$$A = \left(\begin{array}{cc} 1 & 1 \\ -1 & 3 \end{array}\right)$$

Find scalars α and β such that $A^{10} = \alpha A + \beta I$.

- (4) Let A be a $n \times n$ matrix with all its entries $a_{i,j} = 1$. Find the rank of $A \lambda I$ as a function of λ . As a consequence, find one eigenvalue of A
- (5) Let u_i , $i=1,\dots,m$ and v_j , $j=1,\dots,n$ be eigenvectors associated with eigenvalues λ_1 and λ_2 respectively with $\lambda_1 \neq \lambda_2$. Show that u_i 's are linearly independent from v_j 's.