Assignment 5.

Given Oct 27 2000, due Nov 07 2000.

- (1) Do exercises 21, 22, 23 (see page 435 for definition), 25 from Chapter 6 and 6, 8, 9, 10 (Do $S \cap (T + U)$, $S + (T \cap U)$, $(S \cap T) + (S \cap U)$ and $(S + T) \cap (S + U)$ only, keep in mind that the statement may not be correct) from Chapter 7 of the textbook.
- (2) Regarding the basis for l_{∞} , here is a reason why the ones given in Ex 6, Chap 6 are not basis. For any $r \in (-\infty, 0)$, define

$$A^r = (1^r, 2^r, \cdots, n^r, \cdots)$$

Show that $E = \{A^r \mid r \in (-\infty, 0)\} \subset l_{\infty}$, E is linear independent and E is NOT a basis. This tells you that the dimension of l_{∞} is at least as much as \mathbb{R} . However, explicitly writing a basis may not be possible.