MATH 543 METHODS OF APPLIED MATHEMATICS I Homework Set II

For October 15, 2009

QUESTIONS

1. 1. Prove that the Fourier coefficients of any $|f\rangle \in L^2_w(a,b)$ form a Hilbert space. First prove that the space of such coefficients form an inner product space then prove that this inner product space is complete. This space is l_2 (see set 1). Prove that l_2 and $L^2_w(a, b)$ are isomorphic. See page 196 of DK. 2. Prove that all finite dimensional inner product spaces are complete. See page 182-183 of DK.

3. Explain the importance of Bessel's inequality and Parseval's relation. 4. Assume that there exists an orthonormal basis $|e_i\rangle$, $(i = 1, 2, \cdots)$ in $L^2_w(a,b).$ Then , for any $|f>\in L^2_{a,b},$ the sequence of vectors

$$|f_k\rangle = \sum_{i=1}^k f^i |e_i\rangle$$

with

$$f^i = \langle e_i | f \rangle$$

has $|f\rangle$ as the limit vector in the sense that

$$\lim_{k \to \infty} \rho(|f\rangle, |f_k\rangle) = 0$$

5. Find and prove the following for the Hermite Polynomials by using its generating function where $a_n = \frac{1}{n!}$:

(a) $H_n(-x) = (-1)^n H_n(x)$, (b) $||H_n||$, (c) $H_n(0)$

(d) $H_{n+1} - 2xH_n = 2nH_{n-1}$, (e) $H''_n - 2xH'_n + 2nH_n = 0$, (f) $\frac{d^m}{dx^m}H_n = 2^m \frac{n!}{(n-m)!}H_{n-m}$ (Use the Rodriguez formula to prove this property of the Hermite polynomial).

6. Prove that Orthogonal Polynomials $C_n(x)$ with $x \in [a, b]$ has n zeros in [a,b].

7. Find $\langle xC_n, C_m \rangle$ where $C_n(x)$ is any one of the classical orthogonal polynomial with $x \in [a, b]$

8. Express the function f(x) = -1 for $-1 \le x < 0$ and f(x) = 1 for $0 < x \le 1$ in terms of the Legendre polynomials. Find the first five terms and discuss the convergence of the series.