MATH 543 METHODS OF APPLIED MATHEMATICS I First Homework Set

For September 28, 2009

QUESTIONS

1. In an inner product space, we define the norm of an element x of a vector space X to be $||x|| = \sqrt{\langle x, x \rangle}$ (we use the notation of the lecture notes). Prove the following

a. ||x|| > 0 if $x \neq 0$. **b.** $||\alpha x|| = |\alpha|||x||$. **c.** $| < x, y > | \le ||x||||y||$. **d.** $||x + y|| \le ||x| + ||y||$. **e.** $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$. **f.** If < x, y >= 0, then $||x + y||^2 = ||x||^2 + ||y||^2$.

Remark: Inner Product Spaces. Let X be a linear vector space over the \mathbb{C} . Let $x, y, z \in X$ and α . Then an inner product space X over the complex numbers with an inner product <,> satisfy the following conditions

a. $\langle x, y \rangle$ is a complex number. **b**. $\langle x, y \rangle = \overline{\langle y, x \rangle}$. **c**. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$. **d**. $\langle x, x \rangle > 0$ if $x \neq 0$. **e**. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

2. Show that the space C[a, b] with sup norm is a Banach space (a complete normed space).

3. Show that the space C[a, b] with L^2 norm is not Banach space (a complete normed space). Prove this by counter example. Let the interval be I = [-1, 1] and define a sequence $f_k(x)$ as

 $f_k(x) = 1, \text{ for } \frac{1}{k} < x \le 1, \\ f_k(x) = \frac{kx+1}{2}, \text{ for } \frac{-1}{k} < x \le \frac{1}{k} \\ f_k(x) = 0, \text{ for } -1 \le x < -\frac{1}{k} \end{cases}$

Prove that this is a Cauchy sequence but does not converge to continuous function.