
SET 5

MATH 543: GREEN’S FUNCTIONS

(References: DK, Sadri Hassan and Hildebrandt)

Generalized Green’s Identity

Let Lx be a differential operator and u , v are some functions in L2
w(a, b)

then the adjoint operator L† is defined through the Lagrange identity

w[v̄Lxu− u {L†
xv}] =

d

dx
Q(u, v̄), (1)

where w > 0 is the weight function and Q(u, v̄) has in general the following

form

Q(u, v̄) = Auv̄ + Bv̄
du

dx
+ Cu

dv̄

dx
+ D

du

dx

dv̄

dx
, (2)

Integrating the above identity over the interval [a, b] we get the generalized

Green’s identity

∫ b

a
w(x) [v̄ Lxu− u {L†

x v}]dx = Q(u(b), v̄(b))−Q(u(a), v̄(a)), (3)

The right hand side of this equation is called the surface term.

Adjoint Boundary Conditions:

Let the function u satisfy the boundary conditions

B1(u) = α1u(a) + β1u
′(a) + γ1u(b) + δ1u

′(b) = 0, (4)

B2(u) = α2u(a) + β2u
′(a) + γ2u(b) + δ2u

′(b) = 0, (5)

Here αi, βi, γi, and δi are some given constants. If in the above generalized

Green’s identity (3) the function u satisfies the above boundary conditions (4)

and (5) then the function v satisfies the adjoint boundary conditions when the
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surface term vanishes. Hence for future purposes we can define the Green’s

identity

∫ b

a
w[v̄ Lxu− u {L†

x v}]dx = 0, (6)

for the functions u satisfying the boundary conditions (4) and (5) and v

satisfying the adjoint boundary conditions

Self Adjoint Operators:

We shall be interested in second order differential operators

Lxu(x) = a(x)
d2u

dx2
+ b(x)

du

dx
+ c(x)u, (7)

where the coefficients a, b and c are some functions of x. Here we assume

that Re(a) > 0. It is easy to show that the adjoint operator is given by

L†v =
d2

dx2
(ā v)− d

dx
(b̄v) + c̄v, (8)

and the function Q in the surface term is found as

Q(u, v̄) = av̄
du

dx
− u

d

dx
(av̄) + buv̄, (9)

If the coefficient functions are real and

b(x) =
da(x)

dx
, (10)

Then L†
x = L, becomes a self-adjoint operator and the Q term becomes.

Q(u, v̄) = a(v̄
du

dx
− u

dv̄

dx
), (11)

With a suitable weight factor all second order differential operators are self-

adjoint

Theorem 1. Every linear second order differential operator with real coeffi-

cients is self adjoint provided the weight function w(x) is chosen properly

2



w(x) =
p

a
,

p′

p
=

b(x)

a(x)
, (12)

where the differential operator takes the form

Lxu =
1

w
(

d

dx
p(x)

du

dx
) + cu, (13)

and the function Q is given by

Q(u, v̄) = p(x) (v̄
du

dx
− u

dv̄

dx
), (14)

Problems:

1. Prove that the following boundary conditions on u(x) , Lx defines a

Hermitian differential operator L

(i) u(a) = u(b) = 0 (Dirichlet conditons),

(ii) du
dx

(a) = du
dx

(b), (Neumann conditions),

(iii)α u(a)− du
dx

(a) = βu(b)− du
dx

(b), (α, β real) (general unmixed conditions),

(iv)u(a) = u(b) and du
dx

(a) = du
dx

(b), (periodic conditions).

2. Determine the formal adjoint of each of the operators in (a) through (d)

below (i) os a differential operator, and (ii) as an operator, that is, includ-

ing the boundary conditions (Determine the functions spaces of L and L†).

Which operators are formally self-adjoint? Which operators are self- adjoint?

(a) Lx = d2

dx2 + 1 in [0, 1] with u(0) = u(1) = 0,

(b) Lx = d2

dx2 in [0, 1] with u(0) = u′(0) = 0,

(c) Lx = d
dx

in [0,∞) with u(0) = 0,

(d) Lx = d3

dx3−sin x d
dx

+3 in [0, π] with u(0) = u′(0) = 0 and u′′(0)−4u(π) = 0

Boundary value problems

Let u satisfy the inhomogenous differential equation with homogenous bound-

ary conditions
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Lx u(x) = f(x), B1(u) = 0, B2(u) = 0, (15)

where f(x) is any integrable function. The function v satisfying the adjoint

differential and the homogenous adjoint boundary conditions

L†
x v(x) = h(x), adB1(v) = 0, adB2(v) = 0, (16)

Green’s Functions:

Green’s functions G(x, y) and g(x, y) of the above boundary value problems

are, respectively given by

Lx G(x, y) =
δ(x− y)

w(x)
, (17)

L†
x g(x, y) =

δ(x− y)

w(x)
, (18)

using the Gren’s identity for the function u, v, G, and g pairwise (u, v), (u, g),

(v, G) and (G, g) we obtain the following important identities

u(x) =
∫ b

a
w(y)ḡ(y, x) f(y)dy, , (19)

v(x) =
∫ b

a
w(y)Ḡ(y, x) h(y)dy, (20)

and

< f, g >=< G, h >, G(x, y) = ḡ(y, x), (21)

Since the solutions are given in (19) and (20), then the boundary value

problems (15) and (16) reduces to the determination of the Green’s functions

G and g

Second order operators and Green’s functions:

For a second order operators with real coefficients we have
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d

dx
(p(x)

du

dx
) + cwu = f(x), B1(u) = 0, B2(u) = 0, (22)

d

dx
(p(x)

dv

dx
) + cwv = h(x), adB1(v) = 0, adB2(v) = 0, (23)

and the Green’s functions satisfy the following equations

d

dx
(p(x)

dG(x, y)

dx
) + cwG(x, y) = δ(x− y), (24)

d

dx
(p(x)

dg(x, y)

dx
) + cwg(x, y) = δ(x− y), (25)

Since the Greens’s functions satisfy the homogenous equation (LxG(x, y) =

0) for x 6= y the we have

G(x, y) =

 c1u1(x) + c2u2(x) a ≤ x < y

d1u1(x) + d2u2(x) x < y ≤ b
(26)

where u1 and u2 are the independent solutions of the homogenous equation

Lxu = 0 and c1, c2, d1, d2 are constants (wrt x) to be determined by the fol-

lowing conditions on G. First two are the homogenous boundary conditions

and the rest two are the continuity of G and jump condition for the derivative

of G

B1(G) = 0, B2(G) = 0, (27)

G(x, y)|x=y+ = G(x, y)|x=y+ , (28)

dG(x, y)

dx
|x=y− −

dG(x, y)

dx
|x=y− =

1

p(y)
, (29)

We have the following important theorem.

Theorem 2. Consider the boundary value problem Lxu = f(x) with the

homogenous boundary conditions B1(u) = 0 and B2(u) = 0. Here we assume
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that Lxis a second order differential operator. Provided that the homogenous

equation has no nontrivial solution satisfying the above boundary conditions

the Green’s function associated with the boundary value problem exist and

unique. The solution is given by

u(x) =
∫ b

a
w(y) G(x, y) f(y)dy (30)

Problems:

3. Let B1(u) = 0 and B2(u) = 0 are defined at x = a and x = b respectively.

Solve the Green’s function defined in (26).

Solution: The continuity conditions (28) and (29) are solved easily (see DK

page 281)

G(x, y) =


U<(x)U>(y)

p(y)W
a ≤ x < y

U<(y)U>(x)
p(y)W

y < x ≤ b
(31)

where W = U<U ′
> − U>U ′

< is the Wronksian of U<(x) = u1(x) − α u2(x)

and U>(x) = u1(x) − βu2(x). Here u1 and u2 are independent solutions of

the homogenous DE (the fundamental set). Prove that p(x)W (U<, U>) is

constant for all x. The boundary conditions (27) mus also be satisfied, hence

B1(U<) = B1(u1)− αB1(u2) = 0,

B2(U>) = B2(u1)− βB2(u2) = 0

Hence α and β are determined. As we discussed above the product pW is

assumed to be a nonvanishing constant. If it is zero, then U<(x) = σU>(x),

where σ is an arbitrary constant. Using the definitions of U< and U> and α

and β found above this relation gives ,

B1(u1 − ρu2) = 0, B2(u1 − ρu2) = 0
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We obtain this by letting σ = ρ B2(u2)
B2(u1)

, where ρ is another constant. The

above relation implies the existence of a nontrivial solution u1 − ρu2 of the

homogenous DE satisfying the homogenous boundary conditions, but this is

contradiction with our assumption.

4. Solve the Green’s function when both boundary conditions are given at the

same point x = a. As an example take for instance u(a) = 0 and u′(a) = 0.

Boundary value problems with inhomogenous boundary conditions:

Let B1(u) = γ1 and B2(u) = γ2, where γ1 and γ2 are some given constants. In

this case the construction of the Gree’s function is exactly similar as above.

We determine the Green’s function as if the problem is with homogenous

boundary conditions. Here the expression for (30) u changes. To obtain

the expression for u we use the Green’s identity, but in this case since the

boundary conditions are homogenous we cannot assume that the surface term

is zero. For the operator Lx given in (13) the surface term is given in (14).

Now using the generalized Green’s identity we get

u(x) =
∫ b

a
w(y)G(x, y)f(y)dy+{p(y)[u(y)

∂G(x, y)

∂y
−G(x, y)

du

dy
]}|y=b

y=a, (32)

here we use B1(u) = γ1 and B2(u) = γ2. In the above expression (32) we have

u(a), u(b) and u′(a), u′(b) terms in the surface term. Two of them are inserted

from the inhomogenous boundary conditions B1(u) = γ1 and B2(u) = γ2 and

the rest dissapears from the expressions due to adjoint homogenous boundary

conditions (for self dual operators due to the same homogenous boundary

conditions)

Problems:

5. In problem 3 , if B1(u) = γ1 and B2(u) = γ2 then the complete solution

will be

u(x) =
∫ b

a
w(y) G(x, y) f(y)dy +

U<(x)

U<(b
γ2 +

U>(x)

U>(a)
γ1

7



6. Solve u′′ + u = f(x) with u(0) = u′(0) = 0.

7. Find the Green’s function for Lx = d2

dx2 + k2 with u(0) = u(a) = 0.

8. Find the Green’s function for Lx = d2

dx2 − k2 with u(∞) = u(−∞) = 0.

9. Find the Geen’s function for Lx = d
dx

x d
dx

given the condition that G(x, y)

is finite at x = 0 and vanishes at x = 1.

10. Problem 5 can be generalized further. Let Lxu = f with boundary

condition B1(u) = γ1 and B2(u) = γ2. Here Lx is a second order differential

operator with real coefficients. Prove that the solution is given by

u(x) =
∫ b

a
w(y) G(x, y) f(y)dy +

1

∆
[B2(u2) u1(x)−B2(u1)u2(x)] γ1 +

1

∆
[B1(u1)u2(x)−B1(u2)u1(x)] γ2 (33)

where ∆ = B1(u1)B2(u2)−B1(u2)B2(u1) and the Green’s function is found as

if the boundary conditions are homogenous. Discuss the case where ∆ = 0.

When there exist a nontrivial solution of the homogenous equation

satisfying the homogenous boundary conditions:

Let vi be the nontrivial solutions of the homogenous adjoin DE satisfying

adjoint boundary conditions . Hence using the pair (vi, G) we obtain vi = 0 ,

from (20) by letting h = 0 (v satisfies the homogenous equation). To resolve

this we must modify the differential equations for G and g. They are

LxG(x, y) =
δ(x− y)

w(x)
−

∑
k=1

v̄i(x) vi(y), (34)

L†
xg(x, y) =

δ(x− y)

w(x)
−

N∑
k=1

ūi(x) ui(y) (35)

where ui, (i ≤ 2), vi, (i ≤ 2) are orthonormalized solutions of homogenous

Lxu = 0 and L†
xv = 0 satisfying homogenous boundary and adjoint boundary

conditions respectively. To restore the uniqueness of the solutions we have

the conditions
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< ui, G >= 0, (i ≤ 2) < vi, g >= 0(i ≤ 2) (36)

For the self adjoint operators and for the case there exists only one homoge-

nous solution satisfying the homogenous boundary conditions we have

LxG(x, y) = −ē(x)e(y), x 6= y (37)∫ b

a
G(x, y) e(x)dx = 0, (38)

here e is normalized solution of the homogenous equation satisfying both

homogenous boundary conditions.

See the example in DK page 284. For the solutions to exist we must have

(from (21, since h = 0)

< f, e >=
∫ b

a
f(x)e(x)dx = 0

If this condition is satisfied the solution of boundary value problem is given

by

u(x) = αe(x) +
∫ b

a
w(y)G(x, y) f(y)dy

where e(x) is any solution of the homogenous equation satisfying the ho-

mogenous boundary conditions. Hence we have the following theorem

Theorem 3. Assume that there exists nontrivial solutions of the homogenous

DE Lu = 0 satisfying the both boundary conditions B1(u) = and B2(u) = 0

boundary. Then, either the solutions of the boundary value problem Lu = f

with B1(u) = 0, B2(u) = 0 do not exist or (if it exists) they are not unique.

Problems:

11. The solution of the example in DK (page 284) is given as follows: So-

lution does not exist if
∫ a
−a f(y)dy 6= 0. If the equality holds then there are

infinitely many solutions of the boundary value problem.
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u(x) = α +
x

2a

∫ a

−a
yf(y)dy +

∫ x

−a
(x− y)f(y)dy

where α is any constant.

12. Solve u′′ + u = f(x) with u(0) = u(π) = 0

13. Solve u′′ = f(x) with u(0) = 0 and u′(1) = 1

Eigenfunction expansion of the Green,s functions

Theorem 4. Let Lx be second order differential operator and let Lxu =

f(x), x ∈ [a, b] with the boundary conditions cos αu(a) − sin αu′(a) = 0 and

cos βu(b) + sin βu′(b) = 0. The we have the following: (i) the spectrum

consists entirely of eigenvalues (ii) The eigenvalues are countable and can be

listed in a sequence λ1 < λ2 < · · · < λn < · · · with limn→∞λn = 0 (iii) the

set of normalized eigenfunctions {ui} is an orthonormal basis for L2
w(a, b)

(iv) For the equation Lxu− λu = f(x) exactly one of the following hold:

(a) If λ is not an eigenvalue of L then the solution is unique for every f ∈
L2

w(a, b). This solution is given by

u(x) =
∞∑
i=1

(ui, f >

λi − λ
ui(x)

(b) If λ = λj is an eigenvalue then

u(x) = Cuj(x) +
∞∑
i6=j

< ui, f >

λi − λ
ui(x)

provided < f, uj >= 0 otherwise there is no solution. Here C is an arbitrary

constant

Problems

14. Consider the Sturm-Liouville eigenvalue problem consisting of the differ-

ential equations (Lxu + λu) = 0 and the boundary conditions B1(u) = 0 and

B2(u) = 0

(i) u′′ + λu = 0, u(0) = 0, cos β u(1) + sin βu′(1) = 0
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(ii)u′′ + λu = 0, u′(0) = 0, cos β u(1) + sin β u′(1) = 0

(iii) (xu′)′ + λxu = 0, u(a) = u(b) = 0

Higher dimensional Green’s functions:

Let ∇2 denote the Laplace operator in n− dimensions. Then ∇2 G(x) = δ(x)

where x ∈ Rn has solution (see Set 4, problem 8)

G(x) =

 cn r2−n n ≥ 3

c2 ln r n = 2

where

cn = − 1

(n− 2)An

, n ≥ 3

c2 =
1

2π

Here An is the surface area of the unit sphere in n dimensions given by

An = 2πn/2

Γ(n/2)
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More problems about the Green’s function technique:

1. Evaluate the Green’s function and solutions for each of the following

differential equations in the interval [0, 1].

(a) u′′ − k2u = f, u(0)− u′(0) = a, u(1) = b,

(b)u′′ = f, u(0) = u′(0) = 0,

(c)u′′ + 6u′ + 9u = 0, u(0) = 0, u′(0) = 1,

(d)u′′ + w2u = f, for x > 0 u(0) = a, u′(0) = 1,

(e)u4 = f, u(0) = 0, y′(0) = 2u′(1), u(1) = a, u′′(0) = 0

2. (From Hildebrand Advanced Calculus for Applications)

Consider u′′ + u = f(x) with u(0) = 0 and u(a) = 0 with sin a 6= 0

(a) Show that

u(x) =
∫ x

0
f(y) sin(x− y)dy + c sin x

where c is such that

c sin a = −
∫ a

0
f(y) sin(a− y)dy

Hence

u(x) =
1

sin a

[∫ x

0
f(y) sin(x− y) sin ady +

∫ a

0
f(y) sin(a− y) sin x dy

]
(b) Prove that

G(x, y) =


sin y sin(x−a)

sin a
y ≤ x

sin(y−a) sin x
sin a

x ≤ y

when sin a 6= 0

(c) If sin a = 0, show that the above equations has no solution unless f(x)

satisfies the condition ∫ a

0
f(x) sin(a− x)dx = 0
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in which case there are infinitely many solutions , each of the form

u(x) =
∫ x

0
f(y) sin(x− y)dy + C sin x

where C is an arbitrary constant

3. Solve u′′ = f(x) with u(0) = α and u′(a) = β and show that

u(x) = α + βx +
∫ a

0
G(x, y)f(y)dy

with

G(x, y) =

 −x x ≤ y

−y x ≥ y

4. Solve u′′ − u = f(x) with u(−∞) = 0 and u(∞) = 0 and show that

u(x) =
1

2

∫ ∞

−∞
e−|x−y| f(y)dy

5. Solve u′′ − 1
x
u′ = f(x) with u(0) = 0 and u(1) = 0 and show that

u(x) =
∫ 1

0
G(x, y)f(y)dy

with

G(x, y) =

 − (1−y2)x2

2y
x ≤ y

−y(1−x2)
2

x ≥ y
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