
SET 4

MATH 543: GENERALIZED FUNCTIONS

1. A function g(x) that is differentiable everywhere any number of times

is called a good function if it and its derivatives vanish as |x| → ∞ faster

than any power of 1
|x| . A function f(x) that is differentiable everywhere any

number of times is called a fairly good function if its modulus and that of its

derivatives does not increase faster than some power of |x| as |x| → ∞. A

sequence of good functions hn(x) defines a generalized function ϕ(x) through

the relation

lim
n→∞

∫ ∞

−∞
hn(x) g(x)dx =

∫ ∞

−∞
ϕ(x) g(x)dx

where g(x) is any arbitrary good function (test functions). Regular points of

the generalized functions are those if the sequences defining the generalized

functions converge uniformly to an ordinary function in some neighborhood

of these points. The limit of the corresponding sequence at these points are

called the local values of the generalized functions. For instance the sequence

hn(x) =
√

n/π e−x2
, (n = 1, 2, · · ·) converges uniformly to zero at any point

x with x 6= 0. Hence the delta function δ(x) = 0 locally for any x 6= 0.

Prove the following: If two equivalent sequences (sequences defining the same

generalized function) converge uniformly in the neighborhood of x = x0, they

determine the same local value of the corresponding generalized function.

2. Let an(x), bn(x), (n = 1, 2, · · ·) be sequences of good functions defining

, respectively the generalized functions α(x), β(x). Let g(x) be a good func-

tion and f(x) be a fairly good function. Prove the following:

(i) p an(x) + q bn(x) defines the generalized function pα(x) + qβ(x) where p

and q are arbitrary real numbers.

(ii) f(x) an(x) defines the generalized function f(x)α(x)

(iii) dan(x)
dx

defines the generalized function dα(x)
dx

.
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(iv)Give an example where two sequences an(x) and bn(x) define the general-

ized functions α(x) and β(x) respectively but their product does not converge

to a generalized function in the following sense

lim
n→∞

∫ ∞

−∞
an(x)bn(x)g(x)dx

Consider for instance the product sequences in problem 4.

3. Prove the following for the Dirac δ-function:

(i)
∫ b
a δ(x− c) f(x)dx = f(c) if a ≤ c ≤ b otherwise zero.

(ii) δ(ax) = 1
|a| δ(x)

(iii) f(x)δ(x) = f(0) δ(x)

(iv) δ(f(x)) =
∑N

n=1
δ(x−xi)

|df/dx|x=xi
, where f(x) has N− roots xi, i = 1, 2, · · ·N

(v) f(x)δ′(x) = −f ′(0) δ(x)

4. Prove that each of the following sequences define the Dirac δ-function:

(For all cases n = 1, 2, · · ·)
(i) D1

n = n√
π

e−n2 x2

(ii) D2
n = 1−cos nx

πnx2

(iii)D3
n = n

π
1

1+n2x2

(iv) D4
n = sin nx

πx
.

Prove the following:

(a)
∫∞
−∞ Di

n(x)dx = 1 , i = 1, 2, 3, 4 for all n

(b)limn→∞
∫∞
−∞ Di

n(x)f(x)dx =
∫∞
−∞ δ(x) f(x)dx = f(0), i = 1, 2, 3, 4.

5. Consider the following sequence:

hn(x) =


0 if x ≤ −1

n
(nx+1)

2
if −1

n
≤ x ≤ 1

n

1 if x ≥ 1
n

(i) Prove that hn(x) → θ(x) where θ(x) is the step function and

(ii) dhn(x)
dx

→ δ(x). Hence formally we may write that dθ(x)
dx

= δ(x)
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6. Prove the following:

(i) Let f(x) be a good function then its Fourier transform is also a good

function.

(i) Let f(x) be a good function. Then

G(t) =
1

sqrt2π

∫ ∞

−∞
f(x) e−itx dx

implies

f(x) =
1√
2π

∫ ∞

−∞
F (t) eitxdx

(iii) Let the sequence fn(x) (n = 1, 2, · · ·) define the generalized function

ϕ(x). Then the sequence of of Fourier transforms of the sequence fn(x)

Fn(t) =
1√
2π

∫ ∞

−∞
fn(x) e−itx dx

defines a generalized function Φ(t), which is called the Fourier transform of

ϕ(x).

7. (a) Let um(x), (m = 0, 1, 2, · · ·) be one of the classical orthonormal poly-

nomials with weight function w(x) and x ∈ [a, b]. The the sequence

hn(x) = w(x)
n∑

k=0

uk(x) uk(x0)

where x0 ∈ [a, b] defines the delta function δ(x− x0)

(b) Let un(x) = 1√
2π

e−inx , (n = 0, 1, 2, · · ·) with x ∈ [−π, π]. Prove that

the sequence

hn(x) =
n∑

k=0

uk(x) uk(x0)

where x0 ∈ [−π, π] defines also the delta function δ(x− x0)

You first prove that
∫
I hn(x)dx = 1 for all n, where I is the corresponding

interval. Then prove that limn→∞
∫
I f(x) hn(x)dx = f(x0)
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8. Higher dimensional delta functions can be defined. For instance in three

dimensions the delta function δ3(x) can be represented in terms one dimen-

sional delta functions. The way we achieve this is to use the general identity∫
V δ3(x)d3x = 1. Hence using this property prove that

(a) In Cartesian coordinates δ3(x) = δ(x) δ(y) δ(z)

(b) In spherical coordinates δ3(x) = 1
r2 sin θ

δ(r) δ(θ) δ(ϕ)

(c) In cylindrical coordinates δ3(x) = 1
ρ
δ(ρ) δ(z) δ(ϕ)

(d) In three dimensions verify the following identity and find the constant α3

in the following equation

∇2 1

|x|
= α3 δ3(x)

where ∇2 is the three dimensional Laplace operator (Laplacian).

(e) The above Laplace equation can be written for in any dimension n

∇2 1

|x|n−2
= αn δn(x)

where δn(x) is the n dimensional δ function and αn are just constants. Here

n 6= 2. For n = 2 we have

∇2 log |x| = α2 δ2(x)

Find αn, n 6= 2 and α2
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