MATH 543 METHODS OF APPLIED MATHEMATICS I First Midterm Exam

November 1, 2010 Monday 13.40-15.30., SAZ02

QUESTIONS:

(1). (a). Give a definition of a basis, (b) state the Bessel's inequality, (c) State the theorem on Parseval's relation (Parseval's identity) and prove it.

(2). Prove that the Fourier coefficients of function in $L^2_w(a, b)$ form a Hilbert space. First prove the space of such coefficients form an inner product space then prove that this space is complete. This space is known as l_2 .

(3). Let the classical orthogonal polynomials be $C_n(x)$, with $x \in [a, b]$ and weight function w(x) > 0 for all $x \in [a, b]$. Prove that C_n 's have n number real distinct roots in [a, b].

(4). The sequence $D_n(x) = \sqrt{\frac{n}{\pi}} e^{-nx^2}$, $(n = 1, 2, 3, \dots)$. defines a distribution over $(-\infty, \infty)$, called the Dirac δ -function, $\delta(x)$. Prove that

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1,$$
$$\int_{-\infty}^{\infty} \delta(x) \, f(x) \, dx = f(0),$$

for all good functions f(x).