SET 2

MATH 543: ORTHOGONAL FAMILIES AND BASIS

1. Prove that the Fourier coefficients of any $|f\rangle \in L^2_w(a, b)$ form a Hilbert space. First prove that the space of such coefficients form an inner product space then prove that this inner product space is complete. This space is l_2 (see set 1). Prove that l_2 and $L^2_w(a, b)$ are isomorphic. See page 196 of DK. 2. Prove that all finite dimensional inner product spaces are complete. See page 182-183 of DK.

3. Explain the importance of Bessel's inequality and Parseval's relation.

4. Assume that there exists an orthonormal basis $|e_i\rangle$, $(i = 1, 2, \cdots)$ in $L^2_w(a, b)$. Then, for any $|f\rangle \in L^2_{a,b}$, the sequence of vectors

$$|f_k\rangle = \sum_{i=1}^k f^i |e_i\rangle$$

with

$$f^i = \langle e_i | f \rangle$$

has $|f\rangle$ as the limit vector in the sense that

$$\lim_{k \to \infty} \rho(|f\rangle, |f_k\rangle) = 0$$

5. Prove that the set of orthonormal vectors $|e_i\rangle$ form a basis of $L^2_e(a, b)$ if and only if the Fourier coefficients wrt $|e_i\rangle$ satisfy the Parseval's relation. 6. Prove that any orthogonal family $|e_i\rangle$, $i = 1, 2, = \cdots$ in $L^2_w(a, b)$ is linearly independent

7. If (e_1, e_2, \dots, e_n) is a finite orthonormal family of functions in $L^2_w(a, b)$ and $f \in L^2_w(a, b)$, then

$$||f - \sum_{k=1}^{n} f^{k} |e_{k} > ||$$

has its minimum value when $f^k = \langle f | e_k \rangle$ and

$$\sum_{k=1}^{n} | < f | e_k > |^2 \le ||f||^2$$

8. Let $f, g \in L^2_w(a, b)$ prove that $|\langle f|g \rangle| < \infty$.

9. (Gram Schmidt Orthogonalization Process (GS)). Let $|g_i\rangle$, $i = 1, 2, \cdots$ be linearly independent set of vectors in $L^2_w(a, b)$. We can construct an orthogonal set $|u_i\rangle$, $(i = 1, 2 \cdots)$ from the following (prove this statement)

$$|u_1\rangle = |g_1\rangle, \quad |u_i\rangle = |g_i\rangle - \sum_{k=1}^{i-1} \alpha_k |u_k\rangle$$
 (1)

where $\alpha_k = \frac{\langle g_k, u_k \rangle}{||u_k||^2}$ for k > 1. Then the orthonormal set is given by $|e_k \rangle = \frac{|u_k \rangle}{||u_k||}$

10. Let I = [-1, 1], w = 1 and $(g_i) = (1, x, x^2, \cdots)$ be the linearly independent set in $L^2(-1, 1)$. Find the orthonormal set $|e_i\rangle$ obtained from this linearly independent set. This set is Called the Legendre polynomials.

11. Prove the following proposition: The sequence of orthonormal vectors $\{|e_i\rangle\}$ obtained by the orthogonalization (GS Method) of a linearly independent vectors $|g_i\rangle$ of the space $L^2_w(a, b)$ is a basis of the space if and only if each vector $|f\rangle \in L^2_w(a, b)$ is a limit vector of a sequence of linear combinations of the vectors $|g_i\rangle$.

12. In $L^2_w(a, b)$ any linearly independent set of vectors $(g_i > s)$ in the previous problem) may be considered as a basis of this space if an arbitrary vector of $L^2_w(a, b)$ can be expressed as a limiting vector of linear combination of basis vectors. Prove that the set $\{1, x, x^2, \cdots\}$ form a basis of continuous functions in [a, b].

13. Let $f \ge L_w^2(a, b)$ can be expressed as a limiting vector of a sequence of vectors that can be expressed as a linear combination of continuous functions. Prove that , using this assertion and the previous problem, any $|f \ge L_w^2(a, b)$ can be approximated by suitable polynomials. This means that given $\varepsilon > 0$ there exists a positive integer m and a polynomial p_m such that $||f - p_m|| < \varepsilon$

14. Definition: A complete orthonormal sequence $\{|e_i\rangle, i = 1, 2, \dots\}$ in the space $L^2_w(a, b)$ is called a basis of $L^2_w(a, b)$. Prove the following proposition. Let $\{|e_i\rangle\}, i = 1, 2, \dots\}$ be an orthonormal sequence in $L^2_w(a, b)$. The following statements are equivalent:

1. { $|e_i \rangle, i = 1, 2, \cdots$ } is complete. 2. $|f \rangle = \sum_{k=1}^{\infty} \langle e_k | f \rangle | e_i \rangle$, for all $|f \rangle \in L^2_w(a, b)$ 3. $\sum_{k=1}^{\infty} |e_i \rangle \langle e_k | = \mathbf{1}$. 4. $\langle f | g \rangle = \sum_{k=1}^{\infty} \langle f | e_k \rangle \langle e_k | g \rangle$, for all $|f \rangle, |g \rangle \in L^2_w(a, b)$. 5. $||f||^2 = \sum_{k=1}^{\infty} |\langle e_k | f \rangle|^2$, for all $|f \rangle \in L^2_w(a, b)$.

Hint: Use the following directions $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$.