MATH 543 METHODS OF APPLIED MATHEMATICS I First Midterm Exam

October 26, 2007

Thursday 17.40-19.40, SAZ-18

QUESTIONS: Choose any three out of the following four problems 1a. Prove that any orthonormal family $|e_i\rangle$, $i = 1, 2 \cdots$ in $L^2_w(a, b)$ is linearly independent,

1b. Let $|f\rangle$ and $|g\rangle$ be in $L^2_w(a,b)$ prove that $|\langle f|g\rangle| < \infty$, **1c.** Prove that the set of independent vectors $|e_i\rangle$ (i = 1, 2, ...) form a basis of $L^2_w(a,b)$ if and only if the Fourier coefficients with respect to the basis $|e_i\rangle$ satisfy Parseval's relation

2. Define $T_n(x) = \cos(n \cos^{-1} x), n \ge 1, T_0 = 1$. Show that a) $T_n(x)$ is an *n*-th degree polynomial b) $\int_{-1}^{1} T_n(x) T_m(x) (1 - x^2)^{-1/2} dx = 0$ when $m \ne n$, $= \pi/2$ when m = nc) $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ d) $(1 - x) \frac{d^2}{dx^2} T_n(x) - x \frac{d}{dx} T_n(x) + n^2 T_n(x) = 0$

3. Consider the following sequence:

$$h_n(x) = \begin{cases} 0 & \text{if } x \le \frac{-1}{n} \\ \frac{(nx+1)}{2} & \text{if } \frac{-1}{n} \le x \le \frac{1}{n} \\ 1 & \text{if } x \ge \frac{1}{n} \end{cases}$$

- (a) Prove that $h_n(x) \to \theta(x)$ where $\theta(x)$ is the step function and
- (b) $\frac{dh_n(x)}{dx} \to \delta(x)$. Hence formally we may write that $\frac{d\theta(x)}{dx} = \delta(x)$

4. Prove the following:

(a) Let f(x) be a good function then its Fourier transform is also a good function.

(b) Let f(x) be a good function. Then

$$G(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-itx} dx$$

implies

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(t) e^{itx} dx$$