MATH 543 METHODS OF APPLIED MATHEMATICS I First Midterm Exam

October 20, 2005

Thursday 08.00-10.30, SAZ21

QUESTIONS: Choose any two out of the last three problems 1. Let $P_n(x)$, $n = 0, 1, 2, \cdots$ be the Legendre polynomials defined through the Rodriguez formula

$$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n$$

(Further information: $w = 1, s = 1 - x^2$, and

$$k_n = \frac{2^n \Gamma(n+1/2)}{n! \Gamma(1/2)}, \ k'_n = 0, \ h_n = n+1/2.$$

(a) Show that

$$\int_{-1}^{1} P_n(x) h_m(x) \, dx = 0, \ m < n$$

where $h_m(x)$ is a polynomial of degree m. Discuss the case when $m \ge n$. (b) Prove that $P_n(x)$ is a polynomial of degree n.

(c) Prove the following recursion relation

$$(n+1)P_{n+1} - (2n+1)xP_n + nP_{n-1} = 0$$

(d) Prove that

$$(1-x^2)\frac{d^2}{dx^2}P_n - 2x\frac{d}{dx}P_n + n(n+1)P_n = 0$$

2a. Prove that for any good function f(x) and $\epsilon_2 > \epsilon_1$

$$\int_{\epsilon_1}^{\epsilon_2} \delta(x-c) f(x) dx = f(c), \ \epsilon_1 < c < \epsilon_2$$

2b. Let $h_n(x)$, $(n = 0, 1, 2, \dots)$ be a sequence defined by

$$h_n(x) = \sum_{k=0}^n P_k(x) P_k(y)$$

where $x, y \in [-1, 1]$ and $P_k(x)$, $(k = 0, 1, 2, \cdots)$ are the Legendre polynomials. Prove that this sequence defines the Dirac δ -function.

3a. Prove that the Fourier transform of a good function is also a good function.

3b. Prove that the derivative of a generalized function is also a generalized function.