MATH 543 METHODS OF APPLIED MATHEMATICS I First Midterm Exam

November 09, 2004 Thursday 18.00-20.00, SAZ-18

QUESTIONS: Choose any three out of the following four problems 1a. Prove that any orthonormal family $|e_i\rangle$, $i = 1, 2 \cdots$ in $L^2_w(a, b)$ is linearly independent,

1b. Let $|f\rangle$ and $|g\rangle$ be in $L^2_w(a,b)$ prove that $|\langle f|g\rangle| < \infty$,

1c. Prove that the set of independent vectors $|e_i \rangle$ (i = 1, 2, ...) form a basis of $L^2_w(a, b)$ if and only if the Fourier coefficients with respect to the basis $|e_i \rangle$ satisfy Parseval's relation

2a. Give a definition of a *bases* in a vector space and explain its importance, **2b.** Explain the importance of *completeness* in a vector space (in particular in $L^2_w(a, b)$),

2c. Let *L* be differential operator, of order *n*, acting on a function space *U*. Let Lu = f defines a boundary value problem in [a, b] with the boundary conditions $B_i(u) =$, $i = 1, 2, \dots, n-1$. Define the *adjoint boundary value problem*.

3. Hermite polynomials $H_n(x)$, $(n = 0, 1, 2 \cdots)$ where $x \in (-\infty, \infty)$ are defined through

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

with $w(x) = e^{-x^2}$, s(x) = 1, $k_n = 2^n$, k' = 0 and $h_n = 2^n n! \sqrt{\pi}$. **3a**. Prove that

$$\frac{d^2}{dx^2}H_n(x) - 2x\frac{d}{dx}H_n(x) + 2nH_n(x) = 0$$

3b. Prove that

$$H_{n+1}(x) = 2x H_n(x) - 2nH_{n-1}(x)$$

3c. Prove that H_n 's are orthogonal to any polynomial of order less or equal to n-1.

4a. The sequence $D_n(x) = \sqrt{\frac{n}{\pi}} e^{-nx^2}$, $(n = 1, 2, \cdots)$ defines a distribution over (∞, ∞) called the Dirac δ -function $\delta(x)$. Prove that for all *good functions* f(x) and for all $\varepsilon > 0$

$$\int_{-\varepsilon}^{\varepsilon} f(x) \,\delta(x) \, dx = f(0)$$

4b. Find the fourier transform of $\delta(x)$ **4c**. Find the solution of

$$u''(x) + k^2 u(x) = \delta(x - a), \ x \in [0, c]$$

where c > a > 0 with u(0) = 0 and u'(c) = 0 (Here $ka \neq 0, \pm \pi, \pm 2\pi, \cdots$)