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Chapter 13

Differential Calculus and Variational
Methods

In many of the preceding chapters, we studied linear spaces of functions and linear
operators acting on them. This theory provides a natural framework for the major-
ity of linear equations that arise in applied mathematics. Many problems lead to
nonlinear equations that may be formulated in terms of nonlinear maps acting on
Banach spaces. There is no general theory of nonlinear maps that is as powerful as,
for example, the spectral theory of linear operators. If, however, we can approxi-
mate a nonlinear map locally by a linear map, then we can reduce various questions
about nonlinear problems to ones about associated linear problems. The lineariza-
tion of nonlinear maps is one of the most useful and widely applicable methods for
the study of nonlinear problems, and accounts for the importance of linear analysis
in nonlinear settings.

13.1 Linearization

Linearization is closely connected with differentiation: the central idea of differ-
entiation is the local approximation of a nonlinear map by a linear map. A map
f : X = Y between Banach spaces X, Y is differentiable at x € X if there is a
bounded linear map f'(z) : X — Y such that

flx+eh) = f(z) +ef' (x)h + ole) (13.1)

as € — 0 for every h € X. Here, o(e€) stands for a term that approaches zero faster
than € as € = 0. We call the linear map f'(z) the derivative of f at x.

In this section, we describe some problems where the linearization of a nonlinear
map is useful. First, suppose that we want to find solutions z € X of a nonlinear
equation of the form

f(@) =y, (13.2)
where f: X — Y is a map between Banach spaces X, Y, and y € Y is given. If we
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380 Differential Calculus and Variational Methods

know a solution zy € X for a particular yo € Y, meaning that

f(@o) = yo, (13.3)

then we can try to solve (13.2) when y is close to yo by looking for a solution x that
is close to zg. We write y as

Y = Yo + €Y1, (13.4)

where € is a small real or complex parameter. If f is differentiable at zo, we may
look for a solution z(e) of the form

z(€) = o + €x1 + 0(€). (13.5)
Then, using (13.1), (13.4), and (13.5) in (13.2), we get

f(@o) + ef'(xo)z1 = yo + ey1 + o(e).

From (13.3), the leading order terms in € are equal. Cancelling the leading order
terms, dividing the equation by €, and letting € — 0, we find that z; and y; satisfy

f'(@o)zr =y (13.6)

If f'(zo) is nonsingular, then we can solve (13.6) for z;. It is then reasonable to
expect that we can also solve the nonlinear equation (13.2) when y is sufficiently
close to yo. The inverse function theorem states that this expectation is correct,
provided that f is continuously differentiable at zg.

A second application of linearization concerns the stability of solutions of a
nonlinear evolution equation of the form

2= f(z),  2(0) = o, (13.7)

where the solution z : [0,00) — X takes values in a Banach space X, and f : X - X
is a vector field on X. For some equations, such as partial differential equations,
the vector field f may only be defined on a dense subspace of X. A point T € X is
an equilibrium solution, or stationary solution, or fized point of (13.7) if

f@=o.

In that case, the constant function z(t) = ¥ is a solution of (13.7). Even though an
equilibrium solution is an exact solution of (13.7), it may not be observed in practice
if it is unstable, meaning that a small perturbation of the equilibrium grows in time.

To study the effect of a small perturbation on the equilibrium state, we look for
solutions of (13.7) of the form z(t) = T + ey(t), where € is small, and linearize the
right hand side of (13.7) about = Z. Neglecting higher order terms, we find that
y satisfies the linear evolution equation

ye = ' (@) y. (13.8)
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It is reasonable to expect that, under suitable conditions on f, the study of solutions
of (13.8) will provide information about the stability of the equilibrium solution  of
(13.7). Similar ideas may be used to study the stability of time-dependent solutions
— for example, time-periodic solutions — of (13.7), but we will not describe them
here.

As a third example of linearization, we consider the minimization of a functional
I: X — R We suppose that I is bounded from below and look for a minimizer
T € X such that

I(Z) = inf I(x). 13.9

(7) = inf I(z) (13.9)
We have already discussed the direct method for solving variational problems, in
which we choose a minimizing sequence and attempt to show that it has a subse-
quence that converges to a minimizer. An alternative approach, called the indirect
method, is to look for critical points of I, which are solutions of the equation

I'(z) = 0. (13.10)

If I is differentiable, then any minimizer that is an interior point of the domain of
I is a critical point of I. A point z at which I'(z) # 0 is called a regular point.
Conversely, if an equation f(z) = 0 can be written in the form (13.10) for some
functional I, then we may be able to use the associated variational principle (13.9)
to construct solutions. When applicable, variational methods are one of the most
powerful methods for analyzing equations.

The above examples illustrate the need for a notion of the derivative of a map
between Banach spaces. There are many different definitions of the derivative.
The most important is the Fréchet derivative, which generalizes the notion of the
derivative or differential of a vector-valued function of several variables. We will
also introduce the Gateaux derivative, which generalizes the notion of the directional
derivative.

13.2 Vector-valued integrals

In this section, we define the derivative and the Riemann integral of a vector-valued
function of a real variable, and prove some of their basic properties. The definitions
are essentially identical to the ones in elementary calculus for a real-valued function.
We will need these tools, especially the estimate in Theorem 13.4, to prove results
about differentiable functions, such as the inverse function theorem.

A vector-valued function of a real variable is a mapping from a subset of the
real numbers into a Banach space, which could be finite or infinite-dimensional.
Geometrically, such a function defines a parametrized curve in the Banach space.
The derivative of the function is the tangent, or velocity, vector of the curve.
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Definition 13.1 A function f : (a,b) — X from an open interval (a,b) into a
Banach space X is differentiable at a < t < b, with derivative f'(t) € X, if the
following limit exists in X:

fl(t) — lim f(t+h) _f(t)‘

h—0 h

The function f is differentiable in (a, b) if it is differentiable at each point in (a, b),
and continuously differentiable in (a,b) if f’: (a,b) — X is continuous.

Next, we define the Riemann integral of a vector-valued function f : [a,b] —» X
defined on a closed, bounded interval [a,b]. We say that ¢ : [a,b] = X is a step
function if there is a partition a = tg < t; < ... <t, = b of the interval [a, b], and
constant vectors ¢; € X, with ¢ = 1,...,n, such that

p(t) = ¢ for t;_1 <t < t;. (13.11)

We denote the space of step functions from [a,b] into X by S([a,b]), and regard
it as a subspace of the Banach space B([a, b]) of bounded functions f : [a,b] = X
equipped with the sup-norm

I fllc = sup [If(®)Il-
a<t<b

We define a linear map
A:S([a,b]) - X

that takes a step function ¢, defined in (13.11), to its Riemann integral by

n

A(p = Z (ti — tz’—l) C;.

i=1

Thus, the integral of a step function is a finite linear combination of the values ¢;
of the step function. The vectors ¢; need not be parallel, and the integral need
not be parallel to any of the ¢;’s, but it does lie in the linear subspace spanned by
{c1,...,¢n}. The map A is well defined, since its value does not depend on how the
step-function is represented. From the triangle inequality, we have

n
11 < (g, le) D= i) = o6 =),
so A is bounded. We denote the closure of S([a,b]) in B([a,b]) by R([a,b]). El-
ements in the space R([a,b]) of uniform limits of step functions are sometimes
called regulated functions. Theorem 5.19 implies that there is a unique bounded
linear extension of A to R([a,b]), which we also denote by A : R([a,b]) = X. For
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f € R([a,b]), we call Af the Riemann integral of f, and write it as

b
Af:/ (1) dt.

The uniform continuity of a continuous function on the compact interval [a, b]
implies that R([a,b]) contains the space C([a, b]) of continuous functions from [a, b]
to X, so every continuous function is Riemann integrable (see Exercise 13.11). The
space R([a, b]) also contains the piecewise continuous functions, which have a finite
number of jump discontinuities in [a,b], meaning that the left and right limits of
the function exist at its points of discontinuity. In fact, it is possible to show [9]
that a function f is in R([a,b]) if and only if the left and right hand limits,

Jim f(¢+h),  lim f(E+h),

exist at every point of [a,b] (except, of course, for the left limit at a and the right
limit at b). The Riemann integral can be defined on a larger class of functions
than the regulated functions, but once one has to deal with functions that are less
regular than continuous or piecewise continuous functions, it is preferable to use
the Lebesgue integral. One can also define integrals of functions taking values in an
infinite-dimensional Banach space for which the Riemann sums, or the integrals of
approximating simple functions, converge weakly instead of strongly. We will not
consider such integrals in this book.

The estimate

b b
/ () dt]| < / 17 ()l dt < M(b - a), (13.12)
where
M= sup [IfD)I,
a<t<b

follows from the continuity of A and the corresponding estimate for step functions.
The usual algebraic properties of the Riemann integral also follow by continuity
from the corresponding properties for step functions.

Next, we prove that if the derivative of a function is zero, then the function is
constant. To do this, we use linear functionals on X to reduce to the real-valued
case.

Proposition 13.2 If f : (a,b) = X is differentiable in (a,b) and f' = 0, then f is
a constant function.

Proof. Let ¢ : X — R be a bounded linear functional on X. We define f, :
(a,b) = R by
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The chain rule (see Theorem 13.8 below) implies that f, is differentiable and has
zero derivative. The mean value theorem of elementary calculus (see Exercise 1.14)
implies that f, is constant. Hence, for every ¢ € X* and s,t € (a,b) we have

@ (f(s) = f(B) = fo(s) = fo(t) = 0.
It follows from the Hahn-Banach theorem and Exercise 5.6 that f(s) = f(¢) for all
s,t € (a,b), so f is constant. O

The fundamental theorem of calculus holds for vector-valued maps.

Theorem 13.3 (Fundamental theorem of calculus) Suppose that X is a Ba-
nach space.

(a) If f : [a,b] — X is continuous, then

F = [ 16)ds

is continuously differentiable in (a,b) and F' = f.
(b) If f is continuously differentiable in an open interval containing [a, b], then

b
F) = f(a) = / £yt (13.13)

Proof. To prove the first part, suppose that @ < t < b and h is sufficiently small.
Then
t+h

F(it+h)-F(t) = f(s)ds.

It follows that
_ i+h
PEB=E0 g =3 [ 06 - o) s

Taking the norm of this equation, and using (13.12), we obtain that

H F(t+h) — F(t)

W — f@)| < sup{[lf(s) - f@I [t <s<t+h} =0

as h — 0, by the continuity of f. Thus F is differentiable in (a,b), with continuous
derivative f.

To prove the second part, suppose that f is continuously differentiable, and
define

t
gmz/ﬁ@w

Then, from the first part, we have that g is continuously differentiable and ¢’ = f’,
so that the derivative of (f — g) is zero. Since g(a) = 0, Proposition 13.2 implies
that f(t) — g(¢t) = f(a). Evaluation of this equation at ¢t = b gives (13.13). O



Vector-valued integrals 385

The mean value theorem for real-valued functions does not hold for vector-
valued functions, but the following estimate substitutes for the mean value theorem
in many contexts.

Theorem 13.4 (Mean value) If f is continuously differentiable in an open inter-
val that contains the closed, bounded interval [a, b], with values in a Banach space,
then

1£(®) = f(a)| < M (b—a) where M = sup [If'(t)]-
a<t<b

Proof. Using (13.12) and (13.13), we have

/a b fl(t)dt

As an application of vector-valued integrals, we briefly consider the solution of
a linear evolution equation

b
1£(b) = fla)ll = S/ '@ dt < M(b—a).

O

x = Az, z(0) = =, (13.14)

where A : X — X is a bounded linear operator on a Banach space X. For example,
if X = R", then (13.14) is an n X n system of ODEs. Similar ideas apply to
PDEs, where A : D(A) C X — X is an unbounded linear operator that generates
a Cp-semigroup. Let

y(A) = /000 e Ma(t) ds

denote the Laplace transform of z : [0,00) — X. Then, taking the Laplace trans-
form of (13.14), and integrating by parts, we find that

(M — A)y = =o.
Thus, for A € p(A), we have
y(A) = R(M)zo,

where R(X\) = (M — A)™" is the resolvent operator of the generator A. The resol-
vent operator is related to the solution operator T'(t) = e4! by

R(\) = /000 e T (s)ds,

meaning that the solution operator is the inverse Laplace transform of the resolvent.
A nonhomogeneous linear evolution equation may be solved in terms of the solution
operator of the homogeneous equation (see Exercise 13.12).
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13.3 Derivatives of maps on Banach spaces

In this section, we define the derivative of a map between Banach spaces. The
dimensions of the Banach spaces play little role in what follows, and a geometric
understanding of the derivative is essential for a clear understanding of multivariable
calculus on R™.

In order to generalize the notion of the derivative of a function of a real variable
to a function defined on a Banach space, it is important to view the derivative in a
slightly different way than is usual in elementary calculus. There, the derivative of
a differentiable function f : (a,b) — R is typically thought of as another function
f": (a,b) > R Instead, we think of the derivative f'(z) of f at a point z as a
linear map that approximates f near z. For real-valued functions, this linear map
is just multiplication by the value of the derivative at x.

Definition 13.5 A map f : U C X — Y whose domain U is an open subset of a
Banach space X and whose range is a Banach space Y is differentiable at x € U if
there is a bounded linear map A : X — Y such that

£+ h) — f(2) — AR _

lim

Jimy ] 0-

This definition of the derivative is sometimes called the Fréchet derivative, to
distinguish it from the directional, or Gateaux, derivative in Definition 13.9 below.
When we refer to the derivative of a function, without other qualifications, we will
mean the Fréchet derivative, but there is little consistency in the literature in the
usage of the words “derivative,” “differential,” and “differentiable.”

We can restate the definition using the following o-notation. Suppose that

r:UCcX—Y

is a function whose domain U is a neighborhood of the origin in a Banach space X,
with values in a Banach space Y. We write

r(h) = o(h™) as h — 0,

pronounced r is “small oh” of A", if

Lo I _

h—0 ||h||™

)

meaning that ||r(h)|| approaches zero as h — 0 faster than ||h||”. We also write
r(h) = O(h"™) as h = 0,
pronounced r is “big oh” of h™, if there are constants § > 0 and C > 0 such that

7l < ClIA[I"  when ||h]| <.
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If f,g:UCX =Y, we write

f(h) =g(h)+o(h™) if f(h)—g(h)=o0(h") ash—0,
F(h) = g(h) + O(h™) if f(h) — g(h) = O(h™) as h— 0.

Thus, o(h™) denotes a term that approaches zero faster than [|h||™, and O(h")
denotes a term that is bounded by a constant factor of ||h||™ near 0.

The function f is differentiable at z if and only if there is a bounded linear map
A: X — Y such that

fx+h)=f(z)+ Ah +o(h) as h — 0.

If such a linear map exists, then it is unique (see Exercise 13.1), and we write it as
A = f'(z). If f is differentiable at each point of U, then

f U= B(X,Y)

is the map that assigns to each point 2 € U the bounded linear map f'(z) : X - Y
that approximates f near x. We say that f is continuously differentiable at x if
the map f’ is continuous at x, where the domain U is equipped with the norm
on X and the range B(X,Y) is equipped with the operator norm. We say that f
is continuously differentiable in U if it is continuously differentiable at each point
x € U. Other common notations for the derivative are df, Df, and f;.

Example 13.6 Suppose that f : U C R* — R™. We use coordinates (1, Z2,---,Zn)

on R” and (y1,¥2,-.-,Ym) on R™. Then the component expression for f is
Yy = f1($17w27"'7xn)7
y2 = fo(z1,22,...,20),
Ym = fm(xl,.Z'Q,...,.Z'n),

where f; : R — R. We assume that the partial derivatives of the coordinate
functions f; exist and are continuous in U. Then it follows from the remark below
Theorem 13.11 that f is differentiable, and the matrix of f' : U — B(R",R™) is
the Jacobian matriz of f:

8f1 /63&'1 8f1/63&'2 e 8f1/6arn
o O0f2/0x1 Ofz/0xs ... 0Ofs/0xy
Ofn)Ozr Ofn)Ozs ... Ofn/Omn

Example 13.7 Let 2 be a smooth domain in R*, X = H'(), and Y = L}(Q).
We consider real-valued functions u : 2 — R for simplicity. We will show that the
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quadratic map f : X — Y defined by

_lo 2. Lo

is differentiable, and find its derivative. We have
flu+h) = f(u) + A(wh + f(h),
where A(u) : H'(Q) — L'(Q) is defined by
A(u)h = Vu - Vh + uh.
From the Cauchy-Schwarz inequality, we have
ARl < el Bl

so A(u) is a bounded linear map. The term f(h) = o(h) as h — 0, since

1 1
17l = 5 [ (VAP +12) do = 3 lhl,
Q

SO

17 ()l _
Tl

Thus, f is differentiable in H'(Q2), and f'(u) = A(u).

[|hllgr — O as h — 0.

One of the most important results concerning derivatives is the chain rule. Ge-
ometrically, the chain rule states that the linear approximation of the composition
of two differentiable maps is the composition of their linear approximations.

Theorem 13.8 (Chain rule) Suppose that X, Y, Z are Banach spaces, and
f:UCX =Y, g:VCcY = Z,

where U and V are open subsets of X and Y, respectively. If f is differentiable at
z € U and g is differentiable at f(z) € V, then g o f is differentiable at z and

(g0 f) (z) =g (f(2)) f' ().
Proof. By the differentiability of f, we have
f@+h) =f@)+ f'(@)h+rh),
where r(h)/||h]| = 0 as h — 0. Let y = f(z) and k = f'(z)h + r(h). Then
9y +k) =g(y) + 9'(W)k + s(k),
where s(k)/||k|| — 0 as k — 0. Hence,

g(f(x+h) =g +4g ) f'(@)h+th),
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where

t(h) = g ()rh) +s(k)
= ¢ (f@)rh) +s(f'(@)h+rh).

Since f'(z) and ¢’ (y) are bounded linear maps, we have

It llg" @) Hir®I (sl (Ilf'(w)ll||h||+||T(h)||)_
1] — 1] Il 1]
It follows that ||t(h)||/||k|| = O as h — 0, which proves the result. O

A useful way to compute the derivative of a function is in terms of its directional
derivative, or Gateaur derivative. For example, the matrix of the derivative of a
map on R” is the Jacobian matrix of its partial derivatives.

Definition 13.9 Let X and Y be Banach spaces, and f : U C X —» Y, where U
is an open subset of X. The directional derivative of f at x € U in the direction
h € X is given by
th) —
5f(wsh) = lim L&) = (@) (13.15)

t—0 t

If this limit exists for every h € X, and ff,(z) : X — Y defined by fi(x)h = 6 f(z; h)
is a linear map, then we say that f is Gdteaur differentiable at x, and we call ff,
the Gateauz derivative of f at x.

The directional derivative may also be written as

d
0f(z;h) = —f(z +th)
dt =0
If f is Fréchet differentiable at x, then it is Gateaux differentiable at z (Exer-
cise 13.4), and the Fréchet derivative f'(x) is given by

f'@)h = 6f(z; h).

The converse is not true. Even for functions defined on R?, the existence and
linearity of directional derivatives does not imply the differentiability, or even the
continuity, of the function (see Exercise 13.5). To give a sufficient condition for
the existence of directional derivatives to imply differentiability, we first prove the
following immediate consequence of the mean value theorem in Theorem 13.4.

Theorem 13.10 Suppose that f : U C X — Y is a Gateaux differentiable function
from an open subset U of a Banach space X to a Banach space Y. If x,y € U and
the line segment {tz + (1 —t)y | 0 < ¢t < 1} connecting z and y is contained in U,
then

If(z) = fWIl < Mllz —yl| where M = sup ||fg(tz+(1-t)y)ll-
0<t<1
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Proof. The definition of the Gateaux derivative implies that the function

h(t) = f (tz + (1 - t)y)

is differentiable in an open interval that contains [0,1] and

W(t) = fg (te + (1 = t)y) (= — y).

The result then follows from an application of Theorem 13.4 to h. O

Theorem 13.11 Suppose that f : U C X — Y is a Gateaux differentiable function
from an open subset U of a Banach space X to a Banach space Y. If the Gateaux
derivative ff; : U C X — B(X,Y) is continuous at z € U, then f is Fréchet
differentiable at = and f'(z) = f§(x).

Proof. For sufficiently small ||h||, we define

r(h) = f(x + h) — f(z) — f&(z)h. (13.16)

The Géateaux differentiability of f implies that r is Gateaux differentiable, and
ra(h) = fo(z + h) = f5(@).
From Theorem 13.10, we have that
lIr(R)I| < M(R)IIR,
where

M(h) = sup |Irg(th)]l.
0<t<1
The continuous Géteaux differentiability of f implies that M(h) — 0 as h — 0, so
r(h) = o(h) as h — 0. Equation (13.16) implies that f is Fréchet differentiable at
z, and f'(z) = fi(z). O

A more refined argument shows that f is Fréchet differentiable at a point if
its directional derivatives §f(z;h) exist in a neighborhood of the point and are
uniformly continuous functions of z and continuous functions of h (see Lusternik
and Sobolev [33], for example).

Next, we consider some examples of directional derivatives.

Example 13.12 Let X = LP(Q), where 1 < p < co. We will compute the Gateaux
derivative of the LP-norm. We define F': X — R by F'(u) = [|u[|}. Then

OF (u;h) = %/|u+th|p

t=0
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First, we show that we can interchange the derivative and the integral by the dom-
inated convergence theorem (Theorem 12.35). For each z € X we have

d

p — i L P _ p
u@) + th(@)P| = lim - (u(@) + th()P? — fu(@)?)

t=0

Since the function z + |z|P is convex for p > 1, we have
|u(z) + th(z)|? < tlu(z) + h(z)|P + (1 —t)|u(z)|P for0 <t < 1.

Hence

u(@) P ~ W | a) 4 bl ~ futa)P.

and similarly

p p o (@) +th(@)|P — |u(z)?
u(@)]” — [u(z) — h(2)|” < : :

These two inequalities imply that

lu(z) + th(z)|P — |u(z)?
t

<lu(@)P + |u(z) + h(@) [P + |u(z) — h()P. (13.17)

The left-hand side of (13.17) converges pointwise a.e. as t — 0, since

lim © - l[u(@) + th(z)? = [u(@)]”

t—0+

4 )+ @ ~ |

= But@)p? (W@ (o) + u(@F@)

where we write |z|? as (2%)P/? before differentiating. The right-hand side of (13.17)
is in L'. Therefore, the dominated convergence theorem implies that

lim — /|Iu ) + th(z)[P — /Iu I”2 w(@)h(z) + u(z )%)-

t—0 ¢

Hence, the directional derivative is given by
OF (u; h) /|u|’J % (@h + uh) .

Since |u[P~! € L? when u € L? where p' is the Holder conjugate of p, Holder’s
inequality implies that § F'(u; -) is a bounded linear functional on L?. It follows that
F' is Gateaux differentiable.

Example 13.13 Suppose that ¢ : R — R is a continuous function such that

lo(t)] < a+ b|t|P/? (13.18)
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for suitable constants a,b > 0 and p,q > 1, and 2 is a bounded, measurable subset
of R”. We define a nonlinear map N, : LP(Q) — L(Q2) by

(Nou) (z) = ¢ (u(z)) .-

Thus, N, is the operation of composition with the function ¢, regarded as a map
on LP. Such an operator is called a Nemitski operator. It follows from (13.18) that
N, is bounded, meaning that it maps bounded sets in L? into bounded sets in L4.
It is also possible to show that if u, — w in L, then N, (u,) = Ny(u) in L7, so N,
is continuous. This continuity does not follow from the boundedness of N, because
N, is nonlinear.

Now suppose that ¢ : R — R is continuously differentiable. The pointwise
calculation

(u(z) +eh(z))| = ¢ (u(x)) h()

%SO e=0

suggests that, when it exists, the derivative of N, at u is multiplication by the
function ¢’ (u). To give conditions under which this is true, suppose that p > 2 and

I’ ()] < a+ b|t[P~2. (13.19)

Then, if u,h € LP(Q2), we have ¢' (u) h € LI(Q2), where ¢ is the Holder conjugate
of p. Thus the map h — ¢’ (u)h is a bounded linear map from L? to L?. It is
possible to show that, in this case, the Nemitski operator N, : L? — L9 is Fréchet
differentiable, and

(Ny) (wh =" (u) h.

In the limiting case, when p = 2 and |¢'(t)| < a, the Nemitski operator N, : L? —
L? is Gateaux differentiable, but not Fréchet differentiable, unless ¢(t) = a + bt
is a linear function of ¢. The proof of these facts requires some measure-theoretic
arguments which we omit.

If f: X XY — Z is a differentiable map on the product of two Banach spaces,
then we have

fl@+h,y+ k)= f(z,y) + Ah+ Bk + o(h, k)

for suitable linear maps A: X — Z and B:Y — Z. We call A and B the partial
derivatives of f with respect to xz and y, repectively, and denote them by

Other common notations for the partial derivatives (D, f, Dy f) are

(dwfadyf)a (D1f>D2f)a (fwafy)
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We may define higher order derivatives as multilinear maps in a similar way
to the definition of the first derivative as a linear map. For example, we say that
f:U C X =Y is twice differentiable at € U if there is a continuous, bilinear
map f"”(z): X x X = Y such that

Ja+h) = @)+ ['@h+ 5@ h) +o(h’)  ash 0.

If f: U C X — Y is k-times continuously differentiable at each point of U, then
we say that f belongs to C*(U).

Example 13.14 If f = (f1, fo,..-, fm) : R* = R™, where f; : R* — R is twice
continuously differentiable, and h = (hy, ha, ..., h,) € R, then

n

[f" (=) Z amk hjhy.

Jk=

Just as we defined the equivalence of the topological properties of two spaces in
terms of homeomorphisms, and the equivalence of metric space properties in terms
of metric space isomorphisms, we may define the equivalence of the smoothness
properties of two spaces in terms of diffeomorphisms.

Definition 13.15 If f: U C X — V CY is a one-to-one, onto map from an open
subset U of a Banach space X to an open subset V of a Banach space Y such that
f € CkU) and f~! € C*¥(V), where k > 1, then f is called a C*-diffeomorphism,
or a diffeomorphism. Two open sets U C X, V C Y are diffeomorphic if there is a
diffeomorphism f: U — V.

13.4 The inverse and implicit function theorems

In this section, we prove the inverse function theorem, which states that a continu-
ously differentiable function is locally invertible if its derivative is invertible.

Theorem 13.16 (Inverse function) Suppose that f: U C X — Y is a differen-
tiable map from an open subset U of a Banach space X to a Banach space Y. If f
is continuously differentiable in U and f’(z) has a bounded inverse at = € U, then
there are open neighborhoods V C U of x and W C Y of f(z) such that f : V - W
is a one-to-one, onto continuous map with continuous inverse f~! : W — V. More-
over, the local inverse is continuously differentiable at f(z) and

(Y (f@) =1f @) (13.20)

Proof. We want to show that for a given sufficiently small k¥ € Y there is a
solution h € X of the equation

fz+h)=f(z)+ k. (13.21)
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The idea of the proof is to use the contraction mapping theorem to show that there
is a solution of the nonlinear equation close to the solution of the linearized equation.
We write

fl@+h) = f(z) + f(z)h +r(h),

where r(h) = o(h) as h — 0. Since f is continuously differentiable at z, we see that
r is continuously differentiable at 0, and »/(0) = 0. Since f'(z) is invertible, we may
rewrite (13.21) as a fixed point equation

h=T(h)  where T(h)=[f'(@)] " (k—r(h)). (13.22)

The vector k occurs in this equation as a parameter.
First, we show that T' contracts distances when ||h|| is sufficiently small. From
(13.22), we have

1T () = T < 17 @) [ lir ) = (B2l
Theorem 13.10 implies that
() = (B2l < sup " (tha + (1 = k) || |Fx = o]
0<t<1

Since 7'(0) = 0 and r is continuously differentiable at 0, there is a § > 0 such that

||<;
2|

We denote the closed ball in X of radius § and center zero by

ll" () for |[A]| < 4.

B; ={he X |[n]| < 4}.

It follows that
[lh1 — hal|

[l (h1) — r(h2)|| < T
21717

for hy,hs € Bs, (13.23)

and therefore that
1
IT(h1) = T(h)l < 5 lhy = hall - for b, hy € Bs.

To apply the contraction mapping theorem, we need to show that 7" maps B
into itself when k is sufficiently small. Taking the norm of T'(h) in (13.22), we get

~1
NI <1 @] AL+ (IR - (13.24)
Equation (13.23), with Ay = h and hy = 0, implies that
() < 20 for h € By.

2177
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It therefore follows from (13.24) that if ||| < ¢ and

0
2/ [f (@) I
then ||T'(h)|| < 6. Thus T : By — B;j is a contraction on the complete set By
when k € B,, where B, is the closed ball in Y of radius n and center zero. The
contraction mapping theorem implies that 7' has a unique fixed point in Bs. We
may therefore define g : B,y = B by the requirement that h = g(k) is the unique

solution of (13.22) belonging to Bs. From (13.21), the function g provides a local
inverse of f, with

&l <n where 7 = (13.25)

FH(fx)+ k) =z + g(k). (13.26)

To complete the proof, we need to show that f~! is continuously differentiable.
From (13.22), if h = g(k), then

h=[f'@)] " (k—rh). (13.27)

Subtracting the equations corresponding to (13.27) for h; = g(k1) and hy = g(k2),
taking the norm of the result, and using (13.23), we find that

@17 e = Rall + 11 () = 7))

[/ | s = kol + 5 1 = ol

Iy = ol < |

AN

Rewriting this inequality, we obtain that
llg(ks) = g(k2)l| < 20| [F'(@)] " ks — kol for ki, ks € By, (13.28)

Thus, g is Lipschitz continuous in B,,.
Setting h = g(k) in (13.27), we find that

g(k) = [f'(@)] " k + s(k), (13.29)
where the remainder s : B;, =+ Y is defined by
s(k) = —[f'(@)] " r (g(k)) .
From (13.28), with k; = k and k2 = 0, we have
gl < 21Kl [£'(2)] " | for k € By,

Hence, s(k) = o(k) as k — 0 because

ls@ll 1AL @I B o e o1 ol
e R e <A@ T =0 sk =0

Equation (13.29) therefore implies that g is differentiable at k¥ = 0 with ¢'(0) =
[f'(z)]”". Tt follows from (13.26) that ! is differentiable at f(z), and its derivative
is given by (13.20).
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The continuous differentiability of f~! follows from the continuous differentia-
bility of f, and the continuity of inversion on the set of bounded, nonsingular linear
operators. O

The fact that the derivative of the inverse is the inverse of the derivative may also
be deduced from the chain rule. Exercise 13.7 shows that the continuity requirement
on the derivative of f in the hypotheses of the inverse function theorem cannot be
dropped.

Example 13.17 The map s : R — R given by s(z) = z? is locally invertible at
every ¢ # 0. If z > 0, a local inverse is r : (0,00) — (0,00) where r(y) = /y.
If z < 0, a local inverse is r : (0,00) = (—00,0) where r(y) = —/y. The map
s is not locally invertible at 0 where its derivative vanishes. The map ¢: R — R
given by ¢(x) = z? is globally invertible on R, with continuous inverse ¢! : R — R
where ¢~!(z) = z'/3. The inverse function is not differentiable at z = 0 where
the derivative of ¢ vanishes. Thus, ¢ : R — R is a homeomorphism, but not a
diffeomorphism.

Example 13.18 Consider the map exp : C — C defined by exp z = e*. This map
may also be regarded as a map exp : R? — R? defined by exp(z,y) = (u,v), where

u = e® cosy, v = e"siny.

The derivative of exp is nonsingular at every point, so it is locally invertible. The
map is not globally invertible, however, since exp(z + 2min) = exp z for every n € Z.

Example 13.19 Suppose that f : U C R* — R” is a continuously differentiable
map. From Example 13.6, the matrix of the derivative f' is the Jacobian matrix of
f- The determinant of this matrix, J : U C R* — R,

_ Ofi
J = det ( 8.7:,-)

is called the Jacobian of f. The inverse function theorem implies that the map f is
locally invertible near z if its Jacobian is nonzero at z. Moreover, the local inverse
f! is differentiable, and its Jacobian matrix is the inverse of the Jacobian matrix
of f.

Example 13.20 The hodograph method is a method for linearizing certain non-
linear PDEs by exchanging the role of independent and dependent variables. As
an example, we consider the transonic small disturbance equation, which provides
a simplified model of the equations for steady fluid flows near the speed of sound
(such as the flow around an aircraft flying at a speed close to the speed of sound):

Uy + vy =0,
Uy — Uy =0, (13.30)
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where u = u(z,y), v = v(z,y). If the Jacobian

Uy Uy

J=

= UgUy — UyUy
v vy Y Y

is nonzero, then we may locally invert the map (z,y) — (u,v) and write z = z(u,v),
y = y(u,v). Moreover, we have

—1

(o )=C ) =5
Vg Uy Yu Yo J

where
. 1
J = TulYv — ToYu = 7
Hence,
Yo —Ty _ Yy Ty
uw:T, Uy = i Uy = i vy_T.

The use of these equations in (13.30) implies that

uyv+$u=07
Ty — Yoy = 0.

The Jacobian j cancels, because all terms are linear in a first order derivative of u
or v, and consequently the resulting system for z = z(u,v), y = y(u,v) is linear.
From the second equation, we may write x = ¢,, and y = ¢, for some function ¢.
The first equation then implies that ¢ = ¢(u,v) satisfies

Puu + UPyy = 0.

This PDE is called the Tricomi equation. It is one of the simplest equations of mixed
type, being elliptic when u > 0 (corresponding to subsonic flow) and hyperbolic
when u < 0 (corresponding to supersonic flow). Despite the greater simplicity of
the linear equations for (z,y) than the nonlinear equations for (u,v), the hodograph
method has a significant drawback: solutions may contain curves or regions where
the Jacobians j or J vanish, and then the local invertibility between (z,y) and (u,v)
is lost.

Example 13.21 Neglecting friction, the angle of u(t) of a forced pendulum satisfies
i+ sinu = h, (13.31)

where h(t) is a given forcing function. We suppose that h is a T-periodic function,
where T > 0, and ask if (13.31) has T-periodic solutions. When h = 0, (13.31) has
the trivial T-periodic solution v = 0, and we can use the implicit function theorem
to prove the existence of T-periodic solutions for small, nonzero h. Let

X={uveC’WR) |ut+T)=u®)}, Y={ueCMR) |ut+T)=u(t)}.
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Then we may write (13.31) as f(u) = h where f: X — Y is defined by
f(u) = 4+ sinw.

The map f is continuously differentiable, and its derivative f/'(0) : X — Y is given
by

(0w =70+wv.

The linear map f'(0) : X — Y is nonsingular if and only if T' # 2nx for some
n € N. In that case, there is a unique T-periodic solution of (13.31) when ||h||oo
is sufficiently small. The case T' = 2nm corresponds to a resonance of the external
forcing with the linearized oscillator.

The implicit function theorem is a generalization of the inverse function theorem.

Theorem 13.22 (Implicit function theorem) Suppose that X, Y, Z are Ba-
nach spaces, and F : U C X x Y — Z is a continuously differentiable map defined
on an open subset U of X x Y. If (z9,y0) € U is a point such that F(zo,y0) = 0,
and Dy F(zo,y0) : Y — Z is a one-to-one, onto, bounded linear map, then there is
an open neighborhood V' C X of zg, an open neighborhood W C Y of y, and a
unique function f :V — W such that

F(z,f(z))=0 forall z € V.

The function f is continuously differentiable, and
f'(&) = = [DyF (z, f(2))] "' D F (=, f(x)) -

The proof of this theorem is similar to the proof of the inverse function theorem,
so we will omit it. The implicit function theorem reduces to the inverse function
theorem when F(z,y) =z — f(y).

Example 13.23 If F = (F, F,,..., Fy) : R* x R™ — R™ is a continuously differ-
entiable function, then the matrix of the partial derivative DyF is

6F1/6y1 BFl/ayz 8F1/6ym
O0F5/0 0F5/0 ... OFy/0yn,

2_/ o 2_/ o 2/_ (13.32)
OF,,/0y1 OF;,,/0y2 ... OF,/0ym

The m x m system of nonlinear equations
F(z,y)=0

has a unique local solution for y in terms of z near any point where F(z,y) = 0
and the determinant of the Jacobian matrix in (13.32) is nonzero.
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Many problems lead to an equation that depends on a parameter y € R. For
example, u may be a dimensionless parameter characteristic of the system being
modeled by the equation. For a time-independent problem, we may write such an
equation in the abstract form

F(z,u) =0, (13.33)

where F': X x R —+ Y and X, Y are Banach spaces. The study of how the solution
set of (13.33) varies as p varies is part of bifurcation theory. We assume that F is
a smooth function. A solution branch of (13.33) is a smooth mapZ: I CR - X
from an open interval I in R into X such that

F@(p),un) =0 for all p € I.

We say that p, is a bifurcation point of (13.33) from the solution branch Z, if there
is a sequence of solutions (z,, ) in X X I such that

F(zn, pn) = 0, Tn # T(pn),
Tn = T(ls), fon —> Mx as n — oo.

The implicit function theorem implies that if the derivative
D, F (z(p), ) (13.34)

is a nonsingular, bounded linear map from X to Y, then there is a unique local
solution branch. Thus, a necessary condition for u. to be a bifurcation point is that
the derivative in (13.34) is singular at g = p.-

Example 13.24 Consider the equation
3 — pr =0,

where z,u € R, corresponding to F(z,u) = 2 — px. The zero solution x = 0 is a
solution branch. We have F;, (0, u) = —pu, so the only possible bifurcation point from
the zero solution is at u = 0. The solutions in this case are z = 0, and z = ./
when p > 0. Thus, a new branch of solutions appears at g = 0. This bifurcation is
called a pitchfork bifurcation.

The next example shows that the singularity of the derivative in (13.34) is a
necessary but not sufficient condition for a bifurcation to occur.

Example 13.25 Consider the following system of equations for (z,y) € R?:

Y’ —pz =0,
23+ py = 0.
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The zero solution (z,y) = (0,0) satisfies this system for all y € R. The derivative
of the left-hand side with respect to (x,y) has the matrix

—u 3y®
322 u )’

This matrix is singular at £ = y = 0 if and only if 4 = 0, in which case it has a
two-dimensional null space. Elimination of y from the original system of equations
implies that xz* 4+ y* = 0. Therefore, the zero solution is the only solution, and
= 0 is not a bifurcation point.

The same ideas apply to bifurcation problems for equations on infinite-dimensional
spaces.

Example 13.26 Consider the following nonlinear Dirichlet problem on a smooth,
bounded domain Q C R”:

—Au = psinu in Q,
u=20 on Of).
We write this equation in the form (13.33), where F': X x R — Y with
F(u,p) = —Au+ psinu,
X ={ueC> (Q)|u=0o0n00}, Y =C%" (Q).

Here 0 < r < 1, and C*7 (Q) denotes a space of Hélder continuous functions. One
can show that F' is differentiable at v = 0, and

D, F(0,u)h = —Ah — ph.

The theory of elliptic PDEs implies that D, F(0, ) : X — Y is a bounded, nonsin-
gular map unless p is an eigenvalue of —A. Thus, the possible bifurcation points
from the trivial solution u = 0 are the eigenvalues of the Laplacian operator on 2.
It is possible to show that a bifurcation must occur at a simple eigenvalue, but need
not occur at a multiple eigenvalue.

13.5 Newton’s method

Newton’s method is an iterative method for the solution of a finite or infinite-
dimensional system of nonlinear equations,

f(z) =0, (13.35)

where f is a smooth mapping between Banach spaces. Suppose that z, is an
approximate solution. As x — z,, we have

f(@) = f(zn) + f’(iEn)(JE —Tpn) +o(x — Tp).
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If f'(x,) is nonsingular and z,, is sufficiently close to a solution of (13.35), then it
is reasonable to expect that the solution z = z,41 of the linearized equation,

flzn) + f’(.’En)(.Z' —zn) =0,

is a better approximation to the solution of the nonlinear equation than z,. The
resulting iteration scheme, called Newton’s method, is given by

Tng1 = Tn — [f(@n)]” flzn)  forn > 0. (13.36)

After the choice of a starting point, o, Newton’s method generates a sequence (x,)
of iterates, provided that f'(z,) is nonsingular for every n. The Newton iterates
may be obtained from an iteration of the fixed point problem

z=2-[f'@)" f()

which is clearly equivalent to (13.35) when f'(z) is nonsingular. A basic ques-
tion concerning Newton’s method is: When does the sequence of Newton iterates
converge to a solution of (13.35)7?

There are many variants of Newton’s method. One of the simplest is the modified
Newton’s method:

Tni1 =T — [ (@0)] T flwn)  forn>0. (13.37)

This method has the numerical advantage that the derivative f'(zo) only has to
be computed and inverted once, at the starting point z¢; the sequence of approx-
imations, however, does not converge as rapidly as the sequence obtained from
Newton’s method. The modified Newton’s method is simpler to analyze than New-
ton’s method, and, following Lusternik and Sobolev [33], we will prove a convergence
result for it here. A proof of the convergence of Newton’s method, under suitable
assumptions on f and x¢, may be found in Kantorovich and Akilov [27].

In order to prove convergence, we will assume that f’ satisfies a Lipschitz condi-
tion. If f: U C X = Y is a differentiable function, then we say that the derivative
f':UCX — B(X,Y) is Lipschitz continuous in U if there is a constant C, called
a Lipschitz constant, such that

If'(@) = fWI<Cllz—yll  forallz,yel. (13.38)

Theorem 13.27 Let f : U C X = Y be a differentiable map from an open subset
U of a Banach space X into a Banach space Y such that f’ is Lipschitz continuous
in U with Lipschitz constant C. Suppose that xo € U, f'(x0) is nonsingular, and

h=c|| o)™ | 1 @™ s < 7 (13.39)
Define § > 0 by

1-vi-dh ”_‘”L) , (13.40)

o e o (2
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and suppose further that the closed ball By of radius § centered at zg,
Bs={z € X |||z — zo|| <6}, (13.41)

is contained in U. Then there is a unique solution of the equation f(x) = 0 in By,
and the sequence (z,,) of modified Newton iterates, defined in (13.37), converges to
the solution of f(z) =0 in Bs as n — oo.

Proof. The modified Newton iterates are obtained from the fixed point iteration
Zny1 = T'(zp), where

T(z) =z — [f'(z0)] " f(z).

First, we show that T': Bs — Bs. We may write

T(x) = 20 = = [f'(a0)] " [ra) + f (o)), (13.42)
where
(@) = £(z) = f(z0) = f(@0) (2 = 20). (13.43)
Taking the norm of (13.42), we find that
IT(z) = ol < M r(@)] + 1. (13.44)
where
M= @) n={if o] feo)|. (13.45)

Computing the derivative of r, and using the Lipschitz condition (13.38) for f’, we
obtain that

7 (@)l = [If'(2) = f' (@)l < C'llz — zol| -
Since 7(zg) = 0, the mean value theorem implies that
lIr(@)[] = lIr(2) = r(zo)ll < e I (t2 + (1 = t)zo) || |z — zol| < C'[l& — zol|”.
Using this result in (13.44), we find that
IT(2) = zoll < CM ||z — zo||” + 7.
Hence, T maps the ball {z | ||z — z¢|| < €} into itself provided that
CMe +n<e (13.46)

This inequality can be satisfied for some € > 0 if

1
h=CMy< 7. (13.47)
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Using (13.45), we see that this is the condition in (13.39). In that case, the smallest
value § of € for which (13.46) holds is

§ =, (13.48)

where 7 is the smallest root of the equation h72 — 7+ 1 =0, or

1-+vV1-4

Using (13.45) and (13.49) in (13.48), we find that ¢ is given by (13.40). This proves
that T : Bs — Bjs.

Next, we prove that T is a contraction on By. Differentiating (13.42) and (13.43),
we find that

T'(x) = = [ (@0)] " [/'(@) = f'(wo)].
Hence, using (13.45) and the Lipschitz condition on f’ in (13.38), we have
IT" (@)l < M |If'(z) = f'(zo)ll £ CM||lz — mo|| < CMS  for all z € Bs.
It follows from (13.47), (13.48), and (13.49) that

1—+1—-4h

CMo = 5

1
< -
-2
We therefore have ||T"(z)|| < 1/2 in Bs, so from the mean value theorem
1
IT(@) =TIl < Sllz—yll  forall z,y € Bs.

The theorem now follows from the contraction mapping theorem. O

Note that the conditions (13.39) and Bs C U in the hypotheses of the theorem
are satisfied when zg is sufficiently close to a solution of f(z) = 0 at which the
derivative of f is nonsingular.

A significant practical difficulty in the implementation of Newton’s method, and
its modifications, is that the iterates may diverge unless the starting point is very
close to the solution. For this reason, Newton’s method is often used in conjunction
with continuation methods, in which one slowly varies a parameter in the equation,
and uses the solution for a previous parameter value as an initial guess for the
Newton iterations for the next parameter value.

13.6 Linearized stability

We consider an equilibrium of the evolution equation

ur = f(u), (13.50)
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where f : D(f) C X — X is a vector field on a Banach space X. We assume that
the initial value problem for (13.50) is well posed, meaning that there is a unique
solution u : [0,00) — X for every initial condition u(0) = ug € X, and u(¢) depends
continuously on ug with respect to the normed topology on X. A state w € X is an
equilibrium of (13.50) if f(u) = 0. There are many inequivalent ways to define the
stability of an equilibrium. We only consider the two most common ways here.

Definition 13.28 An equilibrium @ of (13.50) is stable if for every neighborhood
U of @ there is a neighborhood V of @ such that if u(0) € V, then u(t) € U for
all t > 0. If @ is not stable, then it is unstable. An equilibrium % is asymptotically
stable if it is stable and there is a neighborhood W of @ such that u(t) — w as
t — oo whenever u(0) € W.

Thus, if a stable equilibrium is perturbed, the perturbation remains small, and
if an asymptotically stable equilibrium is perturbed, then the perturbation remains
small and eventually dies out.

The linearization of (13.50) about @ is

vy = Av, where A = f' (w). (13.51)

We define the linear stability of an equilibrium @ of (13.50) in terms of the stability
of the equilibrium v = 0 of (13.51).

Definition 13.29 The equilibrium v = @ of (13.50) is linearly stable, or linearly
asymptotically stable, if v = 0 is a stable, or asymptotically stable, equilibrium of
(13.51), respectively.

In the case of ODEs, we have the following result.

Theorem 13.30 Suppose that f : R® — R" is continuously differentiable and
f (@) = 0. If all the eigenvalues of f'(w) have a strictly negative real part, then @
is an asymptotically stable equilibrium of the system of ODEs o = f(u). If one of
the eigenvalues of f' (u) has a strictly positive real part, then = is unstable.

The stability part of this theorem is proved by the construction of a suitable
quadratic Liapunov function V : X — R for (13.50) that has a minimum at 7 and
the property that V; < 0 on solutions of (13.50) in a neighborhood of @ (see [21]).

Example 13.31 Consider a 2 x 2 system of ODEs for (u,v) € R?:
U= f(ua ’U), U= g(u, U)- (1352)

The eigenvalues of the derivative

— fu(ﬂ, ) fU (ﬂa
A‘(gm,) g0 (@

SIS

~—

) ) (13.53)

SRS

Y
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have strictly negative real parts if and only if

trA = f, (w,?) + g, (u,?) <0,
det A = fy (W, ?) gv (W, ?) — fo (W, ?) gu (4, 0) > 0. (13.54)

Thus, an equilibrium (@, v) of (13.52) is asymptotically stable when the condition
in (13.54) holds.

If the spectrum of f' (u) touches the imaginary axis, meaning that all points in
the spectrum have nonpositive real parts and the real part of at least one point is
equal to zero, then the equilibrium % may be linearly stable, but we cannot draw
conclusions about the nonlinear stability of w from its linearized stability alone.

Example 13.32 Consider the following 2 x 2 system of ODEs for (u,v) € R?:

u:,uu—v—a(u2+1)2)u,

v=u+mw —a(u? +v*)v,

where «, p are real parameters. It is convenient to write this equation in complex
form for w =u +iv € C as

W= (u+i)w— a|w|?w. (13.55)

This equation may be solved by writing it in the polar form

F=pr —ard, 9:1,

where
i0 2 1 2 v
w=re’, r=+vu2+v% tanf=—.
u

If p < 0, then the equilibrium w = 0 is asymptotically stable, and if g > 0 it is
unstable. If g = 0, then the eigenvalues of the linearization are purely imaginary,
and the equilibrium w = 0 is linearly stable. It is asymptotically stable if a > 0,
stable if & = 0, and unstable if o < 0.

When o and p have the same sign, (13.55) has a periodic limit cycle solution

_ [H
w(t) = o€
As p increases through zero, the equilibrium w = 0 becomes unstable. If a > 0,
then a stable limit cycle appears for g > 0, while if @ < 0, then an unstable limit
cycle shrinks down to the equilibrium w = 0 and disappears for g > 0. This
type of bifurcation is called a Hopf bifurcation. The Hopf bifurcation is said to be
supercritical if o > 0 and subcritical if o < 0.



406 Differential Calculus and Variational Methods

For PDEs, the relationship between different types of stability, and between
linear and nonlinear stability, can be rather subtle. It is usually true that if the
spectrum of f'(w) is contained in a left-half plane {\ € C | Re\ < w} for some
w < 0, then @ is linearly asymptotically stable (see the discussion of (9.24)), and
that linear asymptotic stability implies nonlinear asymptotic stability, but there
are exceptions. Moreover, the linearized equation may have continuous or residual
spectrum in addition to, or instead of, the pure point spectrum that occurs for
ODE:s.

We will illustrate the linearization of nonlinear PDEs by considering an impor-
tant class of examples called reaction-diffusion equations. These nonlinear PDEs
describe the dynamics of spatially dependent chemical concentrations and temper-
ature in the presence of chemical reactions and the diffusion of reactants and heat.
They also model the population of spatially distributed species in ecology. The
general form of a reaction-diffusion equation for u(z,t) € R™, where z € R" and
t>0,is

u = DAu + f(u). (13.56)

The effect of diffusion is described by the linear term DAw, where D is a positive
definite, symmetric m X m matrix, called the diffusion matrix. In most applications,
D is diagonal, and, for simplicity, we assume that D is constant. The effect of
reactions is described by the term f(u), where f : R™ — R™ is a given nonlinear
function. For models of chemical reactions, f is often a polynomial in the chemical
concentrations, as follows from the law of mass action, with coefficients that depend
exponentially on the temperature. To be specific, we consider a reaction-diffusion
equation for a function u defined on a regular, bounded domain 2 C R™ subject to
Dirichlet boundary conditions. In that case, we supplement (13.56) with the initial
and boundary conditions

u(z,t) =0 for x € 90 and t > 0,
u(z,0) = ug(x) for z € Q.

An equilibrium solution @ : Q@ C R™ — R™ of (13.56) satisfies the elliptic system
of PDEs

DAw + f(u) =0,
u(z) =0 for z € 99.

To study the linear stability of u, we have to compute the Fréchet derivative of the
map F' given by

F(u) = DAu + f(u). (13.57)

The derivative of the linear term is trivial to compute, so we only need to compute
the derivative of the nonlinear term, defined on a suitable space of functions.
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Lemma 13.33 Suppose that @ C R” is a regular, bounded open domain, and
f:R™ —» R™ is a twice continuously differentiable function with derivative f’ :
R™ — R™*™. Then the map Ny : H*(Q) — L2(Q) defined by Ny(u) = f(u)
is differentiable for every k > n/2, and its derivative N (u) : H k(Q) = L2(Q) at
u € H%(Q), is given by

Nj(u)(©) = f'(u)o.

Proof. Let |u| denote the Euclidean norm of u € R™. Since f is twice continu-
ously differentiable, for each R > 0 there is constant C'(R) such that

|f(u+h) = f(u) = f'(w)o] < C(R)[vf?

for all u,v € R™ such that |u| < R and |u + v| < R. By the Sobolev embedding
theorem (Theorem 12.70) and the assumption that k£ > n/2, there is a constant M
such that

llulloo < MJwl|pe-

By combining these inequalities and integrating the result over 2, we obtain for
[|lv]| e < 1 that

1f(u+v) = fu) = f/(uw)ollL2 Cllv?|| L
Cvlloollvllz2

C" vl

IN N A

where C = C(R) with R = ||u|lec + M, C', and C" are constants depending on
the bounded domain Q and u, but not on v. The result follows by dividing this
equation by ||v||g+ and taking the limit of the result as ||v||g= — 0. O

The Laplacian maps H* into L? if k > 2. Thus, it follows that if k¥ > 2 and
k > n/2, then the map F defined in (13.57), where

F:D(F)C H* Q) —» L*(Q), D(F)={ue H*Q)|u=0o0n00},
is differentiable, and the derivative of F' at u € D(F)) is given by
F' (W)v = DAv + Av,
where A = f' (u). The linearization of (13.56) is therefore
vy = DAv + Av. (13.58)

As for the Laplacian on a regular bounded domain, the spectrum of F' (u) consists
entirely of eigenvalues. The matrix A need not be symmetric, and if it is not, then
F' (mw) is not self-adjoint, so its eigenvalues need not be real. The equilibrium % is
linearly asymptotically stable if every eigenvalue of F” (@) has strictly negative real
part.
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In general, the equilibrium % is a function of z, so that F'(w) is a variable
coefficient elliptic differential operator. It is usually not possible to compute its
eigenvalues explicitly, although the eigenvalues with the largest real parts can be
computed numerically. If, however, @ is a constant state and the reaction-diffusion
equation is posed on R", or T", then we can use Fourier analysis to study the
spectrum of the linearization. We illustrate this procedure with a discussion of the
Turing instability, which was proposed by Turing in 1952 as a mechanism for the
development of spatial patterns from a spatially uniform state, and in particular as
a possible mechanism for morphogenesis.

The state u € R™ is a spatially uniform equilibrium of (13.56) if and only if
f (@) = 0. We look for solutions of the linearization (13.58) of (13.56) at @ of the
form

v(z,t) = et TG, (13.59)

where k € R*, A\ € C, and ¥ € C™ \ 0. General solutions of the IVP for (13.58)
may be obtained from these solutions by use of the Fourier transform. The solution
(13.59) grows exponentially in time if ReA > 0. Thus, u is linearly unstable if
Re )\ > 0 for some k € R”. The use of (13.59) in (13.58) implies that

(—|k]*’D + A) ¥ = 0. (13.60)

It follows that A is an eigenvalue of —|k|?D + A. Turing observed that —|k|?D + A
may have an eigenvalue with positive real part for some |k| > 0 even though all the
eigenvalues of A have negative real part. In that case, @ is an asymptotically stable
equilibrium of the reaction equations 4 = f(u), and is therefore stable to spatially
uniform perturbations, but is unstable to spatially nonuniform perturbations. The
growth of spatially unstable perturbations, and the possible saturation of the growth
by nonlinear effects, leads to the formation of spatial patterns from a spatially
uniform state. This instability is called a Turing instability or a diffusion-driven
instability.

The simplest system that exhibits Turing instability is a 2 x 2 system of reaction
diffusion equations for (u,v) € R? with a diagonal diffusion matrix D = diag(u, v),
where u,v > 0:

Uy = HAU + f(uav)a
vy = VAV + g(u,v). (13.61)

Here, f,g : R?> — R are given functions that describe the reaction equations. The
eigenvalue problem (13.60) for (13.61) is
)= (%)

( —[kPp+ fu fo ) (
Gu _|k|2’/+gv

where we do not indicate explicitly that the derivatives of f, g are evaluated at
u=T,v="7.

<) )
<) )
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The eigenvalues A are solutions of the quadratic equation
N = [futgo— kP (w+v)] X+ R (k) =0, (13.62)
where
h(|k?) = polkl* = (pgo + vfu) K + fugo — fogu-

From (13.54), the equilibrium state is stable to spatially uniform perturbations with
kE=0if

fu + 9o < Oa fugv - fvgu > 0. (1363)

The quadratic equation (13.62) for A then has a root with positive real part if and
only if h (|k|?) < 0, and this can occur for some |k| > 0 only if

1gy + v fu > 0. (13.64)

In that case, h (|k|?) has a minimum at |k| = &, where

2 = Mgy v
2uv ]
and h (x?) < 0 if and only if
Ngv + Vfu > 2\//J/V (fugv - fvgu) (1365)

Thus, the conditions (13.63)—(13.65) imply that a Turing instability occurs in the
system defined by (13.61).

At first sight, it may seem surprising that diffusion can cause instability in a state
that is stable to spatially uniform perturbations, but there is a simple explanation.
It follows from (13.63) and (13.64) that f, and g, have opposite signs and p #
v. This difference between the diffusivities is essential for the Turing instability.
Exchanging v and v, if necessary, we may assume that f, < 0 and g, > 0, when
p > v. Furthermore, replacing v by —w, if necessary, we find that the sign structure
of the entries in the matrix A of the derivative of the reaction terms in a 2 x 2
system that is subject to a Turing instability can always be put in the form

=(20)

In this case, we call v an activator because, in the absence of diffusion, it grows
exponentially in time when v = 0, and we call u an inhibitor because positive values
of u reduce the growth of v. If v = 0, then the inhibitor u decays exponentially
to its equilibrium state. The equilibrium is a stable state of the reaction equations
because a positive perturbation in the activator from its equilibrium value causes a
growth in the inhibitor, and this in turn stabilizes the activator. We have seen that
> v, which means that the diffusivity of the inhibitor is greater than the diffusivity
of the activator. If a spatially nonuniform perturbation in the activator begins to
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grow at some point, then the inhibitor diffuses away faster than the activator, and
as a result the generation of inhibitor may not be sufficient to prevent the continued
growth of the activator.

Morphogenesis is too complex to be explained by a Turing instability. It has been
suggested, however, that some biological patterns, such as coat pigmentations, are
the result of a Turing instability. Turing instability has been observed in chemically
reacting systems in gels, although the first successful experimental observations took
place almost forty years after Turing’s original theoretical work.

13.7 The calculus of variations

The calculus of variations is an enormous subject, with applications to physics, ge-
ometry, and optimization theory, among many other areas. The following discussion
is therefore only a brief, and incomplete, introduction.

A basic problem in the calculus of variations is the minimization of a functional.
Suppose that I : X — R is a real-valued functional defined on a Hilbert or Banach
space X . If I has alocal minimum at Z, then for each h € X, the function I(Z+e€h) of
the scalar parameter € has a local minimum at € = 0. Therefore, if I is differentiable
at =, then

A r@teh)| =r@h=o,

de o
so the derivative of I at T is zero. We call a point where the derivative of a functional
I vanishes a critical point or stationary point of I. Thus, a necessary condition for a
differentiable functional I to have a minimum at an interior point T of its domain is
that 7 is a critical point of I. In searching for the minimizers of I, we may therefore
restrict attention to the critical points of I, as well as any boundary points of the
domain of I, and points where I fails to be differentiable. A critical point need not
be a local minimum. For example, it could be a local maximum or a saddle point.
We will not discuss here sufficient conditions for a critical point to be a minimum,
but critical points of functionals are often of interest in their own right.

In this section, we introduce the fundamental ideas in the calculus of variations

by a study of functionals of the form

1
I6) = [ L(z,u(s), Du(w)) do, (13.66)
0
where w : [0,1] = R™ is a continuously differentiable function of one variable, and
L:[0,1]]xR™ xR™ - R

is a given smooth function, called the Lagrangian. It is convenient to use the
notation D for the derivative with respect to z, so Du = /.
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We will derive a differential equation, called the Euler-Lagrange equation, that
is satisfied by any sufficiently smooth critical point of I. Abusing notation slightly,
we write

Le (2 u(2), Du(a)) = 2 L(a,y,0)

y=u(z), v=Du(z)

Ly (z,u(x), Du(x)) = 2L(:c,y,fu)

Ay y=u(z),v=Du(z)
0
LDu(.'E,U(-'II),DU(Z')) = 6_L(xayvv) -
v y=u(z), v=Du(z)
If u = (uy,us,--.,un) takes values in R™ ) then these partial derivatives denote the
gradient, and
L,= (Lu17Lu27 s JLum) ) Lp, = (LDU17LDU27 s 7LDum)

also take values in R™. If ¢ = (¢1,92,...,9m) : [0,1] = R™, then we write

m m
LuQO:ZLu,‘pu LDu"P:ZLDu;(pi-
i=1

i=1
For example, the chain rule implies that

DL (z,u(z), Du(z)) = L (2,u(z),Du(z))+ Ly (z,u(z), Du(z)) - Du(z)

+Lpy(z,u(x), Du(z)) - D*u(z).

There are many possible choices for the space X of admissible functions on which
I is defined, and the “correct” space in which to look for a minimizer, if one exists
at all, depends in general on the functional. For definiteness, we first suppose that
u is a continuously differentiable function that satisfies the boundary conditions
u(0) =u(1) = 0. Then I : X — R, where

X ={ueC'([0,1]) | u(0) = u(1) = 0}.

The functional I is differentiable on X, and I'(u) : X — R is given by

d
—I(u+ep)

!
I'(u)p I

e=0

d 1
= —/ L(z,u + ep, Du+ eDy) dz
de J, =0

1
/ {Ly(z,u,Du) - ¢ + Lpy(z,u, Du) - Do} dz.
0

Thus, if u is a critical point of I, we have

1
/ {Ly(z,u,Du) - ¢ + Lpy(z,u, Du) - Do} dz =0 for all p € X.
0
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Suppose that the critical point u belongs to C?([0,1]). We may then integrate by
parts in this equation to obtain

1
/ {Ly(z,u, Du) — D [Lpy(z,u, Du)]} - odz =0 for all p € X. (13.67)
0

The boundary terms vanish because ¢ is zero at the endpoints. To obtain the
differential equation satisfied by u, we use the following fundamental lemma of the
calculus of variations, or du Bois-Reymond lemma.

Lemma 13.34 (Fundamental) If f : [a,b] — R is a continuous function such
that

b
/ f@)p(x)dz =0 for every ¢ € C ((a, b)),
then f(z) =0 for every a <z < b.

Proof. Suppose that f is not identically zero. Then there is an z¢ € (a,b) such
that f(zo) # 0. Multiplying f by —1, if necessary, we may assume that f(zo) > 0.
Since f is continuous, there is an interval I C (a,b) such that

F(@) — flzo)| < 3f(a0)  foreveryz e,

which implies that f(z) > f(zo)/2 for every z € I. Let ¢ € C ((a,b)) be a
nonnegative function with integral equal to one and support contained in I. Then

’ 1
[ s@e@)ds 2 3iwo) > 0

This contradiction proves the lemma. O

Applying the fundamental lemma componentwise to (13.67), we see that every
C?-critical point u of the functional I defined in (13.66) satisfies the following Euler-
Lagrange equation:

—DLpy+ Ly, =0, (13.68)

If u = (u1,uz,...,un) is an m-vector-valued function, where u; : [0,1] = R, then
the component form of the Euler-Lagrange equation (13.68) is

_DLDui+Lu;:0, i:1,2,...,m.

Using the chain rule to expand the derivative, we may write this equation as

m
- Z {LDu,-DujDzuj + LD’LH’UJ‘DUJ'} - LDuia: + Lu,’ = 07 i = 1a2a ceey M.

=1
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If the second derivative Lpyp, of L with respect to Du, with matrix
(LDuiDuJ):‘L]:I )

is nonsingular, then we may solve this equation for D?u to obtain a second-order
system of equations of the form D?*u = f(z,u, Du).

Exactly the same argument applies if we minimize I over the affine space of
functions u that satisfy the nonhomogeneous boundary conditions

u(0) = a, u(l) = b, (13.69)

since u + ep satisfies the same boundary conditions as v if and only if p(0) =
©(1) = 0. A C?-critical point of I on the space of functions u € C'([0,1]) such
that 4(0) = a and u(1) = b therefore satisfies the ODE (13.68) and the boundary
conditions (13.69).

Example 13.35 Suppose that a curve y = u(x) connects the origin (0,0) and a
point (a, b) in the (z,y)-plane. The length I(u) of the curve is given by the arclength

integral
I(u) = / \/1+4 (Du)? de.
0

The corresponding Euler-Lagrange equation is
-D & =0,
1+ (Du)?

D?>u=0.

which simplifies to

The solution is a linear function of x, and the shortest curve connecting two points
is a straight line.

Example 13.36 One of the original problems in the calculus of variations was the
brachistochrone problem, first formulated by Galileo in 1638, who suggested incor-
rectly that the solution is a circular arc. The problem was formulated independently
and solved correctly by Johann Bernoulli in 1697. Suppose that a frictionless par-
ticle, or bead, slides along a curve y = u(z) under the influence of gravity. We
choose the y coordinate downwards, so that gravity acts in the positive y-direction.
If the particle starts at the origin O = (0,0) with zero velocity, then conservation
of energy implies that after it has dropped a vertical distance y, the velocity v of
the particle satisfies

1

5'02 = gy,
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where g is the acceleration due to gravity. Therefore, v = 1/2gy. The time I(u)
taken by the particle to move from the origin O to a point P = (a,b) on the curve
is given by the integral of arclength divided by velocity, or

[ [1+ (Du)®
I(u)—/0 de.

The brachistochrone problem is to find the curve connecting given points O and
P such that a particle starting at rest slides from O to P along the curve in the
shortest possible time. The curve should be steep initially, so the particle accelerates
rapidly, but it should not be too steep, because this increases its arclength. The
required curve satisfies the Euler-Lagrange equation associated with I, which is

Du 1 [1+ (Du)? _
P ( 2gu [l + (Du)2]> "o\ T agwr (13.70)

In order to solve (13.70), we will show that the Euler-Lagrange equation has a
first integral whenever the Lagrangian does not depend explicitly on the independent
variable z. This result is one of the simplest instances of Noether’s theorem, which
connects symmetries of the Lagrangian with conservation laws of the Euler-Lagrange
equation.

Proposition 13.37 If L = L(u, Du) is independent of x, then any solution u of
the Euler-Lagrange equation (13.68) satisfies the conservation law

Lpy (u, Du) - Du — L (u, Du) = constant.
Proof. We define H : R x R™ — R by
H(u, Du) = Lpy(u, Du) - Du — L(u, Du).
Then, using the chain rule, we find that
DH = (DLpy — Ly) - Du.
Hence, if u satisfies (13.68), then H is constant. O

Example 13.38 The Lagrangian for brachistochrone problem in Example 13.36,

1+ (Du)?

L(u,Du) = 594

Y

is independent of z. Proposition 13.37 therefore implies that (13.70) has the first

integral
(Du)? _ L@’
A 2 7
29u [1 + (Du)z] 9
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where ¢ is a constant of integration. This equation simplifies to
2gc*u [1 + (Du)2] =1.

Writing the curve y = u(z) in the parametric form z = z(t), y = y(t), where
y(t) = u(x(t)) so Du = /&, and setting y(t) = k(1 — cost) where k = 1/(4gc?), we
find that
Z = k(1 — cost).
The solution through the points (0,0) and (a, b) is therefore the cycloid
z(t) = k(t — sint), y(t) = k(1 — cost)
for 0 <t < T. The constants of integration k, T" are chosen so that
k(T —sinT) =a, k(1 —cosT) =b.

In view of the importance of the expression on the left-hand side of the Euler-
Lagrange equation (13.68), we make the following definition.

Definition 13.39 The variational derivative, or functional derivative, of the func-
tional T in (13.66) at a smooth function u is the function

ol
— = —DLpy + L,.
ou

The Fuler operator Ly of I is the operator

i

- u

that maps a function u to the variational derivative of I at w.

L](U)

Using this notation, we may write the Euler-Lagrange equation for I as

oI
S0 0.
If u and ¢ are sufficiently smooth, and ¢ is compactly supported in (0, 1), then
1
oI
i[(u + €p) = —(z) - p(z) dx. (13.71)
d€ =0 0 éu

We may think of the L2-inner product

(u,v) = /1 u(z) - v(z) dz
0

as a continuous analog of the Euclidean inner product on R”,

n
<u7 U) = Z UiV;,
=1
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in which an integral over the continuous index x replaces a sum over the discrete
index . Equation (13.71) is the continuous analog of the formula for the directional
derivative of a function I : R* = R:

d
—1I
7 (u + €p)

", oI

Thus, the variational derivative of a functional defined on a suitable subspace of L?
is a formal continuous analog of the gradient of a function defined on R". From
(13.71), we may write the value of the variational derivative at = formally as

€

oI d
@(a:) = al(u + €dy)

7
e=0
where ¢, is the delta-function supported at z. Thus, heuristically, the value of
0I/0u at the point x measures the sensitivity of I to changes in u at z.

In the above analysis, we looked for critical points of the functional I in (13.66),
defined on a restricted class of admissible functions that satisfy prescribed Dirichlet
conditions at the endpoints. Suppose, instead, we look for critical points of I(u)
without imposing any boundary conditions on the admissible functions u, so that
I: X — R where X = C'([0,1]). If a critical point u belongs to C2([0,1]), then
exactly the same argument as before implies that

1
/ {Ly(z,u,Du) — DLpy(z,u, Du)} - pdx = — [Lpy(z,u, Du) - cp](l), (13.72)
0

for all ¢ € C1([0,1]). The boundary terms arising from the integration by parts
need not vanish, since ¢ is not required to vanish at the endpoints. If, however, we
first consider (13.72) for functions ¢ that do vanish at the endpoints, then we see,
as before, that v must satisfy the Euler-Lagrange equation (13.68). It then follows
from (13.72) that

[Lpw(z,u, Du)-¢lg =0  for all p € C'([0,1]).

Choosing a smooth function ¢ : [0,1] = R™ such that ¢;(0) = 1, ¢;(1) = 0, or
vi(0) =0, ¢;(1) = 1, with all other components zero at both endpoints, we see that
the critical point u must satisfy the boundary conditions

Lpy(z,u,Du) =0 when z =0, 1.

These boundary conditions are called natural boundary conditions or free boundary
conditions for I, since they are the ones picked out automatically by the variational
principle.

A function N(z,y,v) is called a null Lagrangian if the functional

F(u) = /N(x,u,Du) dz
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has the property that Lg(u) = 0 for all smooth functions w. If L and L are
two Lagrangians that differ by a null Lagrangian, then the associated variational
principles have the same Euler-Lagrange equations, but they may have different
natural boundary conditions. Null Lagrangians are also of interest in other contexts.

Example 13.40 If v : R — R, the Lagrangian N = Du is a null Lagrangian, since
the Euler operator of the associated functional F' = [ N dz is

Ly(u) = —DNp, = —D1 = 0.

The Euler-Lagrange equation of the functional

L
I,(u) = / (§(Du)2 + aDu — fu> dz
0
is independent of a:
-D*u—f=0;
but the natural boundary conditions do depend on a:

Du+a=0 when z =0, 1.

13.8 Hamilton’s equation and classical mechanics

If the Lagrangian L(x,y,v) is a convex function of v, we may use a Legendre trans-
form to rewrite the second-order Euler-Lagrange equation (13.68) as a first-order,
Hamiltonian system of ODEs. We begin by describing the Legendre transform.
Let f : Q@ C R* — R be a twice continuously differentiable function defined on
a convex, open set 2. We say that f is uniformly convex if the second derivative

f'z) A" xR* - R
is positive definite for every x € 2, meaning that
f"(z) (h,h) >0  for all he R™\ {0}.
This condition is equivalent to the positive definiteness of the Hessian matriz of f,
(05
0z;0z;)

A uniformly convex function is strictly convex (see Exercise 13.16). We define the
gradient mapping ¢ : Q — Q* associated with f by

o(z) = f'(z), QO ={z* € R"|z* = p(x) for some z € N}. (13.73)

Geometrically, f'(z) : R® — R, so z* belongs to the dual space of R". Here, we will
use the Euclidean inner product - to identify R™ with its dual.
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Lemma 13.41 If f : © — R is a uniformly convex function on a convex, open
subset Q of R™ that belongs to C?(Q), then the gradient map ¢ : Q — Q* defined
in (13.73) is a C'-diffeomorphism of €2 onto *.

Proof. Since ¢' = f" is nonsingular, the inverse function theorem implies that
¢ is a locally invertible C'-map. By the definition of Q*, the gradient map ¢ is
onto, so we only have to show that ¢ is globally one-to-one. Suppose that z,y € 2.
Then, since {2 is convex, we have

@) = el -) = |[ Gelo+a-ond|@-y

1
| £+ =t @ -z ) d.
0

Using the positive definiteness and continuity of ", we see that

[pz) —e@)](z—y) >0 ifz#y.
Hence ¢(z) # ¢(y) if z # y, so @ is globally invertible. O

It follows from this lemma that =1 : Q* — Q is a C!-diffeomorphism. The
following Legendre transform is therefore well defined.

Definition 13.42 Let f : & — R be a uniformly convex function on a convex,
open subset ) of R” that belongs to C%(f2). The Legendre transform of f is the
map f* : 0* — R defined by

@)=z 2" - f(a), where z = ¢! (z*).

Here, z - z* denotes the Euclidean inner product of  and z* in R”?, and ¢ : Q@ — Q*
is the gradient map associated with f defined in (13.73).

We call z, * dual variables or conjugate variables, and f, f* dual functions or
conjugate functions.

Example 13.43 If f : R — R is uniformly convex, then z* = ¢(z) is the slope of
the graph of f at z, which is a strictly increasing function of z. The value of f* at
x* is the difference between the values of the linear function whose graph is a line
through the origin of slope z* and f at the point where the slope of f is equal to
T*.

We now return to the variational principle for the functional I in (13.66). We
assume that the Lagrangian L(z,y,v) is a uniformly convex function of v, and we
define the Hamiltonian H(x,y,p) to be the Legendre transform of L(x,y,v) with
respect to v, meaning that

H(z,y,p) =p-v—L(z,y,v), p=Ly(z,y,v). (13.74)
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It follows from (13.74) that L, = —H,. The Euler-Lagrange equation (13.68) may
therefore be written as a first-order system of ODEs:

Du = Hy(z,u,p), Dp = —H(z,u,p).

We call such a system a Hamiltonian system.

Variational principles provide a general formulation of the laws of classical me-
chanics, which may be written in either the Lagrangian or Hamiltonian forms. This
formulation is essential in understanding the connection between classical and quan-
tum mechanics. As an example, we consider the equations for a particle of mass m
moving in R™, acted on by a conservative force field F' = —VV, where V : R® —+ R
is a smooth potential energy function. We change notation, and write the inde-
pendent variable as ¢, instead of z, and the dependent variable as ¢, instead of w.
We use a dot to denote the derivative with respect to t. A particle path for times
0 <t < T is given by a function ¢ : [0,T] - R". We define the action S(q) of a
path g to be the time-integral of the difference between the particle’s kinetic and
potential energies along the path:

ﬂ@=ATGmf—V@>M

Here, ¢2 = ¢ - ¢. The corresponding Lagrangian is

L(gd) = ymd® ~ V(a)
Thus, the action S : C*([0,T]) — R is a functional defined on the space of possible
particle paths. Hamilton’s principle of stationary action states that the actual path
traveled by a particle with given positions at ¢t = 0 and ¢ = T is a stationary point
of the action. The path therefore satisfies the Euler-Lagrange equation associated
with S, which is

mi = —VV. (13.75)

This equation is Newton’s second law.
The Lagrangian L is independent of ¢, and Proposition 13.37 implies that

1
imq'2 + V(q) = constant (13.76)

on a solution, which expresses the conservation of energy. The correspondence be-
tween the invariance of the Lagrangian under time translations and the conservation
of energy is a very general one.

Conservation of energy may be verified directly from (13.75). Taking the scalar
product of (13.75) with ¢, we obtain that

mq-G§+VV(g)-¢=0.



420 Differential Calculus and Variational Methods

Using the chain rule, we find that

% [ +vi| =0
which implies (13.76).

The reason why classical mechanics is given by a principle of stationary action is
not at all clear at the classical level, but the principle may be derived from quantum
mechanics. For example, in Feynman’s path-integral formulation of quantum me-
chanics, the action is the phase of the quantum-mechanical amplitude of a particle
path, and the classical paths are paths of stationary phase.

The Legendre transform (13.74) implies that the momentum p = mw is the dual
variable to the velocity v = ¢, and the Hamiltonian H is the total energy of the
particle:

1
H(g,p) = %zf + V(q).

The Hamiltonian form of the Euler-Lagrange equation is

1 .
q = —p, p = —VqV
m

Hamilton’s equation may itself be given a variational formulation, as the Euler-
Lagrange equation of the functional

T
Sar) = [ i~ H0) d.
0
The Lagrangian function is not a uniformly convex function of the derivatives, since

it is a linear function of ¢ and is independent of p. This explains why the associated
Euler-Lagrange equation is first-order, rather than second-order.

13.9 Multiple integrals in the calculus of variations

The Euler-Lagrange equation for a functional of functions of several variables is a
PDE, rather than an ODE. Suppose that

I(u) = / L (z,u, Du) dz, (13.77)
Q
where (2 is a smooth bounded domain in R?, u:  C R® — R™, and
Du = (Dyu, Dau, . ..,Dyu)

is the derivative of u, where D; is the partial derivative with respect to z; keeping
z; fixed for j # 4. A similar calculation to the one in Section 13.7 shows that the
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Euler-Lagrange equation for I is
—> DiLp,u+ L, =0.
i=1
Example 13.44 The Euler-Lagrange equation associated with the functional

1 1
I(u) = / {iuf - §|Du|2 —-(1- cosu)} dxdt
Q

is the sine-Gordon equation,

—ug + Au — sinu = Q.

We will consider the variational principle for Laplace’s equation. Similar ideas
apply to variational principles of the form (13.77) in which L is a convex function
of Du. We define a quadratic functional I : Hj(Q2) — R by

I@)zélgDm%m—fwx

where f : H}(Q) — R is a bounded linear functional on H}(f2), meaning that
f € H1(Q2). From the Poincaré inequality in Theorem 12.77, we may use

(u,v) :/Du-Dvdx
Q
as the H}-inner product. Then

() = gl ~ £ (u).

It follows from Theorem 8.50 (see Exercise 8.20) that I has a unique minimizer
on H}(Q). This minimizer is a critical point of I, so that I'(u)(¢) = 0 for all
¢ € H}(Q), meaning that

/Du-Dgod:c+f(go)=0 for all p € H}(Q).
Q

From Definition 12.79, the minimizer u is a weak solution of Laplace’s equation,
—Au = f7

providing another proof of the existence of weak solutions.

In many problems, we are interested in minimizing a functional I : X — R
subject to a nonlinear constraint J(z) = 0, where J : X — R A constrained
minimization problem may often be replaced by an unconstrained problem by the
introduction of a Lagrange multiplier . We define F': X x R — R by

F(z,\) = I(z) — A (x).
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If (7, A) is a critical point of F', then taking the partial derivatives of F' with respect
to x and A, we see that

I'@) -\ (T) =0, J(Z) =0.

It follows that Z is a critical point of I on the constraint manifold J (z) = 0 (see
Giaquinta and Hildebrandt [14] for a detailed discussion).

Example 13.45 Consider the problem of minimizing I : H}(Q) — R given by

1
I(u) = 2 /Q |Du|? dx

1
i/QUQdHI:l.

A constraint on the value of an integral of an admissible function is called an
isoperimetric constraint. Introducing a Lagrange multiplier A € R, we consider
critical points of the functional

1 1
F(1L,)\):§‘/Q|Du|2 dx—)\(i/gu%ia:—l).

Taking the derivative of F' with respect to u, we find that a smooth critical point
satisfies

subject to the constraint

—Au = Au.

Thus, u is an eigenfunction of the Laplacian, and the Lagrange multiplier X is an
eigenvalue.

Example 13.46 Consider a function
= (uy, Uz, ..., Umy1) : Q@ C R —» S§™ c R™H

from a subset 2 of n-dimensional Euclidean space into an m-dimensional sphere.
We use the notation

R m+1 ) n m+1l 6“' 2
Wt =3 D=3 Y (52) -
j=1 i=1 j=1 g

A function w that minimizes the functional
1
I(u) = / \Duf? da, (13.78)
2 Jo

subject to the constraint that u(z) € S™, meaning that

lu(z)]> =1, (13.79)
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is called a harmonic map from R™ into S™. A constraint on the pointwise values of
an admissible function and its derivative is called a holonomic constraint.

In this case, the Lagrange multiplier is a function A : 2 C R® —+ R. We consider
critical points of the functional

1
Fu, \) = §/Q|Du|2 dx—/QA|u|2 da.

The Euler-Lagrange equation is
—Au = lu. (13.80)

Differentiating the constraint |u|> = 1, we find that u - Du = 0. Hence, taking the
scalar product of (13.80) with u, and rearranging the result, we find that

A=—u-Au=—D-(u-Du)+ |Dul’ = |Dul”.

Thus the Euler-Lagrange equation for harmonic maps from Euclidean space into a
sphere is the following nonlinear elliptic system of PDEs:

—Au = |Dul* u.

Such harmonic maps provide a simple model for the steady state configuration of
systems with orientational order, such as liquid crystal director fields. An interesting
feature of the solutions is the possible presence of topological defects in the field u
of unit vectors.

13.10 References

Newton’s method is discussed in Kantorovich and Akilov [27]. For a discussion of
evolution equations and Liapunov functions, see Walker [55]. For more on symme-
tries and variational principles, see Olver [42]. For classical mechanics, see Arnold
[2] and Gallavotti [13]. The Legendre transformation in convex analysis is described
in Rockafellar [46]. The classical calculus of variations is discussed in much more
depth in Giaquinta and Hildebrandt [14]. An indication of the extent of the subject
is that, despite the fact that these two volumes have a total length of over 1,000
pages, the authors state that their account is an introduction to the subject, and is
not encyclopaedic!

13.11 Exercises
Exercise 13.1 Prove that the derivative of a differentiable map is unique.

Exercise 13.2 Prove that if A : X — Y is a bounded linear map, then A is
differentiable in X, with constant Fréchet derivative equal to A itself.
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Exercise 13.3 Suppose that f,g : X — Y are two differentiable maps between
Banach spaces X, Y. Show that f + g is differentiable, and (f +g)' = f' +¢'.

Exercise 13.4 Prove that a Fréchet differentiable map is Gateaux differentiable.

Exercise 13.5 Define the function f : R2 = R by

2

fay)= s for (o) #00)

and f(0,0) = 0. Show that the directional derivatives of f at the origin exist in
every direction, but f is not continuous or Fréchet differentiable at the origin.

Exercise 13.6 Let £ : R x [0,1] = R be a continuous function such that for each
t € [0,1], the function k(-,t) is in C*(R). Define a functional f: C([0,1]) = R by

1
fw = [ k(o0
0
Determine the differentiability properties of f.

Exercise 13.7 Let f: R — R be an increasing function such that

[ 1/n if 1/n—1/(4n?) <z < 1/n+1/(4n?),
/(@) _{ z+O(x?) aszx — 0,

where n € N. Show that f/(0) # 0, but f is not locally invertible at 0. Why doesn’t
this example contradict the inverse function theorem?

Exercise 13.8 Consider the BVP

v = p?sinv, 0" = p*ucosv,
ul

0)=u(1) =0, v(0)=4v'(1)=0.

Show that there are no solutions that bifurcate off the trivial solution u = v = 0
unless p € R is a solution of

1+ cospcoshpu = 0.

Exercise 13.9 Suppose that H is a Hilbert space and F' : H x R — H is a con-
tinuously differentiable operator such that F(0,u) = 0 for all 4 € R, so u = 0 is
a solution branch of the equation F'(u,u) = 0. Suppose that D,F(0,0) : H — H
is a singular Fredholm operator (see Definition 8.22), assumed self-adjoint for sim-
plicity. Then H = M & N where M = ran D, F(0,0) and N = ker D,,F(0,0). Let
P denote the orthogonal projection of ‘H onto M and @) the orthogonal projection
onto N. Prove that there are open neighborhoods U C H, V C N,and I C R of 0
and a continuously differentiable function ¢ : V x I — M such that (u,u) € U x I
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is a solution of F'(u,u) = 0 if and only if u = ¢(v, u) + v where v € V is a solution
of G(v,p) =0 with G : V x R — N defined by

G(v,p) = QF (¢(v, ) + v, 1) -

The finite-dimensional system of equations G(v,u) = 0 for v € ker D,F(0,0)
is called the bifurcation equation associated with the original, possibly infinite-
dimensional, system of equations F'(u,u) = 0. This procedure is called Liapunov-
Schmidt reduction. With appropriate modifications, a similar procedure applies to
a continuously differentiable map F': X x R — Y between Banach spaces X, Y.

Exercise 13.10 Suppose that f : H — R is a differentiable functional on a Hilbert
space H. Show that there is a function Vf : H — H, called the gradient of f, such
that

f'(@)h = (Vf(z),h).
Compute the gradient of the function f(z) = ||=||?.

Exercise 13.11 Prove that the closure R([a,b]) of the space S([a, b]) of step func-
tions in the space B([a, b]) of bounded functions f : [a,b] — X on a compact interval
[a,b] into a Banach space X, equipped with the sup-norm, includes all continuous
functions. Show that the characteristic function of the rationals in [a,b] does not
belong to R([a,b]).

Exercise 13.12 Let A: X — X be a bounded linear operator on a Banach space
X, and f: R — X a continuous, vector-valued function. Show that the solution of
the nonhomogeneous linear evolution equation

xy = Az + f, z(0) = =g

is given by

z(t) = T(t)mo + /0 T(t—s)f(s)ds,

where T'(t) = et is the solution operator of the homogeneous equation. This result
is called Duhamel’s formula.

Exercise 13.13 Suppose that 7' > 0 and T' # 2nw for any n € N. Write out the
iteration scheme of the modified Newton method for finding T-periodic solutions of
the forced pendulum,

i + sinu = h,

where h is a given T-periodic function. Assume that the initial point for the modified
Newton’s method is ug = 0. Find an estimate on ||h||» that is sufficient to ensure
convergence of the modified Newton iterates, and estimate the norm ||ul|c2 of the
corresponding T-periodic solution.
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Exercise 13.14 Derive the Euler-Lagrange equation satisfied by C*-critical points
of a functional I : C?%([0,1]) — R defined by

1
I(u) =/ L (m,u,Du,Dzu) dz,
0

where the Lagrangian L : R x R™ x R™ x R™ — R is a twice continuously differ-
entiable function.

Exercise 13.15 The area of a surface obtained by revolving the graph y = u(z)
about the z-axis, where 0 < z < 1, is given by

I(u) = 27 /0 " w@n/1 1 [Dua)] do.

Write out the Euler-Lagrange equation, and the first integral that follows from the
independence of the Lagrangian of z. Show that the curve with smallest surface
area of revolution connecting given endpoint u(0) = a, u(1) = b is a catenary.

Exercise 13.16 Prove that a uniformly convex function f : @ C R® — R on an
open, convex set (2 is strictly convex.

Exercise 13.17 Compute the Legendre transform of:

(a) f(z) =€®—1, where f: R = R;
(b) f(z) = 2T Az/2 where A is an n x n positive definite matrix, and f : R* —
R.

Exercise 13.18 Compute the Euler-Lagrange equation of the quadratic functional

=~ 1 du du
i,j=1 J
where a;; = aj; without loss of generality. Show that the resulting linear PDE is
formally self-adjoint.

Exercise 13.19 Let 2 be a regular, bounded open subset of R™. Show that

2d
M= inf {M}

weHL(Q) fg |u|?dz
u#0
is the smallest eigenvalue of the Dirichlet problem for the Laplacian on {2, and that
the infimum is attained at the corresponding eigenfunctions. Use the trial function
u(z,y) = zy(l — z — y) to obtain an upper bound on the lowest eigenvalue of the
Dirichlet Laplacian on the triangle @ = {(z,y) e R* |[0<z<1,0<y<1—z}.



