
ASSIGNED EXERCISES OF MATH544 February, 2001

CALCULUS OF VARIATIONS

1. Find the shortest distance between two points A and B on the plane

using the polar coordinates.

2. Find the shortest distance between two points A and B on a sphere.

3. Find the shortest distance between two pints A and B on a right cylinder.

In the above problems (2) and (3) you may write the expressions for the

length on the sphere and on the cylinder then use the calculus variations

directly. On the other hand you may use the length formula in R3 with the

constraints x2 + y2 = 1 and x2 + y2 + z2 = 1 respectively.

4. Let J(y) =
∫ b

a
L(x, y, y′)dx be a functional. Let y be continuous in [a, b].

Assume that the Euler Lagrange equation holds on the interval (a, b). Let

y be differentiable at all xε[a, b] except one point x0ε(a, b). Assume that y′

tends to m or n as x tends to x0 from the left or from the right.

4.a. Prove that ∂L
∂y′ and L − y′ ∂L

∂y′ must be continuous functions of x at all

points in [a, b] including the corner points like x0.

4.b. Let J(y) =
∫ b

a
(y′2 − 1)2dx. Suppose a corner exists at x0ε[a, b]. Min-

imize this functional (prove that there exist m and n where the functional

J(y) has a minimum value).

5. Determine the function extremizing (sometimes called the stationary func-

tion associated with) the functional J(y) =
∫ 1

0
y′2 f(x)dx when y(0) = 0 and

y(1) = 1, where f(x) = −1 for 0 ≤ x < 1
4

and f(x) = +1 for 1
4

< x ≤ 1

6. The Euler-Lagrange (EL) equation is in general an ODE of the second

order. We have (in the following we use the notation p = y′)

Lpx + Lpyy
′ + Lpp y′′ = Ly
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In the derivation of the EL we usually do not assume (in advance) the ex-

istence of the second derivative of y. It can easily be shown, however, that

y′′ exists at least at those points where Lpp 6= 0 (prove this). Consider the

functional J(y) =
∫ 1

−1
y2 (p − 2x)2 dx with y(−1) = 0 and y(1) = 1. Find

the the function which minimizes the functional under the given boundary

conditions. Prove that y′′ does exist at x = 0.

7. Let J(y) =
∫ π

0
y′′2dx with the constraint

∫ π

0
y2dx = 1 and with the bound-

ary conditions y(0) = y′′(0) = 0 , y(π) = y′′(π) = 0.

7.a. Find the function extremizing the functional J(y)

7.b. Consider the above problem without the constraint.

8. If l is not preassigned, show that the stationary functions corresponding to

the problem δ
∫ l

0
y′2dx = 0 with y(0) = 2 and y(l) = sin l are of the form y =

2+2x cos l, where l satisfies the transcendental equation 2+2l cos l−sin l = 0.

Also verify that the smallest positive value of l is between π/2 and 3π/4.

9. If l is not preassigned, show that the stationary functions corresponding

to the problem δ
∫ l

0
[y′2 + 4(y − l)]dx = 0, with y(0) = 2 and y(l) = l2 are of

the form y = x2− 2(x/l) + 2, where l is one of two real roots of the equation

2l4 − 2l3 − 1 = 0.

10. Find the shortest distance between the line y = x and the parabola

y2 = x− 1.

11. Find the Lagrangian L(x, y, y′) such that Euler-Lagrange equation co-

incides with the (Emden-Fowler) equation y′′ + 2
x
y′ + y5 = 0.

12. Determine the natural boundary condition at x = b for the variational

problem defined by J(y) =
∫ b

a
L(x, y, y′ dx+G(y(b)), y ∈ C2[a, b] , y(a) = y0 ,

where G is a given differentiable function. As an application of this problem

let L = y′2, y ∈ [0, 1], y(0) = 1, y(1) is unspecified and G = y2. Find y

extremizing this problem.
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13. Give a proof that if
∫ b

a
h′(x) f(x)dx = 0 for all h(x) satisfying h(a) =

h(b) = 0, h(x) is continuous and h′(x) is piecewise continuous in [a, b] where

f(x) is piecewise continuous in [a, b].

14. Legendre Condition. In the theory of extrema of functions of single

variable, a necessary condition for a minimum, besides f ′(x) = 0, is that

f ′′ ≥ 0 (if it exists). A condition somewhat analogous to this holds for

functionals. Let us suppose that there is an admissible function y. for which

J(y) =
∫ b

a
L)x, y, y′)dx is a minimum. Then f(ε) = J(y+εh) has a minimum

at ε = 0; accordingly f ′(0) = 0 (from which follows the Euler-Lagrange

equation Ey(L) = 0 and f ′′(0) ≥ 0, assuming its existence. Hence for all all

h,

f ′′(0) =

∫ b

a

[Lyy h2 + 2Lyy′ hh′ + Ly′y′ h′2]dx ≥ 0

.

Choose a special variation

h =


0 a ≤ x ≤ ξ − ε

1 + (x− ξ)/ε ξ − ε ≤ x ≤ ξ

1− (x− ξ)/ε ξ ≤ x ≤ ξ + ε

0 ξ + ε ≤ x ≤ b

(1)

If we substitute this function in the above expression an let ε → 0, then the

term

1

ε2

∫ ξ+ε

ξ−ε

Ly′y′dx

will dominate the left hand side of the above inequality and determine its sign.

Thus the the sign of Ly′y′ determines the sign of f ′′(0), and for minimum,

the Legendre condition Ly′y′ ≥ 0 must hold. We have the Legendre test:

Theorem 1. The Legendre test. If

(i) Euler-Lagrange equation is satisfied,
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(i) the range of integration is sufficiently small,

(iii) the sign of Ly′y′ is constant throughout this range,

then J(y) is a minimum or a maximum value of J according as the sign of

Ly′y′ is positive or negative.

In case L contains more dependent functions, the Legendre condition is that

the matrix Ly′
iy

′
j

be positive or negative definite, that is

Σ(i,j) λi λj Ly′
iy

′
j
≥ 0 or ≤ 0

for all λ.

The following part is prepared by using the book An Introduction to

the Calculus of Variations by Charles Fox, Oxford Press (1950). In

particular the second chapter on the second variations.

15. The second variation: Let y = y(x) be the path of integration for which

the integral J(y) =
∫ b

a
L(x, y, y′)dx is minimum or maximum (sometimes

called the integral is stationary). Consider all admissible functions y + εh

where both y and h belong to C2[a, b]. Then

J(y + εh) = J(y) +
ε2

2
J2 + O(ε3)

where

J2 =

∫ b

a

[h2 ∂2L

∂y2
+ 2 hh′ ∂2L

∂y ∂y′
+ h′2 ∂2L

∂y′2
] dx

If J(y) is minimum (or maximum) the sign of J2 must be positive (or nega-

tive) without depending upon the choice of h(x) , for all sufficiently small ε.

For simplicity we use the following notation: L0 = ∂L
∂y

, L1 = ∂L
∂y′ . L00 = ∂2L

∂y2 ,

L01 = ∂L
∂y ∂y′ , L11 = ∂2L

∂y′2 . Then J2 takes the form

J2 =

∫ b

a

[L00 h2 + 2L01 hh′ + L11 h′2]dx

.

We have the following Lemma. Proof is straightforward (done in the class)
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Lemma 2.Let h(a) = h(b) = 0, then

J2 =

∫ b

a

{h2 (L00 −
d

dx
L01)− h

d

dx
(h′ L11)}dx

.

Definition. (Jacobi equation and Jacobi field). Let u ∈ C2[a, b]. Then the

following equation is called the Jacobi equation.

{L00 −
d

dx
(L01)}u− d

dx
(L11

du

dx
) = 0

the function u satisfying this second order ODE is called the Jacobi field

Lemma 3. If h(a) = h(b) = 0 and is a Jacobi field then

J2 =

∫ b

a

L11 [h′ − h
u′

u
]2 dx,

Proof. Taking the term L00− d
dx

(L01) from the Jacobi equation and inserting

into the expression for J2 given in the first Lemma one obtains the required

result.

If the term {h′ − h (u′

u
)} 6= 0 and L11 has constant sign for all points of the

extremal arc AB, where A = (a, y(a)) and B = (b, y(b)), then J2 must have

a sign which is independent of the choice of h. Now in the extremal case

J(y + εh)− J(y) =
ε2

2
J2 + O(ε3)

Hence J takes its minimum value (or maximum value) if L11 is positive (or

negative) at all points on the extremal curve y(x) with x ∈ [a, b]. This is

essentially the Legendre test stated above.

If , however, L11, does not keep its sign constant at all x ∈ [a, b] on the

curve y(x), then the value J(y) is neither a minimum nor a maximum.

If the term {h′ − h (u′

u
)} vanishes at all points of the extremal curve y(x).

Then it is clear that h(x) = α u(x), where α is an arbitrary constant. Along
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the extremal curve y(x) the first variation vanishes. If in addition h(x) =

αu(x) is chosen then the second variation, J2 vanishes as well. The sign of

δJ = J(y + εh)− J(y) will depend on the third variation δJ = ε3

6
J3, where

J3 =

∫ b

a

[h3 L000 + 3h2h′ L001 + 3hh′2L011 + h′3L111]dx

Since the sign of δJ depends on that of ε there can be no maximum or

minimum value of J unless J3 vanishes, in which case the sign of δJ will

depend on that of J4 , the fourth variation. In order to avoid this difficulty

Jacobi proposed a test. This test provides whether the h(x) = αu(x) at all

points of the extremal curve y(x).

Definition: Let u(x) be a solution of the Jacobi equation. Let u(a) = 0.

This means that the Jacobi field vanishes at the point A = (a, y(a)). The

all other points on the extremal curve y(x) at which u(x) vanishes are called

the conjugate points to the point A.

The jacobi field ( a function satisfying the Jacobi equation with u(a) = 0)

may be given as the linear sum of the fundamental solutions u1 and u2 of the

Jacobi equation.

u(x) = a1u1(x) + a2u2(x)

where a1 and a2 are constants. Since u(a) = 0, then

u1(a)

u2(a)
= −a1

a2

Hence if x is the abscissa of the conjugate point to A (u(x) = 0) then

u1(x)

u2(x)
= −a1

a2

It shows that this ratio is the same for all conjugate points. This is the way

obtaining the conjugate points. We now give a nice way of determining the

fundamental solutions u1 and u2. Since the function y(x) , the solution of
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the Euler-Lagrange equation is second order ODE then it contains two inde-

pendent constants of integration y(x, c1, c2). It is easy to prove the following

Lemma.

Lemma 4. ui = ∂y
∂ci

, i = 1, 2.

Hence the conjugate points are easily determined from the following formula.

Let Y = ( ∂y
∂c1

)/( ∂y
∂c2

) then

Y (x) = Y (a)

Let A′ be the first conjugate point to A when moving on the extremal curve

y(x) in the direction from A = (a, y(a)) to B = (b, y(b)). There are three

possibilities

(i) B lies between A and A′,

(ii)B coincides with A′,

(iii) B lies beyond A′.

In all three cases u(x) vanishes at A, but in case (i) it can not vanish again

at the point B, in case (ii) it vanishes again at B, and in case (iii) it vanishes

again at some point of the arc AB lying between A and B. In case (i) we

have u(a) = h(a) = 0 but u(b) 6= 0, h(b) = 0. Hence u(x) can not be

proportional to h(x) at all points of the extremal arc AB. Therefore we

must have (h′ − hu′

u
)2 > 0 at all points of AB , except, possibly, at finite

number of points where h(x) and h′(x) vanish simultaneously. Then we have

the following theorem Jacobi test.

Theorem 5. Let y = y(x) be the curve connecting the points A and B for

which the functional J(y) =
∫ b

a
L(x, y, y′)dx takes its extremum value. Let A

and A′ be the conjugate points on this curve. If (i) B lies between A and A′

and (ii) L11 has constant sign for all points on the arc AB, then J(y) is a

minimum (maximum) when L11 > 0 (L11 < 0)

For all the other cases we need higher variations for extremum tests.
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